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Abstract: The increasing frequency of human activities has accelerated changes in land use types and
consequently affected the atmospheric environment. In this manuscript, we analyze the relationships
between the particulate matter concentration and land use changes in the Beijing–Tianjin–Hebei
(BTH) region, China, from 2015 to 2018. The experimental results indicate that (1) an improved
sine function model can suitably fit the periodic changes in the particulate matter concentration,
with the average R2 value increasing to 0.65 from the traditional model value of 0.49, while each
model coefficient effectively estimates the change characteristics of each stage. (2) Among all land
use types, the particulate matter concentrations in construction land and farmland are high, with a
large annual difference between high and low values. The concentration decreases slowly in spring
and summer but increases rapidly in autumn and winter. The concentrations in forestland and
grassland are the lowest; the difference between high and low values is small for these land use types,
and the concentration fluctuation pattern is relatively uniform. Natural sources greatly influence
the concentration fluctuations, among which frequent dusty weather conditions in spring impose a
greater influence on forestland and grassland than on the other land use types. (3) The landscape
pattern of land use exerts a significant influence on the particulate matter concentration. Generally,
the lower the aggregation degree of patches is, the higher the fragmentation degree is, the more
complex the shape is, the higher the landscape abundance is, and the lower the particulate matter
concentration is. The higher the construction land concentration is, the more easily emission sources
can be aggregated to increase the particulate matter concentration. However, when forestland areas
are suitably connected, this land use type can play a notable role in inhibiting particulate matter
concentration aggravation. This conclusion is of great relevance to urban land use planning and
sustainable development.

Keywords: land use and land cover; PM2.5; PM10; spatiotemporal characteristics; air pollution;
remote sensing; China

1. Introduction

Land not only provides an important basis of human survival but is also an essential
resource for human development [1]. Land use and land cover are two different but closely
related concepts. Land use refers to the dynamic and purposeful utilization of natural land
resources by humans, while land cover constitutes the synthesis of natural and human-
made buildings covering the Earth’s surface. Both of these concepts are important land
system attributes [2,3]. All human activities are inseparable from land. These activities
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have affected the distribution patterns and change mechanisms of the original land system
and exerted far-reaching influences on resources, the environment, geographical processes,
and biodiversity [4,5]. The urban environment is the result of the combined influence of
industrial production and urban construction. Land use types have increasingly changed
from natural types, such as farmland, forestland, and grassland, to artificial types, which is
one of the important characteristics of urbanization. The increasing frequency of human
activities has accelerated land use type changes, altered the original urban landform and
regional energy balance, damaged the natural ecological functions of the surface system,
and driven air flow exchange variations between surface particles and the atmosphere,
affecting the generation, diffusion, dilution, and collection of particles and thus affecting
the atmospheric environment [6,7]. The compositional structure, content, and properties
of the atmosphere can change due to changes in land use/land cover, and the chemical
properties and processes of the atmosphere can also be affected, which can impact the
gas-generation mechanism, thus influencing the circulation of atmospheric materials within
a given region. In the long term, these effects may alter the local climate and even affect
the global climate [8]. Landscape patterns describe the spatial distribution of landscape
patches of different shapes and sizes, which is an important manifestation of landscape
heterogeneity and can reflect the effects of various ecological processes. The study of
landscape patterns can elucidate the inherent spatial distribution of seemingly disorderly
patches and quantitatively describe their changes over time [9]. Analyzing changes in land
use/land cover types and the evolution of landscape patterns can provide insights into the
extent, directions, and characteristics of changes in particulate matter [10]. Environmental
protection, environmental improvement, and the optimization of land use patterns in
development to improve urban air quality are all major issues related to the effects of land
use/land cover on atmospheric particulate matter.

In recent years, the contribution of human activity-related emissions to particulate
matter has gradually increased. Vehicle exhaust, road dust, industrial emissions, domes-
tic emissions, fuel combustion-related emissions and building dust continuously drive
particulate matter emissions into the atmosphere, and these activities mainly occur in con-
struction land areas. Buildings in cities also have a significant impact on particulate matter
dispersion [11,12]. Many research results revealed that the higher the construction land
proportion is, the higher the air pollution degree. Xu et al. [8] found that the construction
land and road area proportion in the Changsha–Zhuzhou–Xiangtan urban agglomeration
was significantly positively correlated with the concentrations of NO2 and particles with
aerodynamic diameters of 2.5 µm or smaller (PM2.5), and the influence on NO2 was greater
than that on PM2.5. In contrast, the influence on particles with an aerodynamic diameter
of 10 µm or smaller (PM10) was unstable, which may have been because vehicle exhaust
emissions comprised the main NO2 source and were closely related to construction land
and road areas. Peng et al. [13] determined that forestland in Chengdu exerted an obvious
influence on NO2 concentration variations; urban land was highly correlated with the high-
est total suspended particulate matter concentration; and the spatial distributions of NO2
and total suspended particulate matter concentrations were highly consistent with those
of urban land, industrial and mining land, and transportation land areas. Font et al. [14]
reported that PM10 greatly increased during and after road expansion in London, but the
impact on PM2.5 was relatively limited, indicating that construction activities contributed
more notably to PM10. Zhai et al. [15] observed a highly positive correlation between
the NO2 column concentration in the troposphere and the coverage rates of impervious
surfaces in various cities and municipal districts, and the spatial distribution patterns in
these two hot-spot areas were consistent. The mean NO2 column concentration in the
troposphere above open, compact, intensive, and highly intensive municipal districts in-
creased sequentially, and the standardized concentration index of the NO2 column in the
troposphere above areas exhibiting impervious surface expansion exhibited an upward
trend. Tang et al. [10] found that hazy days in Beijing showed obvious positive correlations
with construction land, residential areas, industrial and mining land, and transportation
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land. There was a significant positive correlation between the building area and PM1.0
concentration in the 0.5- and 1-km buffer zones. Wei et al. [16] determined that an obvious
negative correlation existed between urban land use and pollution-free weather; however,
positive correlations with other weather conditions were found, and these correlations
gradually increased. Mo et al. [17] reported that the concentrations of PM2.5, PM10, and
other particulate matter types in Beijing were positively correlated with the resident popu-
lation density, regional gross domestic product (GDP), and other factors that significantly
reflected the urbanization level.

Forestland and grassland, as typical vegetation types, are generally considered to
reduce particulate matter. First, human activities in forestland and grassland are limited;
few anthropogenic emission sources occur; and natural emissions are the main source
of particulate matter. Second, vegetation cover can effectively separate the surface and
atmosphere, thus preventing floating dust near the surface from rising into the atmosphere.
Third, vegetation with a complex canopy structure can reduce the wind speed and prevent
particles from entering local areas. In addition, particles fall onto vegetation surfaces due to
dry sedimentation and are adsorbed or captured by leaves, stems, and other organs, which
can play notable roles in dust retention. Xu et al. [8] found that forestland, green land,
and cultivated land areas were negatively correlated with NO2 and PM2.5 concentrations.
Wei et al. [16] reported that forestland was positively correlated with nonpolluted and
slightly polluted weather conditions but negatively correlated with highly polluted weather
conditions. Shi et al. [11] determined that a decrease in cultivated land and forestland
areas and an increase in construction land areas contributed to a decrease in the number
of foggy days but aggravated the haze occurrence degree and frequency. Mo et al. [17]
observed that the trend of the concentrations of PM2.5, PM10, and other particulate matter
types in Beijing was the opposite of the development trend of forest coverage, exhibiting a
significant negative correlation. Tang et al. [10] found that an obvious negative correlation
existed between ecological land and cultivated land areas and the number of haze days
in Beijing, and an obvious negative correlation between the green space area proportion
and PM1.0 concentration in 0.5- and 1-km buffer zones was identified. Sun [18] reported
that the PM10 concentrations associated with various land use types in the Pearl River
Delta region followed the ascending order of forestland, grassland, farmland, construction
land, and desert wasteland. Generally, the influence of farmland on particulate matter is
bidirectional. During the crop growing season, vegetation cover causes farmland to exert a
certain dust-retention effect, but the corresponding efficiency may be lower than that of
forestland and grassland [19,20]. After crop harvesting, dust emitted during straw burning
represents an important source of particulate matter [21,22]. Moreover, in winter, without
vegetation coverage, a large amount of dust becomes exposed on the surface and is easily
lifted into the atmosphere [19,20]. The influence of water on particles is complicated. On
the one hand, when particles fall on the water surface due to sedimentation, these particles
are not resuspended. On the other hand, the presence of water causes the temperature to
decrease and the humidity to increase, which may affect the accumulation and diffusion
of particulate matter [20,23]. Due to the lack of vegetation coverage, a large amount
of floating dust is exposed near the surface of unused land and is easily lifted into the
atmosphere under the action of wind. Generally, floating dust readily becomes the main
source of particles, and the corresponding contribution to particles with a large aerodynamic
equivalent diameter is relatively high.

