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Abstract: Climate change can impact the yield and water footprint of crops. Therefore, assessing
such impacts carries great significance for regional water and food security. This study validated and
verified the variety parameters of winter wheat for the Decision Support System for Agrotechnology
Transfer (DSSAT) model, using the long-term (1993–2013) growth and yield data observed from six
agricultural experiment stations in the Haihe River Basin (HRB), China. The growth process was
simulated under three representative concentration pathways (RCPs), named RCP2.6, RCP4.5, and
RCP8.5—climate scenarios driven by the HadGEM2-ES model. The variety parameters of winter
wheat showed high accuracy in the simulation of the anthesis and maturity dates, and could be used
for long-term prediction of the growth process. The trends of climate change had positive impacts
on the water footprint of winter wheat but adverse impacts on the yield. The growing period was
shortened by 3.6 days, 4.7 days, and 5.0 days per decade in the RCP2.6, RCP4.5, and RCP8.5 scenarios,
respectively, due to the rapid accumulation of heat. The yield would be increased in lower emissions
scenarios (17% in RCP2.6), but decreased in high-emissions scenarios due to high temperatures,
which may restrict the growth of wheat. The water footprint was decreased by 10%, 11%, and 13% in
the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, indicating that the water-use efficiency could
be improved in the future. The results showed broad application prospects of the DSSAT model in
simulating the response of crop growth to climate change.

Keywords: variety parameters; DSSAT model; growth process; RCPs scenarios

1. Introduction

Climate change poses a huge threat to the world’s water and food security. Ac-
cording to the sixth assessment report (AR6) of the Intergovernmental Panel on Climate
Change (IPCC), the global surface temperature was 1.09 ◦C higher in 2011–2020 than in
1850–1900, and the global surface in each of the last four decades has been successively
warmer than any decade since 1850 [1,2]. Agriculture has been significantly affected by
climate change [3–5]. The rising temperature has affected photosynthesis and transpiration,
the growing period, and production [6–9]. In addition, the increase in temperature has
affected the hydrological process and brought changes in evapotranspiration and precip-
itation [10–12]. The water footprint can be recognized as a comprehensive indicator to
evaluate the sustainable utilization of agricultural water under climate change, which
reflects water volumes, water sources, and the amount of water required to eliminate
agricultural water pollution [13–16]. Assessing the impact of climate change on the yield
and water footprint of winter wheat could improve our understanding of the vulnerability
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of agricultural water systems to climate change, and also provide advice with respect to
protecting water and food security in case of future climate change [17,18].

The impact of climate change on crop yield and related water footprint has been
assessed around the world. [19]. Prior studies have assessed the impact of climate change
on crops based on observed historical data, showing direct changes in the yield and crop
growth. Lobell and Asner noted that yields of corn and soybeans tended to decrease by
roughly 17% for each 1 ◦C increase in temperature in the growing season in the United
States [20]. The sensitivity analysis provides an important approach to the assessment
of the impact of climate change on crops [21–23]. A series of meteorological factors are
sensitive to crop evapotranspiration, such as temperature [24–26], vapor pressure [27,28],
and other climate factors [29]. These studies improve our understanding of the effects of
climate change on crops. However, the changes in crop growth and yield and the related
water footprint in future climate scenarios are still uncertain.

Crop models are powerful tools to predict crop growth and yield under climate change
scenarios [30,31]. A number of models—such as Crop Environment Resources Synthesis
(CERES), Decision Support System for Agrotechnology Transfer (DSSAT), Agriculture
Production Systems Simulator (APSIM), World Food Studies (WOFOST), and Soil–Water–
Atmosphere–Plant (SWAP) [32–35]—are coupled with some climate scenarios to simulate
crop growth and yield. Yano et al., (2007) pointed out that the rising temperature acceler-
ated crop development and shortened the growing period by 24 days for wheat, and the
irrigation amounts would increase by 10–30% according to the CGCM2 data in a Mediter-
ranean environment [36]. Gao et al., indicated that the crop water requirement increased
by 11.6–86.2% under the impacts of climate change in the multiple cropping areas in North
China [37]. Garofalo et al., demonstrated that the yield would increase by 9% while the
water consumption remained stable in a continental area of Europe [38]. Boonwichai
et al., pointed out the rising temperature would increase the water requirements of rice in
Thailand [39]. Fu and Zhao simulated the yield and water-use efficiency of wheat under
different warming rates [40].

