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Abstract: Xinjiang has a serious wind erosion problem due to its fragile ecological condition and
sensitivity to climate change. Wind erosion climatic erosivity is a measure of climatic factors influ-
encing wind erosion; evaluating its spatiotemporal variations and relationship with the large-scale
circulation pattern can contribute to the understanding of the climate change effect on wind erosion
risk. Thus, this study quantified the wind erosion climatic erosivity and examined the connections
between climatic erosivity and climate indices using trend analysis, geo-statistical analysis, and
cross-wavelet analysis based on the observed daily meteorological data from 64 weather stations in
Xinjiang, China during 1969–2019 (50 years). The results indicated that the climatic erosivity showed
a significant downward trend at seasonal and annual scales over the past 50 years. Strong seasonality
in the C-factor was found, with its highest values in the spring and summer and its lowest values in
the winter. The average climatic erosivity was weaker during El Niño events than during La Niña
events. The impact of El Niño events on climatic erosivity in Xinjiang continued from the beginning
of the event to two months after the end of the events. The La Niña events had a lag effect on the
climatic erosivity in Xinjiang, with a lag period of 4 months. From a statistical perspective, the El
Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)
indices showed relationships to the climatic erosivity in Xinjiang in terms of their correlation and
periodicity. The relationships between the climatic erosivity and ENSO were not clearly positive or
negative, with many correlations advanced or delayed in phase. The NAO and AO indices showed a
consistent in-phase relationship with climatic erosivity on significant bands, whereas the profound
mechanisms involved in this require further study. The results of this study provide a preliminary
perspective on the effect of large-scale atmospheric circulation on wind erosion risk in arid and
semi-arid regions.

Keywords: wind erosion climatic erosivity; cross-wavelet analysis; climate indices; Xinjiang

1. Introduction

Wind erosion is one of the most serious environmental issues in many arid and
semi-arid regions of the world, which is the main cause of land degradation and deser-
tification [1,2]. In China, about one-third of the territory, which is distributed in the arid
region, is suffering from serious land desertification [3]. Wind erosion is a complex process
that is affected by a large number of factors, including climate conditions, soil properties,
land surface characteristics, and land-use practice [4–8]. Among these factors, climatic
conditions are considered to be one of the most important driving forces in arid areas [9–11].

The effect of climatic conditions on wind erosion is not only reflected in the effect
of wind, but the result of the combined effect of wind speed, precipitation, and tempera-
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ture [12]. Chepil et al. believed that it is the climatic conditions that determine the annual
level of soil wind erosion [13], and they proposed an index of wind erosion climatic factors
(C-factor) that can represent and reflect the comprehensive effect of climatic conditions on
wind erosion to estimate the amount of soil wind erosion under different climatic condi-
tions [14,15]. However, the parameter setting and coefficient determination of the formula
have strong regional limitations [16,17]. Then, the Food and Agriculture Organization of
the United Nations (FAO) and Skidmore18 revised the model, respectively, introducing
the ETP and probability density function of wind speed as parameters of the wind erosion
climatic erosivity calculation model [18], which made up for the lack of theoretical basis in
Chepil’ s formula and reduced the calculation error in arid and semi-arid regions. However,
Skidmore’s formula involves many indicators, and it is difficult to collect calculation data,
so it is not easy to popularize and apply [19]. The FAO version can be directly calculated
using traditional meteorological data and meets well with the accuracy of the wind erosion
equation. At present, the model is widely used in the assessment of wind erosion climatic
conditions and response mechanism analysis in arid and semi-arid regions [20,21].