The temporal and spatial variability of particulate matter concentrations is a complex
system that is driven by a combination of influencing factors. The effects of meteorological
factors, human activities, and topographic conditions on particulate matter have been stud-
ied by several scholars [24–27]. In this manuscript, we focus on the intrinsic patterns of land
use, and it is essential to explore its impact on the atmospheric environment to guide land
use planning scientifically. In this paper, land use distribution and changes are analyzed
using land use classification data in the Beijing–Tianjin–Hebei (BTH) region in 2015–2018.
The differences in different land use types on the temporal changes in atmospheric particu-
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late matter concentrations are explored with the help of an improved sine function model.
The correlation between landscape patterns and atmospheric particulate matter is analyzed
using landscape ecology and statistical methods. The results of this paper are important for
the prevention and control of atmospheric pollution and the sustainable development of
resources and the environment and can also provide a scientific reference for the optimal
allocation of land resources.

2. Methods
2.1. Optimized Particle Concentration Fitting Model

Systematic mathematical models can be used to fit concentration change patterns.
Comparison of the parameters in the fitted results among different regions is a powerful
tool for analyzing the changes in pollutant concentrations. The concentration exhibits
a significant periodicity in annual cycles, with a peak and a trough in each cycle. To
analyze the characteristics of the variation in particulate matter concentration over time
quantitatively, many scholars fitted periodic quantitative mathematical function models,
among which the sinusoidal function model is the most widely adopted [28–32]. The
traditional sine model is based on the least-squares method and comprises linear and
sine functions. The general form of the sine function model is shown in Figure 1a. The
corresponding equation is defined as follows:

y = Aox + Bo + Co· sin
(

2π
Do

(x + Eo)

)
(1)

where y is the particulate matter concentration, and the first two terms on the right side
of the equal sign constitute a linear function, i.e., Aox + Bo, representing the interannual
variation trend of the particulate matter concentration. The third term is a sine function,
i.e., Co· sin

(
2π
Do

(x + Eo)
)

, which is applied to describe the periodic variation characteristics
of the particulate matter concentration on a monthly scale. Scholars evaluated and applied
this model in monthly analyses of mean particulate matter concentrations at the country,
region, and city spatial scales and confirmed that it can describe the general temporal
variation patterns of particulate matter concentrations. However, due to its relatively
simple function shape, the model is limited in its ability to provide detailed information on
the variation in particulate matter. To capture the actual trends in changes in particulate
matter concentrations more closely, describe temporal changes in monthly mean concentra-
tions more accurately, and determine the inherent mechanisms, this paper improves the
traditional sinusoidal function model in the following aspects [33]:

(1) Regarding general concentration change trends, a quadratic function is employed
instead of a linear function, and this function can suitably fit various situations, such
as initially rising and then falling, initially falling and then rising, accelerated rising
or falling, decelerated rising or falling, and steadily rising or falling concentrations.

(2) In particulate matter concentration fluctuations, when the overall concentration in-
creases, the fluctuation range also increases. When the overall concentration decreases,
the fluctuation amplitude also decreases. Therefore, the first half of a quadratic func-
tion, i.e., Atx2 + Btx + Ct, is added to the coefficient of the original sine function. This
improvement ensures that the amplitude no longer remains fixed over time but varies
with the overall concentration change trend.

(3) At the monthly scale, changes in the particulate matter concentration are often not
symmetrical periodic fluctuations, and often, the durations of periods with low values
are long, while the durations of periods with high values are short. Notably, narrower
peaks and wider valleys or the opposite, i.e., wider peaks and narrower valleys, may
occur. Considering these concentration change characteristics, this paper replaces the
original sine function sin( 2π

Dt
(x + Et)) with 2·( 1

2 ·(1 + sin( 2π
Dt
(x + Et))))Ft and adds a

deformation factor Ft to control the shape of the sine function based on its magnitude.
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(4) The particulate matter concentration variation during a given cycle is often not sym-
metrical or uniform, and the concentration increase and decrease rates in this case are
not equal. In particular, the time from one wave peak to the next wave trough is not
the same as the time from one wave trough to the next wave peak. According to this
feature, an oscillation term with the same period and a π/2-phase difference is added
to x in the sine function; x is replaced with x + Ht· sin( 2π

Dt
(x + Et)); and the left/right

shifting of the peak or trough is controlled by the magnitude of the offset factor Ht.

Figure 1. Schematic diagram of the traditional (a) and improved (b) sine function models.

After the above 4 improvements, the general form of the improved sine function
model is schematically shown in Figure 1b. The improved function is reorganized, and an
improved sine function model equation is obtained as follows:

y =
(

Atx2 + Btx + Ct

)
·
(

1 + Dt(
1
2
(1 + sin

(
2π
Et

(
x + Ht· sin(

2π
Et

(x + Gt)) + Gt

))
))

Ft
)

(2)

where y is the particulate matter concentration, and the terms on the right side of the
equal sign comprise a quadratic function and the improved sine function that captures
uneven fluctuations. There are a total of 8 parameters from At to Ht in the formula, and the
meaning and description of each parameter are shown in Table 1.

Table 1. Parameters and their descriptions in the improved sine function model.

Parameters Definition Range Description

At
Quadratic
coefficient (−∞, ∞)

At determines the opening direction and magnitude of the parabolic curve, namely:
(1) for At > 0, the parabolic curve opens upwards;
(2) for At < 0, the parabolic curve opens downwards.
Additionally, the larger the absolute value of At is, the smaller the opening of the
parabolic curve, while the smaller the absolute value of At is, the larger the opening
of the parabolic curve.

Bt
Primary term

coefficient (−∞, ∞) Bt and At jointly determine the position of the axis of symmetry.

Bt/2At
Axis of

symmetry

(1) When the axis of symmetry occurs within the studied time range, for At > 0, the
concentration first decreases and then increases. Conversely, for At < 0, the
concentration first increases and then decreases.
(2) When the axis of symmetry occurs on the left side of the studied time range, for
At > 0, the concentration continuously increases, and the rate of increase rises.
Conversely, for At < 0, the concentration continuously decreases, but the rate of
decrease rapidly declines.
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Table 1. Cont.

Parameters Definition Range Description

(3) When the axis of symmetry is located on the right side of the studied time range,
for At > 0, the concentration continuously decreases, but the rate of decrease
declines. Conversely, for At < 0, the concentration continuously increases, but the
rate of increase declines.
In addition, when the axis of symmetry is located far from the studied time range,
the concentration can be considered to increase or decrease at an approximately
constant rate.

Ct Constant (−∞, ∞) Ct determines the intersection of the parabolic curve and Y-axis and represents the
overall particulate matter concentration at the starting time of the analysis.

Dt Amplitude [0, ∞) Dt indicates the differences between peak and valley values and determines the
oscillation amplitude. The larger its value, the stronger the fluctuations are.

Et Cycle 12 Et represents the fluctuation duration. Because particulate matter fluctuation over a
year is considered in this paper, a fixed Et value of 12 is adopted.