Prior studies have made significant progress in simulating the crop growth and
yield and clarifying the response of crops to climate change in many areas, using crop
models [41–43]. However, for some especially climate-sensitive areas (e.g., temperate
semi-humid and semi-arid monsoon climate areas), studies using crop models coupled
with scenarios of representative concentration pathways (RCPs) are still scarce. In addition,
many crop models simulate the crop growth using 2–3-year observed data (especially the
genetic parameters) in the process of model calibration and validation due to a lack of long-
term historical data. The short-term observed data would be not enough for estimating
long-term climate change processes [44–46].

The Haihe River Basin (HRB) is a political, economic, and cultural center of China
with 146 million inhabitants. It is also a major grain-producing area, with a total yield of
24.7 million tons of wheat. The HRB is located in the temperate semi-humid and semi-arid
monsoon climate zones. The per capita water resources are 210 m3—less than 1/10 of
the national average. Water resources and crop growth are sensitive to climate change
in this typical water-deficient region [47–49]. Therefore, this paper studies the case of
the HRB, and aims to (1) determine proper variety parameters of winter wheat for the
simulation of long-term climate conditions, (2) assess the yield and water footprint of winter
wheat in future RCP scenarios, and (3) clarify the response of yield and water footprint to
climate change.

2. Methodology and Data
2.1. Study Areas

The HRB is located between 112◦ E–120◦ E and 35◦ N–43◦ N, with a drainage area of
318,200 km2. It encompasses Beijing, Tianjin, and 23 other large- and medium-sized cities.
The basin is located in a continental monsoon climate zone with annual mean temperatures
of −4.9–15 ◦C and annual precipitation ranging from 380 mm to 580 mm. The precipitation
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in the monsoon season (June–September) generally accounts for 70–85% of the annual total
precipitation. This study collected data on soil, genetic parameters, weather, and field
management from six agricultural experimental sites, i.e., Dingzhou and Luancheng in
Shijiazhuang (SJZ), Miyun and Tongxian in Beijing (BJ), and Baodi and Jinghai in Tianjin
(TJ). The locations of the HRB, the weather stations, and the experimental sites are shown
in Figure 1.

Figure 1. Locations of the study areas and agricultural experiment stations.

2.2. Data Inputs, Calibration, and Validation of the DSSAT Model

The inputs of the DSSAT model include data on soil, genetic parameters, weather, and
field management. The genetic parameters of wheat were calibrated and validated using
the “trial and error” method, based on the historical data observed from 1993 to 2013 at six
agricultural experimental sites. The data for crop growth were obtained from the China
Meteorological Administration (Beijing, China) [50], which only offered data from 1993
to 2013, and did not provide data after 2014. The observed data in the periods 2005–2013
and 1993–2004 were used to calibrate and validate the model, respectively. The wheat
was cultivated in rows, with spacing of 20 cm. There were 240 plants of winter wheat per
square meter. Ammonium bicarbonate (NH4HCO3) was mostly applied as the fertilizer.
In the model, the crops were fertilized twice in the growing period, with 86 kg of pure
nitrogen per hectare each time, and were irrigated four times, with 60 mm of water each
time, during the periods of wintering (12/01), stem elongation (3/29), heading (4/20), and
grain filling (5/15) [51,52]. Phosphorus and potassium were not simulated in the model.

The soil data were obtained from the Chinese Soil Database [53,54]. The dominant
soil type was “Loess soil,” with a texture of sandy clay loam. The diameter, nutrients, and
physical and chemical properties of the soil particles are listed in Table 1 below.
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Table 1. Typical characteristics of soil in HRB.

