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Abstract: The trend detection of the sudden change of typhoon intensity has always been a difficult
issue in typhoon forecast. Artificial intelligence (AI) can implicitly extract the complex features
in the images through learning a large number of samples, and it has been widely applied in the
meteorological field nowadays. In this study, based on the deep residual network (ResNet) model
and the long short-term memory (LSTM) model, an automatic and objective method of identifying
the trend of typhoon rapid intensification (RI) is presented through marking and learning the key
information on the satellite images of the typhoons on the Northwest Pacific and South China Sea
from 2005 to 2018. This method introduces the typhoon lifecycle indication and can effectively forecast
and identify the trend of typhoon RI. By applying the detecting method in analyzing the operational
typhoon satellite cloud images in 2019, we find that the method can well capture the sudden change
tendency of typhoon intensity, and the threat score of independent sample estimation in 2019 reached
0.24. In addition, four typhoon cases with RI processes from 2019 to 2021 are tested, and the results
show that the AI-based identification method of typhoon RI is superior to the traditional subjective
intensity prediction method, and it has important application values.

Keywords: artificial intelligence; satellite cloud images; typhoon rapid intensification; ResNet net-
work; LSTM model

1. Introduction

A typhoon is one of the most disastrous weather affecting China. In recent years,
extreme storms and secondary geological disasters caused by landfall typhoons have
brought huge losses to the national economy and people’s lives. Therefore, it is imperative
to improve the forecast skills for typhoons. The rapid intensification (RI) of typhoons in
offshore areas has always been a difficult point in operational weather forecasting, and
it has drawn great attention from domestic and foreign meteorologists. The statistical
results [1] show that about 17% of typhoons go through RI when they are close to islands or
continental coasts. Feng et al. [2] created statistics of tropical cyclones with abrupt intensity
changes in China’s coastal waters from 1970 to 1991, and they found that when tropical
cyclones moved to China’s coastal waters, the intensity suddenly increased by 20.4%. Lin
et al. [3] pointed out that about 13.5% of tropical cyclones moving into the offshore of South
China suddenly increased, with an average of about 0.8 typhoons per year and the highest
frequency in September. Lu et al. [4] analyzed 22 typhoons with RI in the offshore areas of
South China and found that 15 RI typhoons occurred in September. Some experts have also
made a lot of explorations of the reasons for typhoon RI in offshore areas. For example,
Yu, Y.B. and Zheng, and Z.G. [5] discussed the mechanisms of typhoon RI at offshore
areas in China from the perspective of kinetic energy. Hu et al. [6] analyzed the large-scale
environment of a sudden change of typhoon intensity before landing, and they pointed
out that typhoon RI usually occurs in the southwest or south of the subtropical high. Lin
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et al. [3] pointed out that southwest monsoon, cross-equatorial airflow, easterly wave, weak
cold air, and westerly trough are the main systems that induce typhoon RI at offshore areas
of South China. Su and H.M. [7] claimed that the enhancement of the outflow from the
top of the typhoon center and the weak cold air entering the north of the typhoon are the
main reasons for the offshore intensification of No. 9914 Typhoon Dann. The statistical
analysis of landfall typhoons [8] show that the vertical shear of environmental wind is
related to the typhoon intensity with a 6-h time-lag. Zheng et al. [9] simulated No. 1010
Typhoon Meranti, which suddenly intensified at offshore areas, and showed that the sea
surface temperature can affect the latent heat, sensible heat, and water vapor flux transport
from the ocean to the typhoon. Chen et al. [10] and Zheng et al. [11] pointed out that a
weak vertical shear between high and low levels and suitable sea surface temperature are
important reasons for the RI of the No. 1409 super typhoon Rammasun in offshore areas.
Xu, Y.L. and Huang, and Y.W. [12] carefully analyzed the ocean and atmospheric conditions
when No. 1522 Typhoon Mujigae moved into the South China Sea and found that the RI of
Mujigae in the offshore areas is closely related to the interaction between the underlying
surface and the ambient atmosphere.