Ft
Deformation

factor (0, ∞)

Ft indicates the duration of periods with high or low values during a given cycle:
(1) for Ft = 1, the curve of the sine function uniformly oscillates;
(2) for Ft > 1, the function curve exhibits narrow peaks and wide valleys, and the
larger the Ft value is, the stronger the deformation;
(3) for 0 < Ft < 1, the function curve exhibits wide peaks and narrow valleys, and the
closer the Ft value is to 0, the stronger the deformation.

Gt Phase [0, 12] Gt determines the occurrence positions of peaks. During a given period, the larger
the value, the later peaks and valleys occur.

Ht Offset factor (−∞, ∞)

Ht indicates the relative positions of peaks and valleys, namely:
(1) for Ht = 0, the left and right positions of valleys are located at the centers of two
adjacent peaks, i.e., the time when one peak reaches the next valley is equal to the
time when one valley rises to reach the next peak;
(2) for Ht > 0, the trough moves towards the right, i.e., the time required for one
peak to reach the next trough increases, and the time required for one trough to
reach the next peak decreases;
(3) for Ht < 0, the trough moves towards the left, i.e., the time required for one peak
to reach the next trough decreases, and the time required for one trough to reach the
next peak increases.
The larger the absolute value of Ht is, the larger the offset.

2.2. Landscape Pattern Index

In this paper, the landscape pattern changes reflected by common landscape pat-
tern indices at the landscape and patch levels were evaluated. It should be noted that
certain indices may yield different meanings at different levels and should be examined
separately [34,35].

2.2.1. Landscape Level

At the landscape level, the calculation methods and specific meanings of the patch
density (PD), largest patch index (LPI), edge density (ED), contagion index (CONTAG),
splitting index (SPLIT), Shannon’s diversity index (SHDI), Simpson’s diversity index (SIDI),
aggregation index (AI), and eight other landscape pattern indices are explained below.

PD is equal to the number of patches in the landscape divided by the total landscape
area (m2), which is then multiplied by a scaling factor of 1,000,000 (conversion into 100
hectares), with a value range of (0, +∞). Moreover, PD is expressed as the number of
patches per 100 hectares. When each unit involves an individual patch, the PD value is the
largest, which indicates that based on the number of patches per unit area, landscapes of
different sizes can be compared. PD can be calculated as follows:

PD =
N
A
·(1, 000, 000) (3)
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where N is the number of patches in the landscape, and A is the total landscape area (m2).
LPI is expressed as a percentage and is equal to the percentage coverage of the largest

patch in the area, with a value range of (0, 100). When the largest patch in the landscape de-
creases in coverage, the LPI gradually approaches 0. When the whole landscape comprises
only one patch, i.e., the largest patch accounts for 100% of the landscape area, LPI = 100.
This index is a simple way to measure dominance. The LPI equation is

LPI =
max

(
aij
)

A
·(100) (4)

where aij is the area of patch ij (m2), and A is the total landscape area (m2).
ED is equal to the sum of the lengths (m) of all edge segments related to the corre-

sponding patch types divided by the total landscape area (m2), which is then multiplied
by 10,000 (conversion into hectares), with a value range of (0, +∞) in meters per hectare.
When no graded edges occur in the landscape, i.e., when the whole landscape comprises
only one patch, ED = 0. This index can be adopted to compare landscapes of different sizes.
ED can be calculated as

ED =
∑m

k=1 eik

A
·(10, 000) (5)

where eik is the total length (m) of the edge segments in the landscape of patch type i, and
A is the total landscape area (m2).

CONTAG represents the highest possible contagion degree observed for a given
number of patch types, with a value range of (0, 100) expressed as a percentage. When the
patch types are decomposed and dispersed to the greatest extent, CONTAG approaches 0.
CONTAG = 100 when all patch types exhibit the maximum aggregation degree. CONTAG
reflects the aggregation or expansion degrees of different patches in the landscape. A high
value indicates a good relationship between certain major patch types, while a low value
indicates that the landscape encompasses a multielement intensive pattern with a high
degree of landscape fragmentation. The CONTAG calculation equation is

CONTAG =

1 +
∑m

i=1 ∑m
k=1

(
Pi·

gik
∑m

k=1 gik

)
·
(

ln
(

Pi·
gik

∑m
k=1 gik

))
2 ln(m)

·(100) (6)

where Pi is the proportion of the landscape occupied by patch type I; gik is the number of
connections between pixels of patch types i and k based on the double-counting method;
and m is the number of patch types in the landscape.

SPLIT is equal to the square of the total landscape area (m2) divided by the sum of
the squared patch areas (m2), and its value range is [1, n2], where n is the total number of
pixels in the area (dimensionless). When the landscape comprises a single patch, SPLIT = 1.
SPLIT reaches its maximum value when the landscape is subdivided to the greatest extent.
SPLIT is based on the regional distribution of accumulated patches and can characterize
the degrees of separation between various patch types. SPLIT can be calculated as follows:

SPLIT =
A2

∑n
1=1 ∑n

j=1 a2
ij

(7)

where aij is the area of patch ij (m2), and A is the total landscape area (m2).
SHDI denotes the proportional abundance of each patch type among all negative

patch types multiplied by the sum of the proportions, and its value range is [0, +∞). When
the landscape contains only one patch type, SHDI = 0. As the proportional distribution of
areas among various patch types becomes increasingly uniform, SHDI increases. SHDI can
reflect landscape heterogeneity and is particularly sensitive to an unbalanced distribution
of various patch types in the landscape. If the land use diversity and fragmentation degree
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are high, the information content in the uncertainty and the SHDI value will increase. The
SHDI equation is

SHDI = −
m

∑
i=1

(Pi·lnPi) (8)

where Pi is the proportion of the landscape occupied by patch type i.
SIDI is equal to 1 minus the sum of the proportional abundance of the square of each

patch type among all patch types, with a unitless range of [0, 1]. When the landscape
contains only one patch type, SIDI = 0. With an increasing number of different patch types
(i.e., increasing patch abundance), SIDI approaches 1. SIDI is another popular diversity
index borrowed from community ecology that is insensitive to the presence of rare types
and provides a more intuitive explanation than does the Shannon index. SIDI can be
calculated as follows:

SIDI = 1−
m

∑
i=1

Pi
2 (9)

where Pi is the proportion of the landscape occupied by patch type i.
AI denotes the number of similar adjacencies of a certain type divided by the maxi-

mum possible number of similar adjacencies of this type, which is then multiplied by the
landscape proportion of this type. Subsequently, the total value for all types is multiplied
by 100 (conversion into a percentage), and AI has a value range of [0, 100] expressed as
a percentage. For AI = 0, the patch types are decomposed to the greatest extent. With
increasing landscape aggregation, AI increases. When the landscape comprises a single
patch type, AI equals 100. AI represents the frequency of different patch types occurring
side by side on the map, which can reflect the patch aggregation degree. The AI equation is

AI =

[
m

∑
i=1

(
gii

max(gii)

)
Pi

]
·(100) (10)

where gii is the number of similar adjacencies between pixels of type i based on the single-
counting method; max(gii) is the maximum value of gii; and Pi is the landscape proportion
of type i.

2.2.2. Class Level

At the class level, five landscape pattern indices, including the percentage of the
landscape (PLAND), PD, LPI, largest shape index (LSI), and SPLIT, were selected, and their
calculation methods and specific meanings are explained below.

PLAND is the percentage of the area of the corresponding patch type in the total
landscape area, with a range of (0, 100) expressed as a percentage. When the number of
corresponding patch types in the landscape decreases, PLAND approaches 0. When the
whole landscape comprises a single patch type, PLAND = 100. PLAND quantifies the
proportional abundance of each patch type in the landscape, which is an important measure
of the landscape composition in many ecological applications. The PLAND calculation
equation is

PLAND = Pi =
∑n

j=1 aij

A
·(100) (11)

where Pi is the landscape proportion occupied by patch type i; aij is the area of patch ij (m2);
and A is the total landscape area (m2).

