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Abstract: Road dust (RD) is one of the most important sources of particles in the atmosphere,
especially in industrial areas and cities. In this special issue, we collected 16 original articles that
describe field, experimental, and modeling studies related to RD and its various size fractions as a
key issue in understanding the relationships between several urban and industrial environments and
in the identification of pollution sources. Articles in the special issue focus primarily on the following
main topics: (1) study of the chemical composition and speciation of RD and its source attribution; (2)
assessment of RD and aerosol pollution levels (including express technique), environmental hazards
and public health risks; (3) distribution of stable and radioactive isotopes in RD; (4) determination of
factors affecting the level of dust accumulation on roads and the intensity of its pollution; and (5)
study of the effect of RD on the atmosphere and other environments. Based on the results presented
in this special issue, but not limited to, some of the current challenges in studying RD are formulated,
including the need for further geographically wider and analytically deeper work on various aspects
of the formation, transport pathways, and accumulation of RD in urban, industrial and other areas.

Keywords: air pollution; road dust and road pavement; particle size distribution; source apportion-
ment; environmental interactions; toxic elements and compounds; nanoparticles and microplastic;
spatial variation and modeling; health and ecological risks; mitigation strategies

1. Introduction

Resuspended road dust (RD), enriched with toxic elements, polycyclic aromatic hy-
drocarbons (PAHs), black carbon, etc., is one of the most important sources of coarse, fine,
and ultrafine particles in the atmosphere, which is especially true for industrial sites and
cities with a high density of road network and large areas sealed under road pavements [1].
In turn, the chemical composition of RD is determined by the impact of a wide range of
anthropogenic sources, as well as by the deflation and erosion by rainfall of roadside soils in
summer (especially in the relatively dry climate), blowing out de-icing agents in winter and
after snowmelt, transportation of particles with stormwater runoff, deposition of suspended
atmospheric particles, and precipitation. The chemical and physical characterization of
RD size fractions is a key issue in understanding the relationships between several urban
and industrial environments and in the identification of pollution sources. However, in
many cities and towns, there is a significant lack of knowledge of the composition of RD
and its individual size fractions, dust loadings, the anthropogenic impact on the degree of
RD pollution, and potential risks of RD to public health and ecosystems.

In this special issue, we collected 16 original articles that describe field, experimental,
and modeling studies related to detailed analyses of RD and its various size fractions
as a significant source of air pollution. Priority attention is paid to modern techniques,
approaches, and methods for assessing the contribution of various sources to the chemical
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composition of RD size fractions (i.e., source apportionment) and the assessment of public
health and ecological risks, as well as other related issues of particulate matter, including
ultrafine particles.

The field data that formed the basis of the papers in this special issue were collected
worldwide, which proves the considerable interest of researchers from the regions of North,
Central and South America, Europe, Asia, and Africa in the study of RD, and countries
including Brazil [2], Canada [3], Colombia [2], Costa Rica [2], Egypt [4], India [5], Mex-
ico [6,7], Pakistan [8], People’s Republic of China [8,9], Republic of Korea [10,11], Russian
Federation [4,12–14], Spain [2], Taiwan (Republic of China) [15], the United States of Amer-
ica [16,17], and Vietnam [15]. The study areas included roads of various types and sizes
within different land-use areas (commercial, residential, industrial, recreational, educa-
tional, etc.) in megacities [2,5,6,8,15], large [3,4,7,12,13] and medium-sized cities [2,12–14],
industrial areas [9–11], paved and unpaved roads between cities and settlements [16,17]. In
the literature, various terms are usually used to denote particles that accumulate on the
roadway surfaces, such as “road dust(s),” “street dust(s),” “road-deposited sediments,”
“sweepsand”, etc. The authors of the special issue predominantly used the term “road
dust” [2,3,5–8,10,14], although terms such as “street dust” [15], “urban dust” [11], “road
sediments” [2], “urban sediments” [12], “urban surface deposited sediments” [4,13] are
also used.

Articles in the special issue focus primarily on the following main topics: (1) study of
the chemical composition of dust and sources of various substances in it, (2) assessment
of RD and aerosol pollution levels, environmental hazards and public health risks, (3)
distribution of stable and radioactive isotopes in RD, (4) determination of factors affecting
the level of dust accumulation on roads and the intensity of its pollution, and (5) study of
the effect of dust on the atmosphere and other environments.