Changes in wind erosion climatic erosivity (C-factor value) are influenced by global cli-
mate change. Large-scale circulation patterns (El Niño-Southern Oscillation (ENSO), North
Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) have been the most prominent
climate signals at the inter-annual scale during recent years and have had far-reaching con-
sequences on global climate change [22,23]. ENSO is a periodic deviation in the expected
sea surface temperature (SST) in the equatorial Pacific. The temperatures higher or lower
than the normal ocean temperature can influence the weather patterns around the world
by affecting the high–low pressure system, wind, and precipitation [24]. The occurrence
of ENSO has a pronounced effect on most regions of China, especially on northern China,
northeast China, southern China, Inner Mongolia, and Xinjiang, where the correlation
has a good level of significance [25]. Scholars have found that ENSO events affect the
hot and cold variability and dry–wet change in northwestern provinces, and the intensity
of the variability is strongest in Xinjiang [26], where the variability in precipitation and
temperature increases in the ENSO event years. In El Niño events, the humidifying effect
in Xinjiang is obvious, and in La Niña events, there is a trend of drought in Xinjiang [27,28].
Some studies have noted that the annual NAO further affected the drought and flood
events in Xinjiang by affecting the temperature and precipitation [29,30]. Certainly, the
AO plays an important role in the variation in snow cover days and also had a significant
correlation with snowfall and daily temperature extremes on an inter-decadal scale [31,32].
The impact of the above three climate indices for climate change is remarkable, but the
impact of wind erosion climatic erosivity has rarely been analyzed.

Xinjiang is the main distribution area of the wind erosion landform in China, with
drought and less rainfall, severe soil erosion, and a fragile ecological environment. Es-
pecially due to the increased climatic variability caused by the anomaly of large-scale
atmospheric circulation, coupled with the strong impact of tropical cyclones, the ecological
environment is extremely fragile. The study of the influence of ENSO remote correlation
on wind erosion climatic erosivity in Xinjiang provides a theoretical basis for the com-
prehensive management of soil erosion and its prevention and control, which is of great
significance for the monitoring, assessment, forecasting, and management of soil erosion.
The results of this study will provide a preliminary perspective on the effect of large-scale
atmospheric circulation on wind erosion risk in arid and semi-arid regions. Therefore, the
objectives of this study are to (1) explore the characteristics of annual and seasonal wind ero-
sion in Xinjiang under the background of climate change; and to (2) assess the relationship
between wind erosion climatic erosivity and atmospheric circulation in Xinjiang.

2. Materials and Methods
2.1. Study Area

Xinjiang, located between 73◦40′–96◦23′ E and 34◦22′–49◦10′ N, has an area of
1.66 × 106 km2, in which the desert area accounts for 24% of the total area [33]. Topographic
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and geomorphological conditions in the region are complicated, forming an interlocking
landform pattern of mountains, oases, and basins. The area is under a temperate continental
arid and semi-arid climate, featured by a wide range of temperatures, strong wind, low
and uneven distribution precipitation, and low humidity. Owing to the influence of the
westerly circulation and the dry and cold airflow of the Arctic Ocean, more precipitation
falls in Northern Xinjiang than in Southern Xinjiang, and more in West Xinjiang than in East
Xinjiang. Coupled with the scarcity of natural vegetation and low coverage, the region’s
ecosystem is fragile [34]. As a result, the region is prone to catastrophic weather such as
high winds, and environmental problems such as soil wind erosion and desertification are
particularly prominent. Extreme wind erosion and frequent sandstorms wreak ecological
havoc and cause environmental degradation in Xinjiang. Figure 1 shows the distribution of
the meteorological stations.
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Figure 1. Location of the study area and distribution of the meteorological stations.

2.2. Data

Daily weather data including precipitation, maximum and minimum temperature,
wind speed, and relative humidity were collected from the National Meteorological In-
formation Centre of China (http://cdc.cma.gov.cn, accessed on 25 March 2021). After
accounting for missing data and comparing the length of the recorded period, we then
selected 64 stations for the period from 1969 to 2019 (50 years). The selected stations were
relatively evenly distributed, which enabled the regional climatic change in Xinjiang to
be reflected. For most of the stations (n = 45), time series of 51 years was available. The
remaining stations had a series of at least 49 years. In order to ensure the integrity of
the data and the accuracy of the calculation, the missing data were completed using the
interpolation methods, including: (1) if only one day had missing data, the missing data
would be replaced by the average value of its two nearest stations; (2) if two consecutive
or more days had missing data, the missing data would be processed by simple linear
correlation between its nearest stations. Data quality control was performed by the National
Meteorological Information Center of China Meteorological Administration.