PD is equal to the number of patches of the corresponding patch type divided by the
total landscape area (m2) and multiplied by 1,000,000 (converted to 100 hectares), and its
value range is (0, +∞) in units of the patch number per 100 hectares. When each cell is
an individual patch, PD is the largest, and the final cell size determines the maximum



Atmosphere 2022, 13, 391 9 of 27

number of patches per unit area. PD represents the number of patches per unit area, which
is helpful for comparing landscapes of different sizes. The formula of PD is

PD =
ni

A
·(1, 000, 000) (12)

where ni is the number of patches i of the corresponding type, and A is the total landscape
area (m2).

LPI denotes the percentage coverage of the largest patch of the corresponding type in
the total area, with a value range of (0, 100) expressed as a percentage. When the largest
patch area of the corresponding type decreases, the LPI gradually approaches 0. When the
whole landscape comprises individual patches of corresponding patch types, LPI = 100.
This is a simple method to measure the dominant position. LPI can be calculated as

LPI =
max
j=1

(
aij
)

A
·(100) (13)

where aij is the area of patch ij (m2), and A is the total landscape area (m2).
LSI is equal to 0.25 multiplied by the sum of the whole landscape boundary and the

lengths (m) of all edge segments of the corresponding patch type in the landscape boundary,
which is then divided by the square root (m2) of the total landscape area. The LSI value
range is [1, +∞] and is unitless. When the landscape contains a single square patch of the
corresponding type, LSI = 1. With increasing edge lengths of the corresponding patch type
in the landscape, LSI increases infinitely, which provides a standardized measure of the
total edges or ED. The LSI calculation equation is

LSI =
0.25·∑m

k=1 e∗ik√
A

(14)

where e∗ik is the total length (m) of lateral edges between patch types i and k, and A is the
total landscape area (m2).

SPLIT is determined as the square of the total landscape area (m2) divided by the sum
of the squares of all patch areas (m2), and its value range is [1, n2], where n is the total
number of pixels in the area (dimensionless). When the landscape contains a single patch
type, SPLIT = 1. As the area of the focal patch type gradually decreases or the focal patch
type is subdivided into smaller patches, SPLIT increases. SPLIT is based on the regional
distribution of accumulated patches and can characterize the degrees of separation between
various patch types. The SPLIT equation is

SPLIT =
A2

∑n
j=1 a2

ij
(15)

where aij is the area of patch ij (m2), and A is the total landscape area (m2).

3. Results and Discussion
3.1. Overview of the Study Area and Data

The BTH region is located between 113◦27′~119◦51′ E and 36◦05′~42◦40′ N (Figure 2).
The terrain is inclined, exhibiting high elevations in the northwest and low elevations in
the southeast, with complex and heterogeneous landforms, including plateaus, mountains,
hills, basins, and plains. From northwest to southeast, the region is roughly divided into
the Bashang Plateau, Yanshan-Taihang Mountains, and Haihe Plain. The BTH region
experiences a temperate of a semihumid continental monsoon climate, with distinct winters
and summers, and more than 67% of precipitation is concentrated in the summer. The BTH
region covers an area of approximately 217,200 square kilometers, which accounts for 2.3%
of the total land area in China. This area hosts a dynamic economy, the highest degree of
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economic openness, the strongest innovation ability, and the highest foreign population
absorption level in China. However, many particulate matter indicators seriously exceed
relevant standards due to the dense population and notable industrial agglomeration, and
smog and other air pollution phenomena frequently occur in the BTH region due to its
rapid economic development. Air pollution seriously threatens the ecological environment
and human health and affects the residential quality of life. The pollution conditions in the
BTH region are highly representative of those in China and worldwide.

Figure 2. Geographical location of the study area.

3.1.1. Land Use Data

The land use/land cover data analyzed in this experiment included the C6 version
of MCD12Q1, which is a land cover product of the Moderate Resolution Imaging Spectro-
radiometer (MODIS, https://modis.gsfc.nasa.gov/, accessed on 1 December 2021). The
temporal resolution of the data was 1 year; the spatial resolution was 500 m; and a data
mosaic of four scenes could cover the entire BTH region. Since 2001, relevant data were
updated at annual intervals and stored in the HDF4 file format. The projection method is
sinusoidal projection, which includes 8-day comprehensive MODIS observation results
obtained from Terra and Aqua satellite MODIS sensors throughout the year. Combined
with the characteristics of the surface reflectivity and surface temperature, the data were
analyzed with a supervised decision tree classification algorithm based on a high-quality
land cover training sample database. The land cover classification schemes for the dataset
include the International Geosphere-Biosphere Programme (IGBP) scheme, University
of Maryland (College Park, MD, USA), leaf area index (LAI)/fraction of the absorbed
photosynthetically active radiation (FPAR), net primary production (NPP), plant functional
type (PFT), and Food and Agriculture Organization-Land Cover Classification System
(FAO-LCCS, https://www.fao.org/home/en/, accessed on 1 December 2021) (Rome, Italy).
The PFT classification scheme, including water bodies, evergreen coniferous forestland,
evergreen broad-leaved forestland, deciduous broad-leaved forestland, shrub/forestland,
grassland, cereal crops, broad-leaved crops, built-up areas, snow and ice, bare land, and

https://modis.gsfc.nasa.gov/
https://www.fao.org/home/en/
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other types, was adopted in this experiment [36,37]. Many experiments show that the
MCD12Q1 dataset has a high classification accuracy. For more information on the accuracy
of the dataset products, please refer to Sulla-Menashe et al. [36,37]. Before conducting the
experiment, we first reclassified the data and organized them into six types (Table 2).

Table 2. Land use types and descriptions after reclassification.

Land Use Type Description

Water bodies Permanent water coverage rates not lower than 60%.
Forestland Tree cover not lower than 10%.
Grassland Dominated by herbaceous annuals (less than 2 m) with no cultivation.
Farmland Dominated by herbaceous annuals (less than 2 m) and no less than 60% cereal crops or broadleaf crops.

Construction land Impervious surface coverage, including building materials, asphalt, and vehicles, not lower than 30%.
Unused land Unvegetated barren (sand, rock, soil) with less than 10% vegetation.

3.1.2. Air Quality Monitoring Data

The air quality data obtained in this experiment included real-time monitoring data
from monitoring stations. The China National Environmental Monitoring Center (Beijing,
China) releases automatic hourly air quality monitoring results from all monitoring sta-
tions and cities in China to the public through the National Urban Air Quality Real-time
Publishing Platform (http://106.37.208.233:20035/) accessed on 1 December 2021. In this
experiment, 215 stations distributed in the BTH region and surrounding cities were selected
(as shown in Figure 3). From 0:00 on 1 December 2014, to 23:00 on 31 December 2018,
35,808 h of hourly PM2.5 and PM10 concentration data were acquired. First, the data were
calculated and integrated. For the small amount of missing data, hourly average values
on other days in the corresponding months were used to obtain PM2.5 and PM10 values
at each point. Then, the ordinary kriging interpolation method was applied to obtain
the spatial distribution of particulate matter concentrations in each time interval within
the study area, with a spatial resolution of 500 m. Moreover, the PM2.5/PM10 ratio at
each spatial position and each region was calculated. Finally, the spatial mean values of
particulate matter concentrations in the whole study area in each region and for each land
use type at different time scales were obtained by the statistical partitioning method. The
ordinary kriging method dynamically determines the values of variables according to an
optimization criterion function in the interpolation process to ensure that the interpolation
function is in the best state; this process takes into account both the positional relationship
between the observed and estimated points and the relative positional relationship among
the observed points and is more effective when the number of points is relatively sparse.