Soil Type
Relative

Thickness
(cm)

The Percentage of Soil Size
Nutrients, and Physical and Chemical

Properties2–0.02
mm

0.02–0.002
mm

<0.002
mm

Loess

18 61.2 23.55 15.3 Cation exchange capacity: 11.5 cmol/(+); organic
matter: 8.3 g/kg; total nitrogen: 0.59 g/kg; total

phosphorus: 0.46 g/kg; total potassium: 17.5 g/kg;
water extraction pH: 8.2.

23 62.79 23.18 15.1
76 56.43 25.72 17.9
33 56.13 26.93 16.9

The genetic parameters of winter wheat include ecological parameters and variety
parameters. The default “USWH01” was used for the ecological parameters. The key
variety parameters used in the model are listed in Table 2 [51,55,56]. The variety parameters
were manually calibrated and validated based on the observed data from 2005–2013 and
1993–2004, respectively. The growth data were obtained from 6 agricultural experimental
sites. The calibrated and validated results are shown in Table 2.

Table 2. The variety parameters of winter wheat.

Parameters Explanations [32] Shijiazhuang Beijing Tianjin

PIV Vernalization sensitivity coefficient, days 35 35 15

PID Photoperiod sensitivity coefficient, %h 75 65 65

P5 Thermal time from the onset of linear
filling to maturity, ◦C.days 550 550 550

G1 Kernel number per unit stem + spike
weight at anthesis, numbers/g 17 15 15

G2 Standard kernel size under optimal
conditions, mg 32 30 30

G3 Standard, non-stressed dry weight of a
single tiller at maturity, g 1.4 1.4 1.1

PHINT Thermal time between the appearance of
leaf tips, ◦C.days 70 70 70

The weather data were obtained from the China Meteorological Administration [50],
including daily maximum and minimum air temperatures, wind speed at 2 m height,
relative humidity, and daily sunshine duration. The data were proofread and corrected
and the missing data were interpolated. The weather data in average years in the HRB are
shown in Table 3.

Table 3. The average weather data in the study areas.

Precipitation
(mm)

Min.
Temperature

(◦C)

Max.
Temperature

(◦C)

Wind
Speed (m/s)

Relative
Humidity

(%)

Sunshine
Hours (h)

Shijiazhuang 510 9.9 19.5 1.5 57.0 2135

Beijing 496 8.5 18.5 2.3 52.7 2425

Tianjin 527 9.2 18.1 1.2 59.1 2244

In the DSSAT model, the infiltration and soil water dynamics were simulated based on
the equation provided by the Soil Conservations Service of America (Washington, DC, USA)
and the one-dimensional water balance model developed by Ritchie [57] (pp. 41–54). The
evapotranspiration was simulated daily using the Penman–Monteith method in FAO-56.
The life cycle of winter wheat was divided into several phases, and the development rate
was controlled by accumulated heat quantified by growing degree-days (GDD). The yields
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were simulated based on the potential seed weight and kernel numbers derived from
genetic parameters and the conversion of cumulated carbohydrates.

The water consumption of winter wheat was calculated by summing up the simu-
lated daily evapotranspiration during the growth period. The water footprints of winter
wheat were calculated by dividing the amount of consumed water by the simulated crop
yield [47,58].

2.3. Model Evaluation

The performance of the model was evaluated by a number of indicators named “the
normalized root mean square, NRMSE”, “the coefficient of residual mass, CRM”, “the
coefficient of determination for linear relationship, r2”, and “the index of agreement, d”.

The NRMSE was used to measure the relative difference between the simulated
and measured values [59]. The results were graded as “excellent”, “good”, “moderate”,
or “poor”, corresponding to an NRMSE of “≤10%”, “10–20%”, “20–30%”, or “≥30%”,
respectively.