ENSO data were provided by the U.S. Atmospheric Administration (NOAA) Climate
Prediction Center (CPC) (http://www.esrl.noaa.gov/, accessed on 11 August 2021). Ac-
cording to the method for the identification of El Niño/La Niña events [35], if the 3 month
sliding average of SST anomalies in the Niño3.4 region reaches or exceeds 0.5 ◦C and lasts
for at least 5 months, it is considered an El Niño event. If the 3 month sliding average falls
below−0.5 ◦C and persists for at least 5 months, it is considered a La Niña event. The NAO
and AO values between 1969 and 2019 were collected from the National Climate Center of
China (https://cmdp.ncc-cma.net/cn/index.htm, accessed on 11 September 2021).

http://cdc.cma.gov.cn
http://www.esrl.noaa.gov/
https://cmdp.ncc-cma.net/cn/index.htm
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2.3. Computation of Wind Erosion Climatic Erosivity

The present study used the equation proposed by FAO to compute the wind erosion
climatic factor [18]. The method is applicable to the estimation of wind erosion climatic
erosivity in arid and semiarid areas, which is defined as follows:

C =
1

100 ∑12
i=1 u3

(
ETPi − pi

ETPi

)
di (1)

where C is the wind erosion climatic factor; u is the monthly average wind speed at 2
m above the ground; ETPi is the potential evapotranspiration (mm) in month i; pi is the
precipitation (mm) in month i; and di is the number of days in month i. The potential
evapotranspiration ETPi (mm) is calculated as described by reference [36]:

ETPi = 0.19(20 + Ti)
2(1− ri) (2)

where Ti is the monthly average air temperature (◦C) and ri is the monthly average relative
humidity (%).

2.4. Calculation of Climate Inclination Rate

The climate inclination rate method is used to analyze the inter-annual variation trend
of wind erosion climatic erosivity. A climate variable with sample size n is represented by
xi, and the time corresponding to xi is represented by ti. The universal linear regression
between xi and ti can be written as:

xi = a + bti (i = 1, 2, · · · , n) (3)

where a is a regression constant, b is a regression coefficient, n is the sample size of a
meteorological element, and a and b can be estimated by the least squares method [37].
According to the observed data xi and the corresponding time ti, the least squares estimation
of the regression the constant b is:

b =
∑n

i=1 xiti − 1
n (∑

n
i=1 xi)(∑n

i=1 ti)

∑n
i=1 t2

i −
1
n (∑

n
i=1 ti)

(4)

where b × 10 is the climate inclination rate; when b > 0, the meteorological element
sequence increases with time; otherwise, it decreases. The size of the b value reflects the
degree of the tendency to rise or fall. The correlation coefficient between time ti and variable
xi can be written as:

r =

√√√√ ∑n
i=1 t2

i −
1
n (∑

n
i=1 ti)

2

∑n
i=1 x2

i −
1
n (∑

n
i=1 xi)

2 (5)

The significance test of correlation coefficient is used to determine whether the degree
of change trend is significant. Determining the level of significance, α, if |r| > rα, it
indicates that the change trend of climate elements with time is significant; otherwise, it
indicates that the change trend is not significant.

2.5. Statistical Methods

In this study, the spatial distribution map of the wind erosion climatic erosivity and its
inclination rate for Xinjiang was completed by using the ordinary Kriging interpolation
provided by the Geo-statistical Analyst Tool in ArcGIS 10.8 (It was developed by Amer-
ican Institute of Environmental Systems, Redlands, CA, USA). The limitation of Kriging
interpolation is that its interpolation accuracy varies with the amount of sample data.

The cross-wavelet transform (CWT) can better reflect the phase structure and detailed
characteristics in the time and frequency domain between two time series [38], and effec-
tively analyze the correlation between them, but it can only reveal the phase relationship
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between the two sequences in a high-energy region, while wavelet coherence (WTC) can
make up for the lack of phase relationship analysis of the cross-wavelet in a low-energy
region [39]. The cross-wavelet transform combined with wavelet coherence analysis can
analyze the multi-time-scale correlation of two sequences in the time and frequency domain.
Therefore, in this study, the cross-wavelet transform and coherent wavelet spectrum were
used to analyze the multi-scale correlation between the wind erosion climatic erosivity and
climatic index (ENSO, NAO, and AO).