3.1.3. Accuracy Verification of the Optimization Model

To verify the accuracy of the improved model, both the traditional and improved
models were adopted to fit the monthly mean values of PM2.5 and PM10 concentrations in
the whole study area and in cities. In addition, the goodness-of-fit R2 value was compared
between these two models, and the results are listed in Table 3. Among the PM2.5 and PM10
fitting results, the average R2 values of the traditional model are 0.51 and 0.49, respectively,
and the average R2 values of the improved model are 0.65 and 0.57, respectively, which
indicate increases of approximately 0.14 and 0.08, respectively. The goodness of fit of
the improved model is considerably higher than that of the traditional model, which
verifies that the improved model achieves a higher fitting accuracy, can extract more
information from the data, and is more suitable for quantitative analyses of the variation
characteristics of particulate matter concentrations. In addition, compared to the traditional
sine function, the improved function better quantifies the general trends, amplitudes,
deformation degrees, deviation degrees, and other parameters. In addition to the particulate
matter concentration, this method can be extended to other elements conforming to the
periodic variation pattern involving a single peak and a single valley, such as the vegetation

http://106.37.208.233:20035/
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coverage, monthly mean temperature, and monthly mean precipitation. The corresponding
patterns of variation can be examined based on the obtained fitting results.

Figure 3. Spatial distribution of the air quality monitoring sites in the study area and surrounding areas.

Table 3. Comparison of R2 between the traditional and improved models.

PM2.5 PM10

The Traditional
Model

The Improved
Model

The Improved
Model

The Improved
Model

The BTH region 0.60 0.74 0.53 0.58
Beijing 0.36 0.50 0.29 0.32
Tianjin 0.50 0.67 0.51 0.56

Shijiazhuang 0.52 0.67 0.48 0.56
Tangshan 0.53 0.64 0.48 0.57

Qinhuangdao 0.55 0.56 0.60 0.64
Handan 0.50 0.77 0.53 0.68
Xingtai 0.64 0.81 0.63 0.68
Baoding 0.66 0.81 0.65 0.72

Zhangjiakou 0.08 0.18 0.19 0.34
Chengde 0.54 0.59 0.36 0.42

Cangzhou 0.58 0.76 0.60 0.71
Langfang 0.50 0.67 0.43 0.50
Hengshui 0.63 0.84 0.64 0.74

3.2. Influence of Land Use on the Atmospheric Particulate Matter Concentration
3.2.1. Spatiotemporal Characteristics of Land Use

The spatial distribution of land use in the study area for each year is shown in Figure 4a–d.
The eastern and southern parts of the study area are on the Haihe Plain, and the construction
land is concentrated in the built-up areas of the cities and the surrounding villages, while
the agricultural land is mostly between the cities and villages. The northeastern and
southwestern parts of the study area are in the Yanshan Mountain Range and Taihang
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Mountain Range, and forestland is mostly distributed in areas with higher elevations and
higher slopes, while grassland is distributed in areas with lower elevations and gentler
slopes. The northwestern part of the study area is in the Bashang Plateau, and grassland
is the most dominant land use type. The locations where land use changes occurred are
shown in Figure 4e. Forestland, as the largest land use type with the largest new area,
occurred mainly in the mountainous areas. The increase in grassland occurred mostly on
the gentle slopes of the mountains. New farmland is mainly present in the northwestern
Bashang Plateau, the eastern side of the Taihang Mountains, and the eastern coastal areas.
The new construction land mainly occurs on the periphery of the built-up areas of the cities
and is the spatial manifestation of urban expansion.

Figure 4. Spatial distributions of land use in 2015 (a), 2016 (b), 2017 (c), and 2018 (d) and a schematic
representation of the land use changes that occurred (e).

The area of each land use type in descending order is farmland, grassland, forestland,
construction land, water bodies, and unused land, among which the areas of farmland
and grassland are decreasing; the areas of forestland and construction land are increasing
at relatively fast and slow rates, respectively; and the area of water bodies and unused
land is small and has remained relatively unchanged. The land use conversion matrix is
shown in Table 4. Approximately 4.5% of the study area underwent land use change in
mid-2015–2018, with grassland and forestland being the two relatively active types. A
total of 8.8% of grassland was transformed, mainly to forestland and farmland. A total
of 4.8% of forestland was transformed, mainly to grassland. A total of 2.6% of farmland
was transformed into grassland, forestland, and construction land. Construction land is
the most stable of all types and is generally not converted to other types. Smaller areas of
water bodies and unused land underwent negligible conversion.



Atmosphere 2022, 13, 391 14 of 27

Table 4. Land use transfer matrix from 2015 to 2018.

2018

Water Bodies Forestland Grassland Farmland Construction Land Unused Land Total

2015

Water bodies 2650 0 4 0 0 5 2658
Forestland 1 30,066 1404 107 4 0 31,582
Grassland 53 3404 57,858 2008 115 23 63,461
Farmland 7 304 1861 98,473 447 0 101,091

Construction land 0 0 0 0 16613 0 16,613
Unused land 4 0 36 0 2 348 390

Total 2714 33,773 61,163 100,588 17181 376 215,795

Unit: km2

3.2.2. Comparison of Atmospheric Particulate Matter Concentrations between Various
Land Use Types

The spatial distributions of each land use type in the study area from 2015 to 2018 were
extracted, and the extracted distributions were superimposed onto the interpolation data of
the monthly mean values of the particulate matter concentration in the corresponding year
and month to determine the monthly mean particulate matter concentrations correspond-
ing to each land use type. Moreover, the average values for the same month in each year
were calculated. The results are shown in Figure 5. The results indicate obvious differences
in particulate matter concentrations among the various land use types. Among the land
use types, the particulate matter concentrations corresponding to construction land and
farmland were higher than those corresponding to the other types. Among the various
land use types, construction land encompasses areas with the highest human activity
intensity and motor vehicle exhaust, road dust, industrial emissions, domestic emissions,
fuel combustion-related emissions, and construction dust, all of which are closely related to
particulate matter emissions. In addition, the building density and height in urban built-up
areas are high. The resultant blocking and friction effects weaken regional winds, greatly
affecting particulate matter diffusion [11,12]. The influence of farmland on particulate
matter exhibited seasonal differences. During the crop growing season, farmland is mostly
covered with vegetation, which inhibits the emission of surface particulate matter to a
certain extent, while leaves generate a certain dust-retention effect. However, due to the
relatively low heights and comparatively neat arrangements of crops, this dust-retention
effect may be lower than those of forestland and grassland [19,20]. After harvest, the dust
emitted during straw burning represents an important source of particulate matter [21,22].
Especially during the cold winter season, farmland lacking vegetation coverage is mostly
bare, and a large amount of dust becomes exposed and is easily emitted into the atmosphere
under windy weather conditions, resulting in a notable increase in the wintertime particu-
late matter concentration [19,20,38]. The particulate matter concentrations corresponding
to forestland and grassland were significantly lower than those corresponding to the other
land use types, and the intensity of particulate matter removal was positively related to
the vegetation growth degree, which was considerably higher in summer than in winter.
Vegetation stems, leaves, and other organs remove particles suspended in air via retention,
attachment, and adhesion mechanisms [39]. First, the plant canopy can block airflow and
locally reduce the wind speed, which can result in the deposition of atmospheric particles
onto the surfaces of leaves. Moreover, the turbulence between branches and leaves is very
high, which makes it easier for particles to collide with and contact branches and leaves,
thus increasing the settling rate [40]. Second, the surface structures of plant leaves and bark
are very rough, and certain groove-like tissues, cilia, waxy layers, etc. can intercept particles
that become embedded into their rough surfaces, and the deposition effect remains rela-
tively consistent [41]. Third, plant leaves often secrete sticky substances, which can cause
particle adhesion to their surfaces. This dust retention effect remains the most stable and
can withstand rain erosion. Vegetation can also create an environment conducive to particle
sedimentation. Tree canopies generate shade effects, and leaves generate transpiration
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effects, which can achieve cooling effects. Moreover, vegetation can increase the relative air
humidity and adjust the local microclimate, thus altering the viscosity and quality of parti-
cles, shortening the particle suspension time and accelerating the sedimentation process.
Furthermore, vegetation effectively inhibits chemical reactions of particles and reduces the
generation of secondary particles [42]. In addition, the PM10 concentrations in forestland
and grassland areas increased the most in spring, which is mainly attributed to frequent
dusty weather conditions. The effect of water on the particulate matter concentration is
complicated. On the one hand, the particulate matter emission levels of water bodies were
lower than those of the other types, and water simultaneously exerted a certain adsorption
effect on suspended particulate matter. On the other hand, water evaporation can increase
humidity, which can affect the secondary formation, accumulation, and diffusion of partic-
ulate matter [19,43–45]. The vegetation coverage in unused land areas is low, and bare soil
or sand on the surface can easily be entrained by wind, resulting in particulate pollution.
However, because the unused land area in the study region is small and mostly distributed
in the coastal areas and northwestern Bashang Plateau, unused land areas are mostly sur-
rounded by water bodies and grasslands. Therefore, the particulate matter concentration
mostly varied between the levels corresponding to water bodies and grasslands.