At present, except for the comprehensive forecast method, other objective forecast
methods of typhoon intensity in operational weather services are mainly based on statistical
forecast or statistical-dynamic models, and most of them use statistical methods such as
regression, which are weak in describing the rapid change of typhoon intensity. Moreover,
many previous studies on the prediction of typhoon RI used the prediction variables as
features, such as statistics of typhoon intensity forecast SHIPS series, or by analyzing the
climatic characteristics and temporal and spatial characteristics of tropical cyclones (such
as season, month, latitude and longitude, air pressure change, monthly mean water tem-
perature field, etc.), meteorologists used statistics to find some laws as the important basis
for judging whether tropical cyclones will rapidly enhance. However, depending on the
research of prediction variables, there is a lack of exploration of new technologies to make
better use of the original data, and some laws discovered can only be used as auxiliary
means, so it is difficult to predict whether the typhoon will strengthen rapidly and accu-
rately in real time. With the help of AI and the operational use of high spatial and temporal
resolution satellite images of tropical cyclones in real time, it will be able to automatically
identify and discriminate the RI trend of the typhoon to further improve China’s typhoon
monitoring, forecasting, and early warning capabilities to provide favorable support.

In recent years, with the rapid development of artificial intelligence (AI) technology,
machine learning, and deep learning, it has been widely used in the fields of finance,
agriculture, military affairs, and so on. Therefore, aiming at the identification of typhoon
RI, this problem can be solved with the help of time series prediction technology in the
field of computer vision, which can identify the trend of typhoon RI in real time based
on meteorological big data. With the development of AI technology, neural networks and
other methods with strong nonlinearity have made some progress in the application of
weather forecast. Pradhan et al. [13] estimated the typhoon grade by using the multi-layer
convolutional neural network (CNN). Zahera et al. [14] used long short-term memory
(LSTM) and deep neural network (DNN) to estimate typhoon intensity. Wei et al. [15]
used the neural network method to divide the typhoon intensity more explicitly. Zhang
et al. [16] estimated the typhoon intensity by establishing a statistical relationship between
the channel characteristics of a FY-3C microwave thermometer and typhoon intensity.
Many studies have shown that AI technology may have good performance in typhoon
intensity prediction [17,18]. In 2020, Bai et al. [19] from Taiwan University put forward
an attention-based deep learning method, ConvLSTM, to identify typhoon RI. Therefore,
with the continuous development of meteorological satellites in China, it is a good idea to
introduce and develop AI techniques in detecting the trend of typhoon RI.
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2. Data and Method

The TC data used in this paper include the best track dataset (http://tcdata.typhoon.
org.cn/zjljsjj_sm.html, accessed on 2 March 2022) provided by the China Meteorological
Administration (Shanghai Typhoon Research Institute) from 2005 to 2018. This data set
includes the position of TC once every 6 h, the lowest central air pressure, the maximum
wind speed near the center, etc. The real-time forecast products of typhoon intensity from
2019 to 2021 are from the National Meteorological Center. The Himawari-8 satellite data
from 2005 to 2017 were selected as the training set, the satellite data from 2018 as the
validation set, and the FY4A satellite data from 2019 to 2021 as the test set.

According to previous studies [20,21], the definition of typhoon RI is that the typhoon
wind speed increases by 15 m/s within 24 h. According to the sample statistics from 2005 to
2017, it was found that the RI cases account for less than 5% of all typhoon cases. Generally,
for a data set, if the target event is few and the proportion is less than 10%, it is called an
extremely imbalanced data set. For imbalanced data sets, machine learning algorithms
often fail to achieve satisfactory classification results.

Statistics of the training samples from 2005 to 2017 show that there are 95% more cases
with an increase of typhoon wind speed by about 14 m/s within 24 h in the samples with
RI (Figure 1). Therefore, in order to increase the number of RI cases, to increase the number
of positive samples of a few categories, to and reduce the number of negative samples of
most categories, we defined the cases with an increase of typhoon speed by more than
7 m/s within 12 h as the positive samples of typhoon RI. The formula is as follows:

∆V = VT − VT−12∆V ≥ 7 m/s (1)

where VT is the current time, VT−12 is the last 12 h of the current time, and RI is marked
as 1 for time T, which means that the typhoon wind speed will increase more than 7 m/s
within T-12 ~ T hours.