2. Chemical Composition and Source Apportionment

The study of the composition of RD and an assessment of their probable sources is one
of the main topics of most work on RD worldwide, which was also reflected in our special
issue. The largest number of papers in the special issue is devoted to the study of RD
chemical elements, such as metals and heavy metals (HMs) [3,6,8,9,11,15], potentially toxic
elements (PTEs) [7,10,14], major, mineral, minor, and trace elements [2,5,11,13], and ions [2].
Among the analytical methods, inductively coupled plasma mass spectrometry (ICP-
MS) [2,3,8–10,14,15], inductively coupled plasma optical spectrometry (ICP-OES) [3,5,6,11],
inductively coupled plasma atomic emission spectroscopy (ICP-AES) [14], X-ray fluores-
cence with dispersed energy (XRF-ED) [7], scanning electron microscope equipped with
an energy-dispersive spectrometer (SEM-EDS) [7,13] are most frequently used. H. Jeong
et al. [10] also measured the magnetic susceptibility of RD.

Several articles are devoted to studying the mineralogical composition and type of
individual RD particles. For example, Y. Aguilar et al. [7] found that calcite, quartz, ankerite,
anorthoclase, and albite are the main minerals of RD of the city of Mérida Yucatán, Mexico,
and natural minerals such as hematite, goethite, boehmite, dikite, sanidine, tosidite, and
yeelimite are found in smaller quantities; among the anthropogenic minerals, maghemite
is the most common, which determines the highest magnetic signal to RD. A. Seleznev
et al. [13] showed that 19% and 13% of particles in the urban surface-deposited sediments
in the residential areas of ten Russian cities located in different economic, climatic, and
geological zones are characterized as technogenic (e.g., plaster, car tires, household waste,
glass, coal, paint, brick, silicate and iron microspheres, granulated and lithoid slag) in
particle size fractions of 0.1–0.25 and 0.25–1 mm, respectively, and the rest of the particles is
represented by the mineral and natural organic fragments. The results in this special issue
prove the need for a detailed study of the mineralogy of RD and adjacent environments
(such as soils, atmospheric depositions, and parent rocks), pavement condition, land use,
etc. to obtain more accurate information about their mineral matrix and color variation
features (see Section 3).
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For source identification and apportionment of elements in RD and aerosols, a wide
range of approaches and methods have been used, among which the most common are:
enrichment factors (EFs) [2,5,11,14,15], Zn/Cu ratio to assess the contribution of traffic
activities related to the abrasion of brake pads and tires [10], Cu/Sb ratio to evaluate
the contribution of brake wear emissions in RD [2], as well as a hierarchical clustering
analysis (HCA) [3,5,15], principal component analysis (PCA) [2,10,14,15], and positive
matrix factorization receptor model (PMF) [9]. One of the EF calculation problems is the
choice of the reference element [18]. In the special issue, Al and Fe are the most frequently
used reference elements in the study of mineral environments [2,14,15]. However, Li
was also used due to possible precipitation of Al and Fe hydroxides when the salinity is
changed in an estuary environment [11], as well as Ti since it is a stable, non-reactive, and
inert element with respect to the physicochemical parameters of the environment, and is
negligibly added by anthropogenic activities [5].

In the work of S. Sun et al. [9], using data on the concentrations of HMs in atmospheric
PM2.5 in Huludao City, an industrial city in northeast China, and the results of PMF, it
was shown that in the heating and non-heating periods the leading sources of pollutants
are coal combustion (at Huagong Hospitals) and industrial emissions (Xinqu Park); the
contribution of traffic emissions is 10–31%. S. Vanegas et al. [2], comparing the chemical
composition of RD from two cities in Colombia, proved that volcanic ash could be an
important source of SO4

2−, Cl−, and elements that form the mineral matrix of RD; while
Cu, Pb, Cr, Ni, V, Sb, and Mo are mainly associated with exhaust and non-exhaust traffic
emissions. D. Moskovchenko et al. [14] for Surgut, a rapidly developing city in Western
Siberia, Russia, found that RD particles of size 100–250 µm originate from geogenic sources
and abrasion processes caused by road traffic, while particles < 50 µm mainly originate
from industrial emissions; the chemical composition of RD is mainly predetermined by
contributions from sources associated with road traffic (the abrasion of car tires and brake
pads), soil erosion, and solid waste incineration.