Figure 5. Monthly mean values of the PM2.5 and PM10 concentrations corresponding to each land
use type.

3.2.3. Variation Patterns of the Atmospheric Particulate Matter Concentration for Different
Land Use Types

The analysis of the temporal variation in the particulate matter concentration cor-
responding to each land use type in the study area revealed that the particulate matter
concentration corresponding to each land use type was similar to that in the whole study
area, and an obvious periodic variation pattern occurred. Therefore, the improved sine
function model was employed to fit the particulate matter concentration corresponding to
each land use type, and the inherent relationship between the land use type and particulate
matter concentration was explored by comparing the fitting parameters between various
land use types. The results are shown in Figures 6 and 7.
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Figure 6. Fitting results of the monthly PM2.5 concentration for each land use type: (a) water;
(b) forestland; (c) grassland; (d) farmland; (e) construction land; and (f) unused land.

Figure 7. Fitting results of the monthly PM10 concentration for each land use type: (a) water;
(b) forestland; (c) grassland; (d) farmland; (e) construction land; and (f) unused land.

Fitting parameters were separately obtained for the whole study area and each city,
and the results are summarized in Table 5.
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Table 5. Fitting parameters of the monthly PM concentration.

R2
Average

Concentra-
tion

At Bt
Turning

Point Overall Trend
Average
Monthly
Variation

Ct Dt Et Ft Gt Ht

PM2.5

Water bodies 0.71 64 −0.0066 −0.13 Before 2015 Descends rapidly −0.46 53.20 1.20 12 1.95 1.86 1.43
Forestland 0.63 50 0.0008 −0.45 After 2018 Descends slowly −0.41 46.92 0.97 12 1.77 2.09 1.00
Grassland 0.63 47 0.0040 −0.62 After 2018 Descends slowly −0.42 47.69 0.87 12 1.93 2.22 0.72

Farmland 0.71 69 −0.0148 0.19 2015.06 Rises and
then descends −0.54 56.19 1.48 12 2.85 1.86 1.41

Construction
land 0.79 72 −0.0154 0.24 2015.07 Rises and then

descends −0.51 56.23 1.60 12 3.12 1.84 1.25

Unused land 0.71 56 0.0026 −0.56 After 2018 Descends slowly −0.43 52.46 0.99 12 1.81 2.00 1.19

PM10

Water bodies 0.58 108 −0.0027 −0.37 Before 2015 Descends rapidly −0.50 78.17 1.09 12 0.76 1.73 1.18

Forestland 0.41 93 0.0082 −0.53 2017.08 Descends and
then rises −0.13 61.02 1.09 12 0.46 0.97 0.14

Grassland 0.38 91 0.0101 −0.60 2017.06 Descends and
then rises −0.11 62.81 1.02 12 0.58 0.54 –0.86

Farmland 0.57 117 −0.0080 −0.10 Before 2015 Descends rapidly −0.49 84.77 1.15 12 1.17 1.74 1.46
Construction

land 0.66 126 −0.0102 −0.05 Before 2015 Descends rapidly −0.55 91.18 1.26 12 1.37 1.76 1.42

Unused land 0.56 99 0.0058 −0.69 After 2018 Descends slowly −0.40 73.82 1.00 12 0.63 1.60 0.94

First, the goodness-of-fit R2 value was evaluated. The average R2 values of the
PM2.5 and PM10 concentrations corresponding to the six land use types are 0.70 and 0.53,
respectively, verifying that the improved model can better reflect the change pattern of the
monthly mean particulate matter concentration for each land use type. The fitting R2 value
of the PM2.5 concentration for all land use types is above 0.6, and the fitting effect is good.
The fitting R2 value of the PM10 concentration exceeds 0.6 for construction land; is above 0.5
for water bodies, farmland, and unused land; and is below 0.5 for forestland and grasslands.
Generally, the fitting R2 value of the PM2.5 concentration for all land use types is higher than
that of the PM10 concentration, which once again demonstrates that the periodic fluctuation
patterns of the PM2.5 concentration were stronger than those of the PM10 concentration.
Among all types, construction land exhibits the highest R values, which is attributable
to the close relationship between the seasonal patterns of human activities. Especially
after the heating period in winter, the particulate matter concentration corresponding to
construction land sharply increased, resulting in the largest differences between high and
low values for all land use types and the most notable periodicity. The fitting R2 values for
forestland and grassland are relatively low. On the one hand, periodic fluctuations were
slightly limited in forestland and grassland areas due to the presence of fewer particulate
matter emission sources and fewer anthropogenic emissions. On the other hand, particulate
matter concentrations corresponding to forestland and grassland were significantly lower
than those corresponding to the other land use types, and random factors imposed a
great influence, producing certain randomness and consequently reducing the periodic
fluctuation patterns, thus yielding slightly poor fitting effects.

The quadratic coefficient At and linear coefficient Bt reflect the overall change trends
of particulate matter concentrations in the whole study area and in cities. The PM2.5
concentrations corresponding to all land use types exhibited downward trends, with
those of water bodies exhibiting an accelerated downward trend; those in forestland,
grassland, and unused land all exhibiting gradual downward trends; and those in both
construction land and farmland first increasing and then decreasing. Additionally, the
axis of symmetry occurred in 2015, i.e., an accelerated downward trend was exhibited
throughout most of the research period. In terms of the overall change trends of PM10
concentrations for various land use types, the PM10 concentrations corresponding to water
bodies, farmland, and construction land decreased at an accelerated rate; the concentration
corresponding to unused land decreased at a low rate; the concentrations in forestland and
grassland areas first decreased and then increased; and the axis of symmetry occurred in
2017. However, the average PM10 concentration was the lowest among all types, with a
limited decline and increase; thus, the PM10 concentrations basically remained at low levels.
Overall, although the overall average concentrations in the study area exhibited downward
trends, the change rates varied between different land use types. The particulate matter
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concentrations corresponding to construction land and farmland were relatively high but
simultaneously decreased at higher rates, and the decrease rates were accelerated. The
particulate matter concentrations in forestland and grassland areas were low; the decrease
rates of the PM2.5 concentration were decelerated; and the PM10 concentrations slightly
increased after decreasing to a constant level. The particulate matter concentrations in
areas containing water bodies and unused land were lower than those in farmland and
construction land areas but higher than those in forestland and grassland areas, with the
particulate matter concentration corresponding to water bodies rapidly decreasing, while
the particulate matter concentration corresponding to grassland decreased gradually.

The amplitude Dt is the ratio of the focal concentration fluctuation amplitude to that
of the overall concentration. Construction land and farmland exhibited significantly higher
values than did the other land use types because these two types are the most affected
by human activities. Therefore, these land use types exhibited large differences between
winter and summer. Moreover, the amplitude of the PM2.5 concentration for all land use
types was obviously larger than that of the PM10 concentration, which also indicates that
the PM2.5 concentration is more closely related to human sources.