Atmosphere 2022, 13, x FOR PEER REVIEW 3 of 11 
 

 

2. Data and Method 
The TC data used in this paper include the best track dataset 

(http://tcdata.typhoon.org.cn/zjljsjj_sm.html accessed on 2 March 2022) provided by the 
China Meteorological Administration (Shanghai Typhoon Research Institute) from 2005 
to 2018. This data set includes the position of TC once every 6 h, the lowest central air 
pressure, the maximum wind speed near the center, etc. The real-time forecast products 
of typhoon intensity from 2019 to 2021 are from the National Meteorological Center. The 
Himawari-8 satellite data from 2005 to 2017 were selected as the training set, the satellite 
data from 2018 as the validation set, and the FY4A satellite data from 2019 to 2021 as the 
test set. 

According to previous studies [20,21], the definition of typhoon RI is that the ty-
phoon wind speed increases by 15 m/s within 24 h. According to the sample statistics 
from 2005 to 2017, it was found that the RI cases account for less than 5% of all typhoon 
cases. Generally, for a data set, if the target event is few and the proportion is less than 
10%, it is called an extremely imbalanced data set. For imbalanced data sets, machine 
learning algorithms often fail to achieve satisfactory classification results. 

Statistics of the training samples from 2005 to 2017 show that there are 95% more 
cases with an increase of typhoon wind speed by about 14 m/s within 24 h in the samples 
with RI (Figure 1). Therefore, in order to increase the number of RI cases, to increase the 
number of positive samples of a few categories, to and reduce the number of negative 
samples of most categories, we defined the cases with an increase of typhoon speed by 
more than 7 m/s within 12 h as the positive samples of typhoon RI. The formula is as 
follows: 

ΔV = V − V ΔV ≥ 7 m/s (1)

where V  is the current time, V  is the last 12 h of the current time, and RI is marked 
as 1 for time T, which means that the typhoon wind speed will increase more than 7 m/s 
within T-12 ~ T hours. 

 
Figure 1. RI data set sample distribution map. 

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

0

5

10

15

20

25

30

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e 

Fr
eq

ue
nc

y 
(%

)

Fr
eq

ue
nc

y 
(%

)

TC intensification rate (unit： m×s-1 24h-1)

Figure 1. RI data set sample distribution map.

In the training process, although the number of positive samples increased by adopting
the new threshold of RI (wind speed increases by 7 m/s in 12 h), the ratio of positive samples
to negative samples in the whole data set (with RI samples as positive samples and non-RI
samples as negative samples) was still about 1:11 (Figure 2). As the positive and negative
samples were not evenly distributed, a re-weighting method was applied to the training
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data. Weighting means giving different punishments to imbalanced categories. Different
weights were applied to the loss (the difference between the model predicted value and the
true value of the sample) calculated by different categories in the training process, so that
the model optimization tended to favor the few categories (RI samples).

Lcros(y, p) =
1
N ∑

i
−[ω1yi ∗ log pi + ω0(1 − yi) ∗ log(1 − pi)] (2)

where pi =
e p̂

∑
p,n

er p̂ , Formula (2) represents the loss weight given to the actual positive (RI)

samples, pi represents the probability that the samples are predicted to be positive by the RI
trend detection model, ω0 represents the loss weight given to the actual negative (non-RI)
samples, 1− pi represents the probability that the samples are predicted to be negative, and
yi represents the label of the samples (positive samples are 1 and negative samples are 0).
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Figure 2. Data set sample distribution map.

In addition, the lack of historical data during typhoon genesis is a problem in series
prediction and series discrimination. The input data is the typhoon wind speed at four
consecutive time steps, and for the initial time we used the wind speed samples at the
current time or the previous time to complement the wind speed samples at the historical
time. When the sample was missing, that is, in the whole historical series of typhoons, it
was inevitable to find that there were some moments when the data was lost. It resulted in
the discontinuity of the sample series, which brings risks to the model prediction. Aiming
at the problem of missing samples, if the typhoon data was missed, the data of the nearest
previous typhoon sample was used instead.