Articles of the special issue did not cover studying the chemical fractionation of
elements in RD and its particles of various sizes, although this information is essential
for understanding the potential sources of elements, their mobility, and environmental
hazard [19].

3. Pollution Levels and Health Risks Assessment

The second central area of research in the special issue is the assessment of RD pollution
levels, environmental hazards, and public health risks. The level of RD contamination
with individual chemical elements was estimated using the enrichment factor, which
was mentioned above, as well as the geo-accumulation index (Igeo) [8,10,15], pollution
index (PI) or contamination factor (CF) [5,8,15], degree of contamination (Cdeg) [5], and
global pollution index (PIr) [14]. Comprehensive assessment of contamination with several
pollutants is carried out using pollution load index (PLI) [6,15], and total enrichment factor
(Ze) [14]. To assess the environmental hazard of toxicants in RD, the potential ecological
risk factor (Er) is calculated, and for the integral assessment, the comprehensive ecological
risk (PER) is used [5,10,14,15].

H. Jeong et al. [10] showed that among PTEs in RD from nine industrial areas in the
Republic of Korea, the potential ecological risk index is in the decreasing order of Cd >
Pb > Hg > Cu > As > Zn > Ni > Cr, and the highest concentration of PTEs was at the
Onsan Industrial Complex with many smelting facilities. M.-S. Kim et al. [11] found that
the concentrations of Mn, Zn, Cd, and Pb in RD in a residential area near Donghae port,
Republic of Korea, and in the port are approximately up to 112 times higher in comparison
with the control area. S. Vanegas et al. [2] studied differences in the level of RD pollution in
the Bogotá megacity and Manizales city, Colombia. In Bogotá, EFs show extremely high
values for Mo and Sb, very high for Cu and Pb, high for Ni, Se, and Cr, while in Manizales,
EFs are extremely high for Mo, Se, Sb, and Mn, very high for Cu and As, and high for
Ni, Cr, and Pb; the results proved the need to study Se in RD of other cities due to its
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intense accumulation. A study of street dust from Ha Noi highway, Ho Chi Minh City,
Vietnam, by V.T. Nguyen et al. [15], showed moderate contamination levels for Pb, Cd, Cu,
Sn, Mo, and Zn (based on Igeo), moderate levels for Cd, Cu, Mo, and Sn and moderate–
severe levels for Zn (based on EFs), while PER indicates a high potential ecological risk;
also, Igeo levels for B close to the main pollutants were established, which can be helpful
when choosing elements for ecological and geochemical monitoring of RD pollution. S.
Beauchemin et al. [3] studied the chemical composition of ultrafine particle fraction (UFP)
of RD in the City of Toronto, Canada, and showed up to 2 times higher concentrations of
Cd, Cr, Zn, and V in UFP compared to the total dust, as well as higher levels of pollution
(up to 2 times for Cd, Zn, and V and nine times for Cr) of UFP from arterial roads compared
to local roads. The elevated concentrations of transition metals in UFP can cause oxidative
stress in human lung cells.

Y. Aguilar et al. [7] developed a proxy methodology and innovative tool to identify RD
samples contamination with PTEs using the RGB system and the Munsell color cards. This
approach was verified by a discriminant analysis, which confirmed the identification of five
groups of RD samples by colorimetric indices and PTE concentrations. Contamination level
reaches high in “dark gray” (III) and “very dark gray” (V) samples, decreases to medium
in “gray” (II) samples, and low in “greyish brown” (I) and “dark grayish brown” (IV) RD
samples. At the same time, the “very dark gray” RD contains the highest concentrations of
Pb, Cu, Zn, and Y; the redness and saturation rates showed high correlations with PTEs in
“dark gray” and “very dark gray” RD. An important conclusion is that samples of “grayish
brown” and “dark grayish brown” colors can be discarded from the chemical analysis
when monitoring urban RD pollution.