NRMSE =

√
∑n

i=1(Si − Ri)
2

n
∗ 100

R
(1)

where NRMSE is the normalized root-mean-square error, n is the number of samples, Si is
the simulated value, Ri is the observed value, and R is the average of observed values.

The CRM is an indicator of whether the model predictions tend to over- or underesti-
mate the observed data [60]. A negative or positive CRM value indicates a tendency of the
model toward over- or underestimation, respectively.

CRM = 1− ∑n
i=1 Si

∑n
i=1 Ri

(2)

where CRM is the coefficient of residual mass.
The index of agreement (d) was used to verify the consistency between the simulated

and measured values.

d = 1− ∑n
i=1(Si − Ri)

2

∑n
i=1(|Si − R|+ |Ri − R|)2

(3)

where d is the index of agreement. We considered the index of agreement between measured
and simulated values to be “excellent” when d > 0.9, “good” when 0.8≤ d < 0.9, “moderate”
when 0.7 ≤ d < 0.8, and “poor” when d < 0.7.

2.4. Simulation in Future Climate Scenarios

The IPCC distinguishes four RCPs (RCP2.6, 4.5, 6, and 8.5) based on radiative forcing
levels by 2100 (from 2.6 to 8.5 W/m2) [61]. RCP2.6, RCP4.5, and RCP8.5 were employed
in this study, representing pathways below the 10th percentile, moderate, and below the
90th percentile of the reference emissions range, respectively [62]. The future climate data
for the RCP2.6, RCP4.5, and RCP8.5 scenarios were generated driven by the HadGEM2-ES
model developed by the Hadley Centre of the UK Met Office (Exeter, UK). The generated
data were scaled down to the HRB by a monthly scaling-down method.

The growth process and yield in the future were simulated by the DSSAT model
coupled with RCP scenarios by creating corresponding new weather stations to store the
generated weather data. The planting time of winter wheat in the RCP scenarios was
assumed to be the same in the simulation model.

3. Results
3.1. Simulation of Winter Wheat Growth and Yield Using the DSSAT Model

(1) Anthesis dates
The regression between the observed and simulated values of anthesis dates was

conducted using the 1:1 line, and the results are shown in Figure 2; r2 explained most of the
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deviations between the simulated and measured values during calibration and validation
for Beijing and Tianjin, with results ranging from 0.83 to 0.91, while for Shijiazhuang, the r2

was poor at 0.40.

Figure 2. Calibration and validation results of anthesis dates. (a–c) are calibration results for Beijing,
Shijiazhuang, and Tianjin, respectively; (d–f) are validation results for Beijing, Shijiazhuang, and
Tianjin, respectively.

The calibration and validation results for anthesis dates are shown in Table 4. The
simulated mean values were 211–223 days after planting (DAP)—1–4 days later than the
observed values. The NRMSE shows an “excellent” performance of the model, with values
ranging from 1.9% to 2.3%. The CRM shows that the anthesis date estimated was later than
the observed dates, with a range from −0.023 to −0.004. The values of “r” show that the
simulated and observed days for anthesis were significantly correlated (p < 0.001).

(2) Maturity dates
The calibration and validation results of maturity dates are shown in Figure 3. Most

of the deviations between the simulated and measured values could be explained by r2,
with values ranging from 0.65 to 0.91, except for the validation for Shijiazhuang (0.42). The
calibration and validation results for maturity dates are shown in Table 5. The simulated
mean was 247–255 days after planting (DAP)—close to the observed numbers for calibration
and validation, with a range from 3 days earlier to 2 days later. The NRMSE shows an
“excellent” performance of the model, with values ranging from 1.0% to 1.7%. The CRM
ranging from −0.008 to 0.011 also shows that the simulated values were close to the
observed ones. The negative or positive values indicate that the simulated values were
underestimated or overestimated compared with the observed ones, respectively. The
values of “r” show that the simulated and observed days for maturity were significantly
correlated (p < 0.001).
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Table 4. Calibration and validation results of the DSSAT model for anthesis dates.