3. The Identification Model of Typhoon RI Trend
3.1. Brief Introduction

Based on the deep residual network (ResNet) model in the field of artificial intelligence
and the deep learning model LSTM based on spatio-temporal correlation, the key features
in the satellite cloud images are labeled, learned, and predicted to realize the detection
and prediction of typhoon RI. Firstly, the features of typhoon intensity are extracted based
on the ResNet model, and then the features of typhoon intensity change are extracted
according to the LSTM model. Furthermore, the strategy fusion is carried out according to
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the period of typhoon intensity trend and the detection of typhoon intensity mutation, and
finally, the judgment result of the typhoon intensity mutation trend is the output.

Specifically (as shown in Figure 3), the input of the RI trend detection model is the
satellite cloud images and its corresponding typhoon windspeed sequence. The images are
generally a gray scale image with higher resolution. The identification method contains
several steps. The first step (Step S1) is data labeling. In this step, the dataset of typhoon
intensity (maximum windspeed) is built based on satellite cloud images. The data format
is mage 1, image 2, . . . , image N, intensity 1, intensity 2, . . . , intensity N, RI labeling, life
cycle indication. Step 2 (S2) is the fine-tuning of the pre-trained CNN module. According
to the typhoon images and the corresponding intensities, the CNN classification model is
pre-trained to obtain the visual spatial features of a single image. Step 3 (S3) is the training
feature extraction module. In order to better train the feature extractor, it is necessary to train
the whole model to verify whether the training is completed. The training process directly
uses the originally labeled data for training. Step 4 (S4) is to train the classifier. In this step,
we used the result of feature extraction obtained in step S3, that is, we froze the training
parameters of the LSTM and CNN, and we trained the classifier again by combining the
re-sampler method and the re-weighting method and by using the indication of typhoon
life cycle. Here, the typhoon life cycle indication is calculated by the typhoon intensity
series in the labeled data. In step 5 (S5), we input the typhoon sequence to be tested into the
trained S2 + S3 + S4 model. Data format of the test data was <{image 1, image 2, . . . , image
N}, {intensity 1, intensity 2, . . . , intensity N}, life cycle indication>. The only difference of
the test data from the training data is that there is no RI labeling data. After testing the data
with the trained RI trend detection model, we can obtain the result of the RI trend in the
next 12 h or 24 h. Steps S1–S4 are training stages, and step S5 is the independent test stage.
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3.2. Model Training Process

In this study, a new method for typhoon RI detection based on satellite cloud images
was proposed. In this method, the CNN based pre-trained model and the LSTM-based
time series model were combined as feature extractors, and three-stage training method
was adopted. In the first stage, the fine-tuned and pre-trained CNN model was used
to extract visual spatial features. In the second stage, a feature extractor was developed
based on a combination of the fine-tuned CNN model and the LSTM time series model.
In the third stage, a new parameter life cycle indication was introduced to the model and
a classifier was trained by applying re-sampler and re-weighting methods to imbalance
data. It effectively avoided the detection result deviation caused by the imbalance of the RI
samples, so as to more accurately predict and detect the trend of typhoon RI.