3. Results
3.1. Annual and Seasonal Variation of Climatic Erosivity

The C-factor value is a measure of the climatic conditions most conducive to wind
erosion. Its seasonal and annual change trend can reflect the change in soil wind erosion
under the climatic characteristics for different periods of the year (Figure 2). Regardless of
the seasonal or annual scale, climatic erosivity in Xinjiang exhibited a fluctuating downward
trend. As far as the C-factor value of annual, spring, summer, and autumn, the whole
region showed a significant downward trend (p < 0.05), and the decline rates were 0.33/a
(annual), 0.19/a (spring), 0.11/a (summer), and 0.08/a (autumn), respectively. Despite
the overall falling trend, the annual and seasonal mean C-factor value varied from year
to year and three sub-periods could be distinguished: the period 1969–1993 when the
annual mean C-factor value descended from a relatively high level to below average, the
period 1994–2003 characterized by a sharp steady increase (p < 0.05), and the recent period
2004–2019 during which it decreased to its minimum (p < 0.05). In winter, the variation in
C-factor value was characterized by a large fluctuation range and nonsignificant downward
trend, with a downward rate of 0.02/a. In terms of seasonal scale, the multi-year average
C-factor values were 17.53, 16.37, 7.52, and −3.12, respectively, indicating that the seasonal
performance of wind erosion climatic erosivity was spring > summer > autumn > winter,
so spring and summer were the high-risk period of soil wind erosion in this area.
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Table 1 presents C-factor value statistics of the stations with significant and nonsignif-
icant trends at the 95% confidence level based on the significance test for the 64 stations
during 1969–2019. At 36 stations or in 56% of Xinjiang, the annual C-factor value showed a
significant downward trend at the 0.05 significance level, and at 14 stations or in 21% of
the region, a nonsignificant decline trend. At 24 stations, mainly distributed in the Middle
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East of Xinjiang, it displayed a significantly (4 stations) and nonsignificantly (10 stations)
increasing trend. Statistics of the variation trend showed that the spring, summer, autumn,
and winter climatic erosivity all tended to decline overall for most of the weather stations.
From spring to winter, the number of stations with a noticeable downward trend of C-factor
value decreased by 25%, and the number of stations with a prominent upward tendency
increased by 17%.

Table 1. C-factor value statistics of the stations with variation trend of climatic erosivity (50 years).

Time Upward
Trends

Nonsignificant
Increase

Significant
Increase

Downward
Trends

Nonsignificant
Decrease

Significant
Decrease

Spring 10 8 2 52 10 42
Summer 10 6 4 52 13 39
Autumn 16 10 6 46 11 35
Winter 24 11 13 38 22 16
Annual 14 10 4 50 14 36

3.2. Spatial Distribution of Annual Climatic Erosivity

Due to the spatial heterogeneity of the relevant climate variables, the mean annual
C-factor varied greatly in space (Figure 3). The C-factor value during 1969–2019 showed an
obvious spatial variation. The distribution of annual climate erosion was roughly bounded
by 85◦ E. At stations mainly distributed in the west of the boundary, which covered 42.2%
of the region, climatic erosivity was very weak with the C-factor value generally less than
30. At 67 stations, which were concentrated in eastern Xinjiang and represented 25.4% of
the region, climatic erosivity was strong with the C-factor value exceeding 50. Regions
with high values (C ≥ 100) were concentrated in the junction between the Turpan and
Hami Basin, which is situated on the east part of the study area. The spatial distribution of
climate inclination rates exhibited an obvious north–south difference. In Northern Xinjiang
and areas along Tianshan Mountain, the tendency rate was positive, and the C-factor
value showed an upward trend. In southern Xinjiang and the central part of northern
Xinjiang, the tendency rate was negative, and the C-factor value showed a downward
trend, especially in the southwest edge of the Jungar basin.