Using U.S. EPA methodology, M. Faisal et al. [11] estimated non-carcinogenic and
carcinogenic risks of Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg in PM2.5 portion of RD from five
different land use areas of Zhengzhou, China. PI and Igeo show the extreme pollution
of RD with Hg, Cd, and Zn. The most significant non-carcinogenic exposure to children
is the exposure of Pb in commercial and industrial areas. Both children and adults in
Zhengzhou’s commercial, residential, and park areas are exposed to higher Cu, Pb, and Zn
levels. However, the cancer risk value of Cr was more likely to be at the lower limit of the
threshold value, particularly in the industrial area.

Using similar approaches, D. Majumdar et al. [5] assessed the health risks associated
with pollution of RD by chemical elements at a few major commercial, traffic, and residential
sites in the Kolkata megacity. They establish that Cd and Li have the highest enrichment
level relative to the average composition of the earth’s crust, among which only Cd posed
significant ecological risk due to its high ecological toxicity. Although individual chemical
elements do not form significant non-cancer health risks (except for Li for children), the
cumulative non-cancer risk for children was almost four times higher than the acceptable
level, being ingestion the primary exposure pathway. Lifetime exposure to carcinogenic
elements at the current level may pose up to six times higher cancer risk in the adult
population than the acceptable risk.

Using U.S. EPA methodology, D. Moskovchenko et al. [14] assessed the health risk to
the population of Surgut (Russia) posed by RD contaminated with a large number of PTEs.
EFs showed significant enrichment level of RD with Sb and Cu, and moderate enrichment
with Zn, Pb, Mo, Ni, and W. Based on PIr and Ze, the RD was characterized by a low level
of potential ecological risk, except for stretches of road subject to regular traffic jams, where
a moderate ecological risk was identified. The greatest potential risks to human health
were associated with the ingestion pathway. Children tend to be at higher risk than adults
because of their relatively lower body weight. Sb, Ni, Cu, and As are generally the most
harmful elements within Surgut, with additional health risks associated with Cd and Pb
within some city areas. Despite the low Ni enrichment of RD, its health risk is high due
to the high toxicity. However, both carcinogenic and non-carcinogenic risks of PTEs were
generally acceptable or tolerable due to their low concentrations in the RD in Surgut.
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S. Sun et al. [9] evaluated non-carcinogenic and carcinogenic risks for the population
from HMs in atmospheric PM2.5 using the U.S. EPA methodology and the entropy weight
method (EWM) during heating and non-heating periods at two sites in Huludao City
(China). PM2.5 pollution with HMs is higher in the heating period than in the non-heating
period. Human health risks are determined by differences in the contributions of HMs in
PM2.5 from various sources and differ significantly between children, adult men, and adult
women. Children have the highest, and adult females have the lowest non-carcinogenic
risk, whereas adult males have the highest and children have the lowest carcinogenic risk.
In general, the traditional U.S. EPA and EWM methods give close estimates of health risks,
but in cases where the differences are quite high, it is recommended to use EWM to estimate
non-carcinogenic health risks due to the smaller dispersion of the result.

The special issue did not cover studies on environmentally hazardous chemical com-
pounds and substances, which are both good indicators of pollution sources, such as black
carbon and PAHs, environmentally persistent free radicals (EPFRs), organophosphate
esters (OPEs) and other organic micro-pollutants [20], micro and nanoplastics [21], glass
microspheres [22], platinum group elements (PGE) and rare earth elements (REE) [23], etc.
In addition, no source-specific risk assessment nor characterization of bioaerosols in RD
were conducted.

4. Isotopic Composition and Radioactivity of Road Dust

The isotopic composition of RD and its radioactivity remain rather poorly studied.
However, these parameters can play a significant role in identifying and understanding
the geochemical processes of sedimentation and migration of solid particles in urban and
industrial areas. The special issue presents two studies to fill the gaps on this topic.

The first one, by M.Y. Hanfi et al. [4], is devoted to assessing gross alpha and gross beta
activity in the road- and surface-deposited sediments in three Russian cities in different geo-
graphical zones (Ekaterinburg, Nizhny Novgorod, Rostov-on-Don). New methods dealing
with low mass and low volume of dust-sized samples obtained after the size fractionation
procedure were applied. Due to the presence of radionuclides transferred through natural
and anthropogenic processes, the highest gross beta activity concentrations are in the
2–10 µm fraction size in Nizhny Novgorod and Rostov-On-Don and particles of 50–100 µm
in Ekaterinburg. On the other hand, the highest gross alpha activity concentrations are
characteristic of large particles of 50–100 µm compared to finer particles of 2–10 µm and
10–50 µm due to natural partitioning of the main minerals constituting the urban surface-
deposited sediment and are found in Rostov-on-Don. In general, gross alpha and gross
beta activity in the studied cities are associated with natural radionuclides, which are found
in various cities regardless of climate, geographical location, and industrial development
and whose primary sources are geological formations and natural building materials.