The newly developed model (Figure 4) uses the typhoon images at four consecutive
historical moments (with a 6-h interval) to predict typhoon RI. We used the pre-trained
CNN model to extract the feature of typhoon intensities at four moments (with wind
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speed ≥10m/s). Then, the life cycle indication (intensification stage or weakening stage)
was obtained according to the intensity change. The life cycle indication after embedding
and the concat of LSTM were imported to the model to detect the RI and its probability.
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results showed that the probability of RI occurrence is about 0.24, and the RI was labeled 
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The satellite remote sensing cloud image of No. 1909 Typhoon LEKIMA for four
consecutive times, which cover the whole life cycle of the typhoon from its formation to
dissipation, is shown in Figure 5a–d. Using the typhoon data of four consecutive moments,
with the current moment at 00:00 UTC on 7 August 2019, we extracted the spatio-temporal
features from the satellite cloud images and calculated the time series of typhoon intensity.
The results showed that the probability of RI occurrence at 12:00 UTC on 7 August 2019 is
about 0.83, and the labeled RI index is 1. In the observation, the RI process did occur within
12 h (the wind speed increased from 15 m/s to 38 m/s). Figure 5e–h is the case of Typhoon
Wipha (No. 1907). The satellite cloud images at four consecutive moments, with a current
moment at 06:00 UTC on 31 July 2019, were used as the input of the same model to predict
the RI occurrence at 18:00 UTC on 31 July 2019. The results showed that the probability of
RI occurrence is about 0.24, and the RI was labeled as 0. In the observation, no RI occurred
in 12 h (the wind speed increased by 3 m/s). The above cases are two successful cases of
model prediction. It is difficult to tell whether there will be an RI process by simply looking
at satellite images manually, but the model prediction provides a more objective and correct
detection.
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Figure 5. Satellite remote sensing cloud images of No. 1909 Typhoon LEKIMA (a. 06:00 UTC on 6, b.
12:00 UTC on 6, c. 18:00 UTC on 6, d. 00:00 UTC on 7) August 2019 and cloud images of No. 1907
Typhoon Wipha (e. 12:00 UTC on 30, f. 18:00 UTC on 30, g. 00:00 UTC on 31, h. 06:00 UTC on 30) July
2019.

4. Test Analysis of Model Effect
4.1. Model Assessment Indicators

The accuracy index of the model was tested by a TS score, missing rate, and false rate,
where TP represents frequency counted when the actual RI is predicted as RI, TN represents
the frequency counted when the actual non-RI is predicted as non-RI, FN represents
the frequency counted when the actual RI is predicted as non-RI, and FP represents the
frequency counted when the actual non-RI is predicted as RI. The equations of the three
indicators are as follows:

TS =
TP

TP + FN + FP
(3)

The TS score represents the proportion of the correct prediction of RI after excluding
the correct prediction of non-RI.

FNR =
FN

TP + FN
(4)

The missing rate represents the proportion of prediction errors (non-RI) for the instant
of RI in reality.

FPR =
FP

TP + FN
(5)

The false rate represents the proportion of prediction errors (RI) for the real non-RI.

4.2. Analysis of Model Test Results

In order to test the model performance, 28 typhoon cases in 2019 were analyzed. The
threshold of the predicted RI probability is defined as λ, which is in the range of 0 and 1.
An empirical threshold was also given by experiments to define RI. As shown in Table 1,
compared with λ = 0.50, when λ = 0.55, the number of successfully predicted non-RI cases
increased and FPR decreased correspondingly. Compared with λ = 0.60, when λ = 0.55, the
number of falsely predicted RI cases decreased and the FNR decreased correspondingly.
Therefore, the threshold λ is set as 0.55.
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Table 1. Comparison table for the selection of the RI probability threshold for model prediction.

λ TP FP TN FN FPR FNR TS

0.50 39 134 292 7 31.5% 15.2% 0.22
0.55 38 116 310 8 27.2% 17.3% 0.24
0.60 35 95 331 11 22.3% 23.9% 0.25

In the observation, there were 16 out of 28 cases with RI and 46 RI moments in 2019.
The model developed in this study has successfully predicted 38 RI moments and 15 RI
cases. The TS reaches 0.24. The results indicated that the AI-based typhoon RI trend
detection method performed better than the traditional subjective methods, and it shows
potential values in operational weather forecast.

4.3. Comparison between AI and Different Forecast Results

According to a further statistics comparison in 2019, it can be found from Table 2 that
the TS of the NCEP model was 0.21, the TS of CMA’s forecast was 0.15, and the TS of our
AI algorithm was 0.24. Our method greatly reduced the missing rate at the expense of a
certain false rate and has high prediction accuracy for actual RI samples. The results also
showed that the technology based on artificial intelligence is superior to the traditional
subjective intensity forecasting method.

Table 2. Comparison table between the AI algorithm and different subjective and objective forecasts.