The deformation factor Ft reflects the durations of periods with high and low concen-
trations. The larger the value is, the shorter the durations of high and low concentrations
are. The deformation factor Ft of the PM2.5 concentration for each type was larger than
1, which suggests that the duration of low-value periods was longer than that of high-
value periods, with the Ft values of construction land and farmland being significantly
higher than those of the other land use types. This finding was attributable to the maximal
intensity of human activities in construction land and farmland areas producing sharp
increases in particulate matter concentrations in winter. This pattern was quite different
from the low-value periods in summer. The relatively high values further shortened the
duration of high-value periods. However, the Ft values of the PM10 concentration for water
bodies, forestland, grassland, and unused land were smaller than 1, which indicates that
the duration of high-value periods was longer than that of low-value periods for these land
use types. This pattern occurred because the frequent dusty weather conditions in spring
prolonged the duration of high-PM10-concentration periods, and high values continued to
occur in winter and spring, which imposed a particularly notable impact on water bodies,
forestland, grassland, and unused land. Farmland and construction land areas are more
affected by human activities, and the Ft values were larger than 1, i.e., the duration of
low-value periods was increased.

The phase Gt reflects the time when a peak value occurs during a period. The larger
the value, the earlier the peak and valley values are observed. There was little difference in
the phases of PM2.5 concentrations among different land use types, which indicates that
the peak and valley values for each land use type occurred at similar times. Regarding the
PM10 concentration model, the phases Gt of forestland and grassland were obviously lower
than those of the other land use types, which was attributed to the low vegetation coverage
in spring. In addition, frequent dust events slightly increased the PM10 concentration for all
land use types, while the spring season exhibited relatively low vegetation coverage, which
exerted a notable impact on vegetation types such as forestland and grassland. Therefore,
the PM10 concentrations in forestland and grassland areas were higher than the notable
peak values observed in March and April, while the peak values for the other land use
types often occurred in December or January, resulting in higher values of the phase Gt in
forestland and grassland areas.

The offset factor Ht controls the slight shift in the peaks and valleys from left to right.
A positive value indicates a rightward shift in the valleys; a negative value indicates a
leftward shift in the valleys; and the larger the absolute value is, the greater the shift. The
shift factor Ht of the PM2.5 concentration for each land use type was larger than 0, which
indicates that for all land use types, each valley was far from the previous peak and that
the next peak was closer. Notably, the concentration slowly decreased and subsequently
increased rapidly. The PM10 concentration indicates that the Ht values in forestland and



Atmosphere 2022, 13, 391 19 of 27

grassland areas were smaller than or close to 0, i.e., the peak values occurred later. In
addition, the concentrations decreased faster and increased slower, which is similar to the
reason why the Gt values of the PM10 concentrations of forestland and grassland were
smaller than those of the other land use types. Among all types, the Ht value of farmland
was the largest because farmland reduced particulate matter concentrations during the crop
growth period. Hence, the particulate matter concentration exhibited a steady and gradual
downward trend. However, after crops were harvested, surface dust became exposed due
to the absence of vegetation coverage and was emitted into the air, and the particulate
matter concentration rapidly increased.

3.3. Influence of Landscape Pattern on the Atmospheric Particulate Matter Concentration

According to the division of county-level administrative regions, the study area was di-
vided into 200 county-level units, and the average PM2.5 and PM10 concentrations through-
out the whole year and during the four seasons of 2018 in each district and county were
separately determined. The landscape pattern indices of each district and county at the
landscape and class levels were obtained in Fragstats 4.2 software (University of Mas-
sachusetts Amherst, Amherst, MA, USA), and the influence of the landscape pattern on
the atmospheric particulate matter concentration was evaluated by correlation analysis.
Considering that water bodies and unused land accounted for only 1.3% and 0.2%, re-
spectively, of the total area of the study region and imposed limited regulation effects on
the large-scale particulate matter concentration, only the four most important land use
types, namely, forestland, grassland, farmland, and construction land, were examined at
the class level.

3.3.1. Atmospheric Particulate Matter Concentration Distribution

The average PM2.5 and PM10 concentrations in all districts and counties throughout
the whole year and in the four seasons were statistically analyzed. The results are shown in
Figure 8. The results reveal that the overall particulate matter concentration exhibited a
spatial distribution trend similar to that in the whole region, in which the annual average
PM2.5 concentration exhibited a trend of high values in the southeast and low values in
the northwest. High values were mainly concentrated in the Shijiazhuang–Baoding and
Handan–Xingtai areas, while the concentrations in Zhangjiakou, Chengde, and other cities
in the north were low. During each season, the spatial distribution patterns of the seasonal
average concentrations in winter and spring in all districts and counties were similar to
those of the annual average concentrations, while in spring and summer, excluding the
Shijiazhuang–Baoding and Handan–Xingtai areas, relatively high concentrations were ob-
served in Beijing, Tianjin, Langfang, and other cities. The annual average trend of the PM10
concentration was similar to that of the PM2.5 concentration, exhibiting the same distribu-
tion trend of high values in the southeast and low values in the northwest. The difference
is that Tangshan city on the eastern coast also contained relatively high-concentration areas,
with the lowest concentrations mainly concentrated in Zhangjiakou city and Chengde
city in the north. The distribution pattern during each season was similar to that of the
annual average concentration. Moreover, the frequent dusty weather conditions in spring
caused a slight increase in the concentration in Northwest China, and simultaneously, the
concentration in Tangshan increased, while relatively high-concentration areas moved
slightly northwards.
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Figure 8. Spatial distributions of the PM2.5 and PM10 concentrations at the county level.

3.3.2. Effects of Land Use Types on Atmospheric Particulate Matter Concentrations

The landscape pattern indices at the landscape level are shown in Figure 9, and the
correlation between the particle concentration and indices at the landscape level is shown
in Table 6. At the landscape level, each selected index exhibited a certain correlation
with the particulate matter concentration, but the correlation degrees were lower than
those at the class level, indicating that the distribution pattern of the whole landscape
influenced the particulate matter concentration, but the effect degree was weaker than
that observed in specific land cover types. Among the indices, LPI, AI, and CONTAG
mostly exhibited positive correlations with the particulate matter concentration, while
PD, ED, SPLIT, SHDI, and SIDI mostly showed negative correlations with the particulate
matter concentration. The remaining indices exhibited weak correlations. The lower
the aggregation degree is, the higher the fragmentation degree, the more complex the
shape, and the richer the land use types are, the more closely the landscape resembles a
natural landscape. Conversely, the opposite characteristics indicate an artificial landscape.
Compared to artificial landscapes, natural landscapes contain fewer emission sources, and
natural landscapes can simultaneously reduce and limit particulate matter concentrations.
In a comparison of the seasons, the correlation of each index in winter and summer was
generally higher than that in spring and autumn, which may be attributed to the high
particulate matter concentration and notable spatial heterogeneity in winter. In contrast, in
summer, the vegetation coverage was the highest; the reduction effect of vegetation on the
particulate matter concentration was the strongest; and the landscape pattern distribution
exerted a notable influence.
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Figure 9. Spatial distributions of the landscape pattern indices at the landscape level.

Table 6. Correlations between the particle concentrations and indices at the landscape level.

PM2.5 PM10

Winter Spring Summer Autumn All Winter Spring Summer Autumn All

PD −0.185 ** −0.108 −0.181 ** −0.158 * −0.170 * −0.155 * −0.114 −0.144 * −0.128 −0.143 *
LPI 0.401 ** 0.368 ** 0.407 ** 0.372** 0.399 ** 0.366 ** 0.291 ** 0.346 ** 0.309 ** 0.343 **
ED −0.362 ** −0.307 ** −0.395 ** −0.322 ** −0.356 ** −0.331 ** −0.280 ** −0.358 ** −0.284 ** −0.320 **

CONTAG 0.249 ** 0.200 ** 0.251 ** 0.195 ** 0.234 ** 0.227 ** 0.154 * 0.214 ** 0.168 * 0.203 **
SPLIT −0.385 ** −0.387 ** −0.419 ** −0.386 ** −0.398 ** −0.343 ** −0.330 ** −0.357 ** −0.317 ** −0.342 **
SHDI −0.446 ** −0.332 ** −0.403 ** −0.373 ** −0.415 ** −0.425 ** −0.324 ** −0.382 ** −0.362 ** −0.395 **
SIDI −0.418 ** −0.320 ** −0.386 ** −0.349 ** −0.391 ** −0.395 ** −0.293 ** −0.355 ** −0.329 ** −0.364 **
AI 0.291 ** 0.263** 0.333 ** 0.265 ** 0.293 ** 0.254 ** 0.198 ** 0.281 ** 0.205 ** 0.241 **

* indicates a significant correlation at the 0.05 level, and ** indicates a significant correlation at the 0.01 level.