M.-S. Kim et al. [11] used isotopic compositions (13C, 208/207Pb, 207/206Pb) of urban
dust, topsoil, and PM10 samples from a residential area near Donghae port surrounded
by various types of industrial factories and raw material stockpiled on empty land, and
the Stable Isotope Analysis Bayesian mixing model within the R software to assess the
contributions of the main pollution sources. It is shown that, depending on the influence of
one or another source (cement, Zn ore, coal, coke, Mn ore, soil), isotopic values significantly
change in the RD. The application of this method made it possible to prove a significant
impact of wind-blown dust from raw material stockpiles near ports and factories, that is,
port activities affect the air quality of residential areas in the city. The authors conclude that
stable isotope compositions of metals can predict environmental changes and be used as a
powerful tool to trace the present pollution and the history of contamination in complex
contexts associated with peri-urban regions.

5. Factors of Road Dust Accumulation and Contamination

The chemical composition and particle-size distribution of RD and the amount of
particles emitted during the movement of vehicles depend on meteorological, geochemical,



Atmosphere 2022, 13, 607 6 of 10

anthropogenic, and other factors. Several articles of the special issue are devoted to
this topic.

A. Aguilera et al. [6] studied the influence of various city parameters (namely, popula-
tion density, job density, street intersections, road surface, distance to the airport, distance
to the city center, manufacturing units, potentially polluting units, gray area, entropy index,
vegetation, distance to vegetation, median strip area, and marginalization index) on Cr,
Cu, Pb, Zn, and Ni accumulation in the RD of Mexico City using spatial autocorrelation
(Global Moran’s I) and applying ordinary least squares and spatial regression models. Low
positive spatial autocorrelations in all HMs prove the greater relevance of the local aspects
over regional processes as the determinants of the HM content in urban RD. Most variables,
including the population density, street intersections, distance to the city center, a gray
area, distance to vegetation, and marginalized areas, do not detect any relationship with
HMs. The potentially polluting units positively impact the dust load, while vegetation,
job density, and road surface significantly reduce the dust load. The median strip area in
the roads has a weak but consistent positive relationship with Cr, Cu, Ni, Pb, and the PLI.
The distance to the airport has a weak and inverse relationship with Pb. Manufacturing
units are associated with an increase in Cu, while the entropy index is associated with an
increase in Ni.

I. Yarmoshenko et al. [12] estimated natural and anthropogenic factors influencing
the sedimentation processes in urbanized catchments in the residential areas of six large
Russian cities based on field landscape surveys. The most significant impact on a high
urban sediment formation potential in residential areas is formed by a low adaptation of
infrastructure to a high density of automobiles, poor municipal services, and poor urban
environmental management in the course of construction and earthworks. The significant
impact of motor vehicles in the urban environment includes mechanical sediment transport
that sharply increases the sediment connectivity within the urban landscape.

H. Jeong et al. [10] estimated the median total loading of RD in nine industrial sites in
the Republic of Korea as 822 g/m2, ranging from 334 to 1669 g/m2, which is 2.1–6.5 and
15–16.4 times higher than that in the heavy traffic and urban (commercial and residential)
areas, respectively. In Mexico City, the total loading of road dust particles of size < 250 µm
ranges from 5.4 g/m2 to 173.3 g/m2, with a median value of 43 g/m2 [6]. In Bogotá,
the total loading of RD particles of <10 µm is within 1.8–45.7 mg/m2 with an average
of 11.8 mg/m2, while in Manizales, it ranges between 0.8–26.7 mg/m2 with an average
of 5.7 mg/m2; construction and demolition activities are identified as relevant emitters
of RD [2]. According to M. Kim et al. [11], an important factor of RD contamination
with Mn, Zn, Cd, and Pb is the distance to the source (port), with an increase in which
the concentrations of pollutants decrease. Additionally, metal concentrations in ultrafine
particles depend on the amount of traffic, the ratio of different types of transport (including
light to heavy-duty vehicles), and the speed of transport [3]. Road dust pollution increases
on sections of roads with traffic jams [14].