TP FP TN FN FPR FNR TS

NCEP 22 52 474 29 10.0% 56.9% 0.21
CMA 16 79 898 15 8.1% 48.4% 0.15

AI 38 116 310 8 27.2% 17.3% 0.24

4.4. Cases Study

Four typhoon cases with RI, including No. 1909 Typhoon Lekima, No. 2019 Typhoon
Goni, No. 2102 Typhoon Surigae, and No. 2114 typhoon Chanthu, from 2019 to 2021 were
analyzed. The probability threshold of 0.55 was used to predict the occurrence of RI. If the
probability exceeded 0.55, it was deemed as RI, otherwise it is non-RI.

For Typhoon Lekima in Figure 6a, we labeled 157 pieces of information and 15 RI
moments. The FNR and FPR were 5.7% and 10.9%, respectively, and the TS was 0.48. For
Typhoon Goni in Figure 6b, we labeled 123 pieces of information and eight RI moments.
The FNR and FPR were 0% and 11%, respectively, and the TS score was 0.42. For Typhoon
Surigae in Figure 6c, we labeled 73 pieces of information and seven RI moments. The FNR
and FPR were 0% and 12.5%, respectively, and the TS score reached 0.50. For Typhoon
Chanthu in Figure 6d, we labeled 182 pieces of information and nine RI moments. The FNR
and FPR were 44.4% and 6.4%, respectively, and the TS score reached 0.27.

As shown in Figure 6, compared with the NCEP numerical model and the CMA
subjective forecast, the AI’s typhoon rapid intensification discrimination model was more
effective. The NCEP model’s forecast and the CMA’s subjective forecast were weaker
than the actual wind speed during the typhoon rapid intensification phase (e.g., Typhoon
2019 “GONI” on 29–30 October, Typhoon 2114 “Chandu” on 8 September). The AI’s rapid
intensification discriminant model was not only more accurate in predicting the probability
of the rapid typhoon intensification, but it also can give the trend judgment of whether the
rapid intensification is about 24 h in advance, which is a good prospect for application in
an actual typhoon intensity forecast.

Heat maps are a common visualization tool that aggregate a large amount of data and
represent it with progressive color bands, which can visually show the similarities and
differences between data. One of the important roles is to show the correlation between
different indicators and different samples. As shown in Figure 7, there was a positive
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correlation between the cloud structure of the typhoon vortex and the wind speed and
rapid intensification of the typhoon at the same time, especially the vortex structure near
the center of typhoon. When the cloud pattern and its corresponding intensity are subjected
to LSTM, there is high confidence in the ability to discriminate the RI trend in the next
phase.
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In summary, by using the prediction model developed in this study, the average TS
score of the four typhoon RI cases from 2019 to 2021 exceeded 0.27. The AI-based RI trend
detection method performed better than the traditional subjective method, and the newly
developed method has good application prospects in operational typhoon forecast.

5. Conclusions and Discussion

In this study, a new typhoon RI trend detection method was developed based on
the ResNet model and the LSTM model. By labeling and learning the key information
in the satellite cloud images in the northwest Pacific and South China Sea, the life cycle
indication was introduced, and an automatic and objective method for identifying the trend
of typhoon RI was proposed, which can effectively identify and forecast the trend of the
typhoon RI. The main innovations of this study are as follows:

(1) A time series prediction framework for identifying the trend of typhoon RI was
proposed, in which the ResNet model and double-layer LSTM network were combined
by PIPELINE, and the life cycle indication was considered to extract more accurate
spatio-temporal evolution characteristics of a typhoon;

(2) A three-stage training method, including the methods of re-sampling and re-weighting,
was used to deal with the imbalance of typhoon RI samples;

(3) A new typhoon RI index, a typhoon life cycle indication, was introduced to increase
the prediction accuracy.

Compared with the traditional methods, the newly developed method introduced in
this study can predict typhoon RI objectively and efficiently. The new model can deal well
with missing data and imbalanced data, so it can extract RI features more accurately and
can increase the accuracy of RI detection.

At present, this study focused on the RI detection in the northwest Pacific and South
China Sea. With historical data of typhoons in other sea areas, we can expand the typhoon
RI trend discrimination in other sea areas around the world in the future. Due to a shortage
of data samples and other reasons, the method currently has a high false rate for some
non-RI processes, which is our subsequent work.
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