Parameters
Shijiazhuang Beijing Tianjin

Obs Sim Obs Sim Obs Sim

Calibration

Mean 214 218 223 224 220 223
Standard deviation 5.1 4.8 7 9 7 8

Minimum 203 208 210 211 206 210
Maximum 223 227 235 238 230 239

Data number 18 18 18
r 0.85 *** 0.96 *** 0.91 ***

NRMSE, % 2.3 1.2 1.9
CRM −0.019 −0.004 −0.013

d 0.21 0.03 0.09

Validation

Mean 211 216 222 225 218 222
Standard deviation 5.2 5.3 7 8 7 6

Minimum 196 206 210 210 206 210
Maximum 218 225 234 239 231 233

Data number 22 21 24
r 0.71 *** 0.93 *** 0.92 ***

nRMSE, % 3 1.9 1.8
CRM −0.023 −0.015 −0.015

d 0.31 0.09 0.10

Notes: *** represents significance levels of 0.001; “Obs” means observation values; “Sim” means simulation values.

Figure 3. Calibration and validation results of the DSSAT model for maturity. (a–c) are calibration
results for Beijing, Shijiazhuang, and Tianjin, respectively; (d–f) are validation results for Beijing,
Shijiazhuang, and Tianjin, respectively.
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Table 5. Calibration and validation results of the DSSAT model for maturity dates.

Parameters
Shijiazhuang Beijing Tianjin

Obs Sim Obs Sim Obs Sim

Calibration

Mean 250 247 255 255 253 253
Standard deviation 3.6 4.3 6.4 8.2 7.8 7.3

Minimum 244 240 243 240 237 240
Maximum 258 257 265 267 262 268

Data number 17 17 18
r 0.81 *** 0.97 *** 0.84 ***

nRMSE, % 1.4 1.0 1.7
CRM 0.011 0.001 −0.000

Validation

Mean 248 247 251 253 252 253
Standard deviation 2.8 4.5 6.6 8.8 6.2 6.4

Minimum 243 238 240 241 242 241
Maximum 253 256 265 269 263 262

Data number 18 17 24
r 0.65 ** 0.92 *** 0.76 ***

nRMSE, % 1.4 1.7 1.7
CRM 0.004 −0.008 −0.002

Notes: ** and *** represent significance levels of 0.01 and 0.001, respectively. “Obs” means observation values;
“Sim” means simulation values.

(3) Yield of winter wheat
The calibration and validation results of yield are shown in Figure 4. The NRMSE

shows a “good” performance in “Shijiazhuang”, “Beijing”, and “Tianjin”, with values of
12.5%, 18.8%, and 17.5%, respectively. The index of agreement “d” shows a moderate
performance in “Shijiazhuang”, “Beijing”, and “Tianjin”, with values of 0.38, 0.53, and 0.41,
respectively.

Figure 4. Calibration and validation results of yield for winter wheat. (a–c) are simulated yield for
Shijiazhuang, Beijing, and Tianjin, respectively.

3.2. Prediction of Growth Process, Yield, and Water Footprint under RCP Scenarios

(1) Growing period
The growing periods of winter wheat were significantly shortened in the RCP2.6,

RCP4.5, and RCP8.5 scenarios, as shown in Figure 5. By 2050, the growing period would
be shortened by 13 days, 16 days, and 18 days compared to 2015 in the RCP2.6, RCP4.5,
and RCP8.5 scenarios, respectively, meaning that the decrease was 3.6 days, 4.7 days, and
5.0 days per decade, respectively. The downward trends were more significant in Tianjin,
with a decrease of 4.9 days, 5.7 days, and 6.6 days per decade in RCP2.6, RCP4.5, and
RCP8.5, respectively.
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Figure 5. The growing period of wheat in the different RCP scenarios. (a–c) are growth period for
Shijiazhuang, Beijing, and Tianjin, respectively.