On a seasonal scale, the spatial distribution characteristics of C-factor value in spring,
summer, and autumn were similar, and the distribution characteristics of climatic erosivity
roughly showed a zonal distribution along the longitude direction. In winter, the climatic
erosivity presented a layered distribution along the latitude direction. Comparing the
distribution of C-factor value and its tendency rate in each season, the severe erosion area
was most widely distributed in spring and significantly narrowed in summer and autumn,
and the erosivity was weakest in winter. The eastern and southwestern regions of Xinjiang
and the Junggar Basin were areas with strong wind erosion climate erosion activity in
spring and summer, while the Tuha basin, Taklimakan Desert, and its surrounding areas
were the main areas for soil wind erosion control in winter.

In spring, summer, and autumn, at more than 56% of the stations, which were dis-
tributed in Altay and Tacheng, the climatic erosivity showed a significant downward trend.
At stations mainly distributed in the west and south of the Taklimakan Desert, which
covered 16–25% of the region, climatic erosivity was on the rise. Regions with an upward
tendency of C-factor value were concentrated in Northern Xinjiang, which covers 39% of
the region. The decline rate of climatic erosivity in Taklimakan Desert and eastern Xinjiang
was the most obvious, accounting for 26% of the total stations. It was found that higher
climate tendency rates often corresponded to higher climatic erosivities in autumn and
winter; and in spring and summer, higher climate tendency rates corresponded to lower
climatic erosivities.
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3.3. Climatic Erosivity Anomalies Associated with ENSO

Table 2 shows data on wind erosion climatic erosivity in Xinjiang during El Niño and
La Niña events, revealing that the average climatic erosivity during El Niño years is lower
than during La Niña years. According to statistical analysis, the average monthly C-factor
value was 3.83. During the El Niño/La Niña period, the C-factor value was 3.21, which
was somewhat lower than the average C-factor value from 1969 to 2016. In cold events, the
C-factor value reached a low of 1.94 in 1995, a high of 4.75 in 1973, and an average of 3.42.
The C-factor value reached a low of 1.60, a maximum of 5.03, and an average of 3.07 during
the warm events. In conclusion, climatic erosivity during the neutral period was higher
than during the ENSO period. The climatic erosivity during the warm events was 64% of
that during the neutral era.

Table 2. Average monthly climatic erosivity during El Niño and La Niña events (50 years).

Events Time Span Average C-Factor Value Events Time Span Average C-Factor Value

El Niño 1969.01–1970.01 4.60 La Niña 1995.08–1996.03 1.94
La Niña 1970.07–1972.01 4.62 El Niño 1997.05–1998.05 3.19
El Niño 1972.05–1973.03 4.60 La Niña 1998.07–2001.03 3.86
La Niña 1973.06–1976.03 4.75 El Niño 2002.06–2003.02 3.48
El Niño 1976.09–1977.02 2.26 El Niño 2004.07–2005.04 3.51
El Niño 1977.09–1978.01 2.64 El Niño 2006.09–2007.01 2.05
El Niño 1979.10–1980.02 1.90 La Niña 2007.08–2008.06 3.30
El Niño 1982.04–1983.06 5.03 El Niño 2009.07–2010.04 3.27
La Niña 1984.10–1985.06 3.95 La Niña 2010.07–2011.04 3.31
El Niño 1986.09–1988.02 3.07 La Niña 2011.08–2012.02 2.20
La Niña 1988.05–1989.05 3.81 La Niña 2014.11–2016.03 2.90
El Niño 1991.06–1992.07 3.03 La Niña 2017.09–2018.02 2.35
El Niño 1994.10–1995.03 1.60 El Niño 2018.10–2019.05 2.01
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The ENSO does not occur in the whole time series. There was some bias in the
correlation analysis between the full-time series SST index and climatic erosivity. As a
result, the year of ENSO was extracted as time series in this study and examined with the
climatic erosivity in the corresponding eras. Table 3 shows the results of the correlation
analysis between the C-factor value of the same period and 1–7 months lagged and the
SST monthly sequence value. The results of the analysis showed that the effect of El Niño
and La Niña events on the wind erosion climatic erosivity in Xinjiang were different in
duration.