The special issue does not contain articles devoted to various aspects of RD man-
agement, assessment of the efficiency of various methods to reduce the amount of dust
generated during traffic, methods of its disposal, etc., although these topics are very rele-
vant [20]. Nevertheless, in some papers in the special issue, based on the results obtained,
conclusions are drawn about the need for the urgent introduction of an efficient manage-
ment strategy to reduce RD in industrial areas to protect the health of employees and
residents around industrial complexes. In addition, to reduce coastal pollution induced by
RD wash-off during rainfall events [10], to increase the coverage and frequency of cleaning
roads from dust, especially in areas with possibilities of substantial human exposure and
mainly using vacuum-assisted road sweeping machines to remove the most contaminated
fine dust fractions [5], as well as the need for cleaning primary roads and areas with “dark
gray-” and “very dark gray”-colored dust to more effectively reduce the risk to public
health [7].
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6. Resuspension of Road Dust and Relationships with Other Environments

Road dust is an essential source of particulate matter in the atmosphere [24], so many
papers in the special issue are devoted to assessing the RD resuspension, highlighting the
relationship between RD and the atmosphere.

D.R. Fitz and K. Bumiller using the SCAMPER method for measuring PM10 emission
rates from roadways estimated mitigation methods for public unpaved sections of two
different Arizona state highways and a treated mine haul road near the Cricket Mountains
in Utah, USA [17], as well as for a wide variety of paved roads in the Phoenix metropolitan
area, Arizona, USA, in March, June, September, and December [16]. The suppressant
applied five months ago reduces PM10 emissions by five times, and applied a year ago
reduces PM10 emissions by sixty times. The measured emission rates for unpaved roads
are approximately seven times higher on a mass basis than those predicted by the AP-42
unpaved road equation. Loaded haul trucks blow almost twice as many PM10 particles as
unloaded trucks. For paved roads in the Phoenix metropolitan area, the PM10 emission rates
vary from 0 to 2000 µg per vehicle meter travelled (with an average of 79 µg per vehicle
meter travelled) and are generally low unless the road is impacted with dust deposited
by activities such as construction, sand and gravel operations, agriculture, and vehicles
traveling on or near unpaved shoulders and roads. There is no significant difference in
emission rates between seasons. There is a major drop in emission rates over a weekend,
when dust generation activities such as construction are expected to be much reduced.
By Monday, the PM10 emission rates had risen to the levels of the previous Friday, which
indicates a rapid achievement of equilibrium in PM10 generating potential. The accuracy of
the SCAMPER method is about 20% for unpaved sections of state highways and about 25%
for paved roads in urban areas.

The efficiency of dust resuspension from the road surfaces, its hazard to public health
and ecosystems, the ability to migrate over considerable distances, and the possibility of
participation of its components in chemical reactions largely depend on the particle size dis-
tribution of dust. Therefore, in the special issue, studies are carried out on the particle size
distribution of RD [3,5,10,13,14], as well as on the chemical composition of dust particles and
aerosols of different sizes: 0.01–0.018 µm, 0.018–0.032 µm, 0.032–0.056 µm, 0.056–0.1 µm,
0.1–0.18 µm, 0.18–0.32 µm, 0.32–0.56 µm, 0.56–1.0 µm, 1.0–1.8 µm, 1.8–3.2 µm, 3.2–5.6 µm,
5.6–10 µm, and 10–21.1 µm [3], <2.5 µm [8,9], <10 µm [2,11,16,17], 2–10 µm, 10–50 µm,
and 50–100 µm [4], <28 µm, 28–45 µm, 45–63 µm, and 63–106 µm [5], 100–250 µm, and
250–1000 µm [13], <149 µm [15], <250 µm [6], <500 µm [11], <1000 µm [10,14], <2000 µm [7].
D. Majumdar et al. [5] showed that with an increase in the particle size of RD, the concen-
trations of Cd, Cr, Co, Pb, Mn, Ni, Sr, Zn, Ti, and Cu decrease, while the concentrations of
Li increase.