(2) Crop yield
The simulation results of yields are shown in Figure 6. Although the yields increased

in all climate scenarios, the increase was even greater in the low-emissions scenario of
RCP2.6. By 2050, the yield would increase by 1.5 t/ha, 1.46 t/ha, and 1.39 t/ha compared
to 2015, respectively. The ranges of increased yields were inhomogeneous in space. In
Tianjin and Beijing, the yields increased more than those in Shijiazhuang, mainly because
the starting yields in 2015 were lower in Tianjin and Beijing.

Figure 6. The yield of wheat in the different RCP scenarios. (a–c) are yield for Shijiazhuang, Beijing,
and Tianjin, respectively.

(3) Water consumption
The simulated results of water consumption during the growth process of winter wheat

are shown in Figure 7. The volumes of water consumption increased in the lower emissions
scenario (RCP2.6), but the trends were not significant in the RCP4.5 and RCP8.5 scenarios.
These results may be related to the length of the growing period. In the RCP4.5 and RCP8.5
scenarios, the growing period was shortened by 16 and 18 days, respectively, according to
the previous section of this study. From the perspective of daily water consumption in the
growing period, the water consumption was increased in all scenarios.

Figure 7. The water consumption of winter wheat in the different RCP scenarios. (a–c) are water
consumption for Shijiazhuang, Beijing, and Tianjin, respectively.



Atmosphere 2022, 13, 630 10 of 14

(4) Water footprint
The simulated results for water footprint production are shown in Figure 8. The

water footprints significantly decreased, indicating that the water-use efficiency would be
improved—especially in high-emissions scenarios (RCP8.5). By 2030, the water footprint
would decrease by 4%, 8%, and 6% in the RCP2.6, RCP4.5, and RCP8.5 scenarios, respec-
tively. By 2050, the water footprint would decrease by 10%, 11%, and 13% in the RCP2.6,
RCP4.5, and RCP8.5 scenarios, respectively. Water footprints decreased the most in Beijing
in terms of space, by 14%, 23%, and 16% in the RCP2.6, RCP4.5, and RCP8.5 scenarios,
respectively.

Figure 8. The water footprint of wheat in the different RCP scenarios. (a–c) are water footprint for
Shijiazhuang, Beijing, and Tianjin, respectively.

4. Discussion

The calibrated and validated results of variety parameters were compared to others in
the HRB, and are shown in Table 6. Du calibrated two varieties (“41,581” and “Kenong199”)
at the Luancheng agricultural experimental station in Shijiazhuang [50]. The variety of
winter wheat in this study was similar to “41,581”.

Table 6. Comparison of the current study vs. others.

PIV PID P5 G1 G2 G3 PHINT

Current study 35 75 550 17 32 1.4 70

“41,581” 32.76 82.79 558.2 17.16 34.31 1.144 70

“Kenong199” 39.22 59.13 656.3 17.55 37.77 1.933 70

The growing period decreased by 3.6 days, 4.7 days, and 5.0 days per decade in the
RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, which were compared to others. Zhang
et al., found that the growing period of winter wheat would be shortened by 0.84 days
per decade in the combination model of BCCT63 and WOFOST [63]. Li et al., found that
the growing period from sowing to ripening in the RCP8.5 climate scenario would be
shortened by 4 days and 15 days in the periods 2010–2039 and 2040–2069, respectively [64].
The reason for the shorter time period in this study than in Li’s study was mainly because
the observation point was at a higher latitude than Li’s, with a lower temperature and
more pronounced monsoon climate—especially in Beijing and Tianjin. A few scholars
indicated changes in the growing period based on historical data observed in the HRB.
Ji et al., indicated that the heading and ripening dates were 4.6 days and 2.7 days earlier
each decade, respectively, in 1983–2005 [65]. Yu et al., indicated that the growing period
was shortened by 1.3 days per decade, and that the decreasing trend would be even faster
in future climate scenarios [66]. The changes in the growing period in the RCP scenarios
were related to the thermal time or so-called “growing degree-days (GDD)” [19,32]. As
temperature rises, the GDD of winter wheat reaches the threshold in advance for maturity.