Table 3. Correlation between climatic erosivity and SST in ENSO years.

Lag Phase El Niño La Niña

Correlativity Significance Correlativity Significance

Corresponding period −0.31 ** 0.00 0.12 0.13
One-month lag −0.34 ** 0.00 0.11 0.18
Two-month lag −0.30 ** 0.00 0.05 0.51

Three-month lag −0.15 0.06 −0.09 0.27
Four-month lag −0.02 0.79 −0.18 * 0.03
Five-month lag 0.10 0.20 −0.31 ** 0.00
Six-month lag 0.15 0.06 −0.32 ** 0.00

Seven-month lag 0.14 0.08 −0.23 ** 0.00
Note: ** indicates significance at p < 0.01; * indicates significance at p < 0.05; n.s.—nonsignificant.

In the El Niño event period and the 1–4 months after its end, there was a negative
correlation between the SST and C-factor value in Xinjiang, and the correlation was the
most obvious in the lag of 1–2 months. Five months after the end of the El Niño events,
SST showed a positive but insignificant correlation with climatic erosivity. In the year of
La Niña events, the correlation between SST and climatic erosivity showed the following
characteristics: in the occurrence stage of La Niña events and 1–3 months after its end, they
exhibited a positive but insignificant correlation. There was a very significant negative
correlation in the 5–7 months behind.

To summarize, the influence of ENSO occurrences on the climate in Xinjiang did not
dissipate soon after the event ended. The influence of El Niño events on climatic erosivity
in Xinjiang continued from the commencement of the events until two months after its end.
Our study also discovered an evident lag relationship between La Niña events and wind
erosion climatic erosivity; specifically, the influence of La Niña events on climatic erosivity
began to manifest in the fourth month after its end and began to fade after four months.

This study further explored the relationship between climate indices (ENSO, NAO,
and AO) and climatic erosivity in Xinjiang utilizing the cross-wavelet transform (XWT) and
wavelet coherence transform (WTC).

The XWT between ENSO and C-factor value (Figure 4a) showed a common power in
the band of 3–4 years from 1983 to 1987 and the 4–5 years band in 1998–2002, whereas it
was mainly anti-phase in the band of 4–5 years, and slightly shifted to the place where SST
leads the C-factor value in the period of 3–4 years. Compared with XWT, there was a larger
area of WTC of ENSO and C-factor value (Figure 4b) as being significant against the red
background noise with a 5% significant level. Between 1995 and 2008, the ENSO and the
C-factor value displayed strongly coherent periods of 8–12 years, with the phase difference
vector tilted upward, indicating that, on that timescale, the ENSO led the C-factor.
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Figure 4. The cross-wavelet power (a) and the wavelet coherency (b) between the Niño-Southern
Oscillation (ENSO) and C-factor value; the cross-wavelet power (c) and the wavelet coherency (d)
between the North Atlantic Oscillation (NAO) and C-factor value; the cross-wavelet power (e) and
the wavelet coherency (f) between the Arctic Oscillation (AO) and C-factor value. Contours are for
variance units. The vectors indicate the phase difference between the multivariate climatic index and
C-factor value. In all panels, the thick black line is the 5% significance level using the red noise model,
and the thin black line indicates the cone of influence.

As shown in Figure 4c, there was one band with a good correlation between the NAO
and C-factor value, which revealed a 3–4 year period from 1980 to 1986. The arrows pointed
to the right (positive phases), suggesting the positive correlation between NAO and climatic
erosivity. The WTC of NAO and the C-factor value showed a large area being significant in
the bands of 3–5 from 1978 to 1990 and the 1–15 period from 1985 to 2005 (Figure 4d), and
the arrows pointed to the right and northeastward, which revealed a consistent in-phase
relationship in the significant bands between the two variables.
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Figure 4e presented a consistent in-phase relationship in the period of 3–4 years from
1977 to 1985, implying a positive correlation between AO and climatic erosivity. There were
two significant bands in the WTC between the AO and C-factor value (Figure 4f), which
indicated a 2.2–7.8 year period from 1972 to 1995 and a 12–16 year period from 1985 to 2005.
Most of the arrows pointed to the east, implying that the AO and climatic erosivity was
in phase.