In our opinion, from the point of view of their health effects, it is crucial that many
of the papers presented in the special issue are devoted to the study of fine and ultrafine
particles, or size-segregated RD, which made it possible to obtain accurate information
about the chemical composition of the most dangerous particles that blow within urban
and industrial environments. Further researches are likely to be devoted to the thoracic
fraction (<10 µm) [25–29], as well as fine, ultrafine particles and nanoparticles, which have
been actively studied in recent years in various cities and industrial areas [30–33].

In addition to the links between RD and the atmosphere, the article by H. Jeong
et al. [10] shows the RD as a potential pollution source for coastal environments: particles
of <125 µm contribute up to 41% of the total load of suspended solids in stormwater
runoff at intensive industrial areas of the Republic of Korea. However, the effect of RD
on pollution of other environments (soils, surface waters, crops, suspended sediments,
bottom sediments, etc.) has not been studied in detail in the special issue, although such an
effect and the feedback of other environments on the chemical composition of RD may be
significant [34,35].
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7. Conclusions and Further Research Needs

The studies presented in this special issue are a snapshot of the RD investigations
and, at the same time, point to the need for further geographically more extensive and
analytically more profound studies of various aspects of the formation, migration, and
accumulation of dust and its individual particles in urban, industrial, and other areas.
Therefore, we formulate the following main directions for further research, which, in our
opinion, will allow us to take a fresh look at the role of RD in the environment.

• More detailed studies of the distribution of black carbon, organic compounds, and
their derivatives (PAHs, EPFRs, etc.) in RD are required to clarify the possibility of
their use as indicators of individual sources of adverse impact in urban and industrial
areas and combined use with chemical elements for source apportionment.

• It is necessary to include the determination of the content of cations and anions in
the water extract in the list of routine indicators when studying the RD, as well as to
expand the list of interests by B, P, Se, REE, PGE, which will improve the reproducibility
of source apportionment results.

• Studies of radioactivity and stable isotope ratios can provide new insights into the re-
lationship between resource and fuel consumption in industry and transport (burning
specific fuel grades, consuming ore from certain locations with their typical isotope
ratios, etc.) and isotopic “response” in RD and other environments.

• To improve the accuracy of assessments of environmental hazards and public health
risks from contaminated RD, it will be useful to develop a methodology and make
comprehensive observations in different cities to assess the ratio of the forms of
chemical elements (geochemical fractionation) and determine the biological availability
of elements, the distribution of pollutants in particle size fractions of RD (especially in
fine particles and nanoparticles), conducting a source-specific risk assessment based
on the results of the modern source apportionment methods (PMF and other receptor
models), clarifying the risk assessment methodology (for example, using the EWM
method, and also by taking into account data on the bioavailable fraction of pollutants
instead of the total content) and assessing the intensity of RD resuspension into the
atmosphere.

• From a methodological point of view, it will be helpful to unify dust sampling methods
(sweeping, use of vacuum cleaners with dry sampling, wet vacuuming, etc.), methods
for particle separation (air classification, dry and wet sieving, sedimentation with
or without sonication and centrifugation, etc.), the choice of a more appropriate
geochemical fractionation scheme (e.g., Tessier et al. scheme, BCR, etc.), to develop
of a system of indices for assessing the intensity and hazard level of pollution (EF,
Igeo, CF, PLI, NPI, etc.) with justification for the choice of comparison standards
(background soils, atmospheric depositions, aerosols, the upper continental crust, etc.)
and reference elements (Al, Sc, Ti, Fe, Rb, La, Ta, etc.) used for their calculations, as
well as to introduce a methodology for the comprehensive analysis of RD and adjacent
environments, such as atmospheric aerosols and precipitation, soils, stormwater,
surface waters, bottom and suspended sediments.

• Considering the deleterious effects on human health of exposure to airborne microor-
ganisms and the potential accumulation of bioaerosols in RD, research on the charac-
terization of biological contaminants and the risks of exposure after resuspension of
this material could be carried out.

• Quantification of the impact of RD to anthropogenic aerosol radiative forcing in climate
change studies and potential feedbacks.

Of course, the list of problems of studying RD raised in the special issue is not
exhaustive, but, in our opinion, this special issue makes a significant contribution to further
research in various scientific areas, interacting with such an interesting and relatively
challenging to study environmental object as road dust.
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