In Shijiazhuang, we found a relatively poor correlation (r2) for the anthesis dates and
maturity dates. This is also related to the accumulation of heat. Shijiazhuang is in the south
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of the Haihe River Basin, and the temperature differences between spring and summer are
smaller than in Beijing and Tianjin (in summer, the temperature is high in the whole basin,
or even throughout China, while in the winter there is large difference between different
latitudes). Hence, in Shijiazhuang the dates of anthesis (or maturity) are more centralized,
as can also be seen in Figures 2 and 3. This may lead to a relatively poor correlation (r2) in
anthesis (or maturity) dates in Shijiazhuang than in the other two regions.

The yields showed an increasing trend in future climate scenarios. Li believed that
the yields in the RCP8.5 scenario would increase by 14.88% in the period 2040–2069 [64].
Meanwhile, in this study, the yield increased by 14.7% in the RCP8.5 scenario for Shiji-
azhuang, which is close to Li’s estimate. Yang et al., clarified that the actual yield of winter
wheat in Ningjin (a city in southern Shijiazhuang) increased by 1.36 tons per decade in the
period 1982–2018 [67], while in this study, it was 0.2–0.3 tons per decade, indicating that the
increasing trend would slow down in the future. The yield would increase in future climate
scenarios because the increasing temperature can boost photosynthesis and dry matter
accumulation in winter wheat. Among them, the effects of low- and medium-emission
conditions on the increase in winter wheat yield is higher than that of high-emission condi-
tions, because in high-emission scenarios, a higher temperature may cause damage to the
growing process of crops.

By 2050, the water footprints would decrease by 10%, 11%, and 13% in the RCP2.6,
RCP4.5, and RCP8.5 scenarios, respectively, indicating that the water-use efficiency would
be improved. The water footprint was influenced by two factors: the water consumption
during the growing seasons, and the yield. The water consumption in the growing seasons
of wheat was not significantly increased—especially in high-emission scenarios—because
the growth days were significantly shortened, although the daily consumption of water
did increase to a certain extent. Meanwhile, the yields were increased, according to the
experimental results and above analysis.

Because of the lack of data on biomass, the accuracy of yield simulation was affected.
In addition to the genetic kernel numbers and the weight of winter wheat, a portion of
the yield was derived from the conversion of biomass. When photosynthesis declines, the
protein and carbohydrates mobilized from vegetative tissue contribute to seed growth [32].
In the future, a few parameters (e.g., biomass) should be monitored to improve the accuracy
of yield simulation. In addition to climate change, the water footprint of winter wheat
was also influenced by such factors as technological innovation, and their effects would be
greater than the impact of climate change [68–70]. In the future, the influence of multiple
factors on crop yield and water footprint should be considered.

5. Conclusions

In this study, the variety parameters of winter wheat were validated and verified with
the DSSAT model using the long-term (1993–2013) growth and yield data observed from six
agricultural experimental stations in the HRB, China. The growth processes were simulated
by the DSSAT model coupled with RCP scenarios (RCP2.6, RCP4.5, and RCP8.5) driven by
the HadGEM2-ES model, so as to understand the impacts of climate change on the yield
and water footprint of winter wheat. The calibrated and validated variety parameters of
winter wheat had high accuracy in simulating the anthesis and maturity dates, and could
be used for the prediction of future winter wheat growth processes in the HRB. The results
showed that future climate scenarios could speed up the growth process and improve the
yield. The growing periods were significantly shortened, by 3.6 days, 4.7 days, and 5.0 days
per decade in the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, due to the rapid
accumulation of heat. The yield increased more in lower emissions scenarios (by 17% in
RCP2.6) than in higher emissions scenarios. In the RCP8.5 scenario, the rising temperature
adversely affected the growth process of winter wheat. The water footprint decreased by
10%, 11%, and 13% in the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, indicating
that climate change could improve water-use efficiency in the future.
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