4. Discussion

There are seasonal changes in climatic erosivity in distinct places due to the effect
of the monsoon climate. According to this study, the wind erosion climatic erosivity in
Xinjiang was highest in the spring and summer, gradually dropped in the autumn, and
reaches its lowest in the winter. The emergence of this result was inseparable from the
characteristics of climate in Xinjiang, and is more consistent with previous research results
(the maximum value of wind erosion climate factor index appeared in spring) [40,41]. In
spring, the temperature in Xinjiang began to warm up, and the soil began to thaw, resulting
in a loose soil structure. In addition, during this period, plants grew slowly and were in
a state of wilting, which weakened the protection of vegetation on the surface, and the
surface was exposed or semi-exposed, thus creating extremely favorable conditions for
wind erosion on the surface. The minimum values of climatic erosion in arid and semi-arid
regions of China, the Yarlung Zangbo River Basin, and Alashan Plateau appear in summer
and autumn [12,42], while in Xinjiang, the minimum value occurs in winter. The reason
was that the average temperature in Xinjiang is about 20 ◦C below zero in winter, and it
is not easy for snow to melt and cover the bare surface, so it is not easy to cause surface
wind erosion [43]. Therefore, spring and summer is a critical period to implement soil
conservation practices. On the seasonal scale, sandstorms occur frequently in winter and
spring. However, the results of this paper showed that the climatic erosivity is weak in
winter. The reason for the deviation of the two conclusions may be that soil wind erosion is
the result of the interaction of many influencing factors. In addition to the climatic factors
proposed in this paper, it is also related to the physical and chemical properties of soil,
roughness, vegetation coverage, and so on.

The reduction in wind speed and gale days, and climatic warming and humidification
directly resulted in the decrease in wind erosion climatic erosivity [44]. During the past
50 years, the weakening of westerly circulation and winter monsoon and the decrease in the
intensity and frequency of cold air activity resulted in the surface wind speed on the wane
in the north of China [45,46]. In addition, the decrease in pressure gradient and weakness
of the continental cold high pressure were also important reasons for the decrease in wind
speed. The study of Zhao et al. also confirmed that the weakening of polar vortex intensity
and area index in the northern hemisphere in the recent 49 years gave rise to the weakening
of cold air activity intensity and frequency in Xinjiang [47], which led to the significant
reduction in gale days in Xinjiang.

In various seasons, the distribution of climatic erosivity changed substantially. In
spring, the distribution range of the severe erosion area was broadest, and the distribution
of the high value area of climatic erosivity in this study was in accordance with that
reported by reference [48]. Small differences were mainly because of the number of or
the subtle difference in the time periods for the meteorological stations. According to
the findings of this study, the center and western parts of northern Xinjiang and eastern
Xinjiang had a high C-factor value, whereas the climatic erosivity in southern Xinjiang
was modest. The interaction between atmospheric conditions and complex local terrain
may affect the spatial distribution of the C-factor value to some extent. The northern and
southern mountains in the region hinder the transportation of water vapor, and the central
region is blocked by the Tianshan Mountains, which makes the climate conditions in the
northern and southern regions of Xinjiang vary greatly. However, related research has
indicated that sand-dust storms occurred frequently in southern Xinjiang and soil wind
erosion is the primary link of sandstorms [49]. The main reason for the above deviation
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was that the spatial distribution of wind erosion does not necessarily depend entirely on
climatic conditions, and the distribution of the sand source on the underlying surface is
another important factor affecting wind erosion.

Climatic erosivity varied due to a variety of climatic parameters such as wind speed,
precipitation, temperature, and drought. However, recent evidence has shown that the
temperature and precipitation in Northwest China were correlated with tropical SST anoma-
lies [50,51]. Extensive studies have pointed out that the annual and monthly drought indices
in Northwest China were closely connected to AO and ENSO events, respectively [52].
This study focused on the analysis of the variation characteristics of climatic erosivity in
Xinjiang during ENSO events and found that climatic erosivity in the La Niña period was
greater than that in the El Niño period. Previous studies have shown that the occurrence
of El Niño events had a humidifying effect in Xinjiang [28]. On the contrary, during the
La Niña event, the precipitation in Xinjiang showed a gradually decreasing trend, and the
temperature was mainly high in the seven months after the end of the cold events [53,54].
Therefore, after the end of the La Niña events, the drought trend in Xinjiang increased, so
the soil wind erosion was relatively large during the La Niña events.

In our study, correlations between the climatic erosivity and the three climate indices
(ENSO, NAO, and AO) were analyzed. From a statistical perspective, the three climate
indices showed relationships to the climatic erosivity in Xinjiang in terms of their correlation
and periodicity. This was mainly because Xinjiang is located in the westerly-dominated
climatic regime, and climatic conditions were impacted by the latitude wave propagation
of the mid-latitude atmospheric circulation [55]. Correlations between the climatic erosivity
and the three climate indices were neither simple linear relationships nor simple positive
or negative relationships; rather, they were related to an advance or delay in the cycle.
This also indicates the complexity of the factors that affect climatic erosivity in Xinjiang,
though the exact mechanisms involved in this require further study. The limitation of this
study is that the selected climatic index is limited, which cannot fully reveal the influence
of the atmospheric circulation model on the wind erosion climatic erosivity in Xinjiang.
In addition, there were many indicators that can characterize the ENSO phenomenon,
including the MEI index, SOI index, and SST index. In this paper, only the SST index was
used to characterize the ENSO phenomenon. Therefore, the research conclusion needs
further in-depth research to verify.

5. Conclusions

In the past 50 years, the wind erosion climatic erosivity in Xinjiang had fluctuated
and decreased at annual and seasonal scales. The C-factor value in spring, summer, and
autumn exhibited a predominant downward tendency, but the C factor value in winter
displayed a stable condition with an indistinctive downward trend. Other than winter,
climatic erosivity exhibited a comeback tendency throughout the 1990s. The intensity of
climatic erosivity was highest in the spring and summer and reached its lowest in the
winter. Spring and summer were the high-risk periods of soil wind erosion in Xinjiang.

At the annual scale, climatic erosivity was significantly higher in the Eastern Junggar
Basin and Junction between the Turpan Basin and Hami Basin, while it was lower in the
Altay Prefecture and the desert area in southern Xinjiang. Eastern Xinjiang, the Junggar
Basin, and its southwestern margin were areas with strong climatic erosion activities in
spring and summer, while in winter, Taklimakan Desert and its surrounding areas were the
main regions for prevention and control of soil wind erosion activities. The tendency rates
of the C-factor value in spring, summer, autumn, and winter were −1.8/10a, −0.7/10a,
−0.6/10a, and −0.1/10a, respectively. In autumn and winter, the climatic tendency rate
was high in the regions with a high intensity of climatic erosivity. In spring and summer,
the higher climate tendency rate corresponded to a lower climatic erosivity.

The average C-factor value was weaker during El Niño events and stronger during
La Niña events, which implies that the climatic erosivity was controlled by large-scale
atmospheric circulations. The impact of ENSO events on the Xinjiang climate did not
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disappear immediately with the end of events. The influence of El Niño events on climatic
erosivity in Xinjiang could be sustained from the beginning of the events to two months
after the end of the events. La Niña events had a lag effect on the climatic erosivity in
Xinjiang, with a lag period of 4 months. However, not all ENSO events were responsible
for climatic erosivity during this period, and other drivers remain to be identified.

From a statistical perspective, the climate indices (ENSO, NAO, and AO) were re-
lated to climatic erosivity in Xinjiang in terms of correlation and periodicity. However,
correlations between the climatic erosivity and climate indices were neither simple linear
relationships nor definitely positive or negative relationships; rather, they were related to
an advance or delay in the phase. From the cross-wavelet transform of data pairs, it was
found that the ENSO led the climatic erosivity. The NAO and climatic erosivity revealed
a consistent in-phase relationship in the significant bands. The AO and climatic erosivity
was in phase.
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