The landscape pattern indices of forestland, grassland, farmland, and construction
land at the class level are shown in Figure 10, and the correlation between the particle
concentration and indices at the class level is shown in Table 7. PLAND, PD, LPI, and
LSI all exhibited negative correlations with the particulate matter concentration, with LSI
showing the highest correlation. In contrast, SPLIT exhibited no significant correlation,
indicating that the larger the area, density, dominance, and shape complexity of forestland
patches were, the lower the particulate matter concentration was, and the complexity of
the patch shape imposed the greatest influence on the particulate matter concentration.
If the forestland area within a given region is large, this land use type can become the
dominant type in the region. However, if the forestland area is concentrated and connected
as one unit, this area can reduce and inhibit particles. Among all seasons, the correlation in
summer was slightly higher than that in the other seasons, which was related to the high
vegetation coverage in forestland areas in summer and the strongest particulate matter
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inhibition effect of lush trees. Moreover, the influence of forestland areas on the PM10
concentration exceeded that on the PM2.5 concentration.

Figure 10. Spatial distributions of the landscape pattern indices at the class level.
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Table 7. Correlations between the particle concentration and indices at the class level.

PM2.5 PM10

Winter Spring Summer Autumn All Winter Spring Summer Autumn All

Forestland

PLAND −0.382 ** −0.346 ** −0.372 ** −0.359 ** −0.376 ** −0.389 ** −0.367 ** −0.424 ** −0.378 ** −0.393 **
PD −0.280 ** −0.289 ** −0.286 ** −0.269 * −0.285 ** −0.255 * −0.176 −0.255 * −0.212 −0.235 *
LPI −0.270* −0.195 −0.222 * −0.229 * −0.246 * −0.293 ** −0.252 * −0.306 ** −0.278 * −0.288 **
LSI −0.464 ** −0.551 ** −0.530 ** −0.487 ** −0.502 ** −0.444 ** −0.468 ** −0.477 ** −0.439 ** −0.457 **

SPLIT 0.099 0.113 0.088 0.070 0.095 0.106 0.053 0.094 0.070 0.088

Grassland

PLAND −0.656 ** −0.791 ** −0.713 ** −0.713 ** −0.712 ** −0.623 ** −0.515 ** −0.592 ** −0.564 ** −0.598 **
PD −0.394 ** −0.259 ** −0.351 ** −0.333 ** −0.360 ** −0.369 ** −0.325 ** −0.348 ** −0.336 ** −0.357 **
LPI −0.588 ** −0.737 ** −0.648 ** −0.653 ** −0.647 ** −0.560 ** −0.462 ** −0.530 ** −0.508 ** −0.537 **
LSI −0.528 ** −0.505 ** −0.553 ** −0.515 ** −0.535 ** −0.509 ** −0.507 ** −0.527 ** −0.487 ** −0.514 **

SPLIT 0.237 ** 0.174 * 0.212 ** 0.199 ** 0.220 ** 0.237 ** 0.162 * 0.188 * 0.183 * 0.210 **

Farmland

PLAND 0.631 ** 0.619 ** 0.618 ** 0.602 ** 0.633 ** 0.630 ** 0.512 ** 0.586 ** 0.554 ** 0.597 **
PD −0.267 ** −0.291 ** −0.278 ** −0.261 ** −0.276 ** −0.236 ** −0.138 −0.183 * −0.170 * −0.202 **
LPI 0.626 ** 0.613 ** 0.614 ** 0.597 ** 0.627 ** 0.621 ** 0.508 ** 0.576 ** 0.543 ** 0.588 **
LSI −0.507 ** −0.587 ** −0.594 ** −0.541 ** −0.549 ** −0.483 ** −0.510 ** −0.531 ** −0.471 ** −0.498 **

SPLIT −0.058 −0.014 −0.018 −0.031 −0.040 −0.081 −0.048 −0.068 −0.079 −0.075

Construction
land

PLAND 0.084 0.242 ** 0.195 ** 0.188 ** 0.150 * 0.026 0.058 0.083 0.046 0.044
PD 0.555 ** 0.503 ** 0.505 ** 0.538 ** 0.548 ** 0.551 ** 0.536 ** 0.510 ** 0.524 ** 0.545 **
LPI 0.034 0.189 ** 0.147 * 0.135 0.098 −0.021 0.015 0.043 0.002 −0.002
LSI 0.388 ** 0.365 ** 0.344 ** 0.371 ** 0.383 ** 0.370 ** 0.335 ** 0.294 ** 0.324 ** 0.349 **

SPLIT −0.378 ** −0.492 ** −0.458 ** −0.435 ** −0.428 ** −0.357 ** −0.390 ** −0.384 ** −0.356 ** −0.371 **

* indicates a significant correlation at the 0.05 level, and ** indicates a significant correlation at the 0.01 level.

PLAND and LPI reflect the proportion, dominance degree, and patch connectivity of
grassland patches, respectively, and these indices decreased spatially from northwest to
southeast. High values were mainly concentrated on the Bashang Plateau and Taihang
Mountains, indicating that these areas contained high grassland proportions and high
dominance degrees and good connectivity of grassland patches. PD reflects the density of
grassland patches, and high PD values were mostly concentrated in the Yanshan Mountains
and eastern coastal areas, indicating that although the grassland patches in these areas are
small, many patches are present, and their distribution is fragmented. LSI reflects the shape
of grassland patches, and high LSI values largely occurred in the Yanshan Mountains and
Taihang Mountains, where grassland and forestland are staggered, with complex shapes,
dense patches, and small patch sizes. High SPLIT values primarily occurred in the Haihe
Plain in the southeast, where the grassland coverage is low, and the distribution is scattered.

Among the various indices for farmland patches, PLAND and LPI exhibited strong
positive correlations with the particulate matter concentration, while PD and LSI showed
negative correlations. SPLIT exhibited no significant correlation, which indicates that the
higher the farmland proportion in the region, the higher the connectivity and the more
complete the patches, the higher the particulate matter concentration, and corresponding
regions mainly occurred in the Haihe Plain. However, the particulate matter concentration
was low in areas with high densities, scattered distributions, and irregular shapes of farm-
land patches. Among all seasons, PLAND, PD, and LPI exhibited the highest correlations
in winter or spring, and there was less vegetation coverage in farmland patches in winter
and spring. In areas where farmland dominated, bare surfaces became the main emission
particulate matter source, and the resultant correlation was high. LSI showed the highest
negative correlation in summer, which may have occurred because the more complex
the shapes of farmland patches are, the closer the landscape is to a natural landscape.
These areas were dominated by mountains, and farmlands were mostly distributed among
many forestlands and grasslands. In summer, the farmland coverage intensity increased.
Moreover, the forestland and grassland in the surrounding areas played a notable role in
blocking and settling particles, thus reducing the particulate matter concentration.

PLAND and LPI were mostly positively correlated with the PM2.5 concentration but
not significantly correlated with the PM10 concentration. Notably, the PM2.5 concentration
was higher in areas with high proportions of construction land, once again verifying that
human activities comprise the main PM2.5 source, while PM10 is more related to natural
factors. PD and LSI were positively correlated with the particulate matter concentration,
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indicating that the denser the construction land patches and the more complex the shape
are, the higher the particulate matter concentration is. A dense distribution of construction
land patches can lead to the concentration of emission sources. In contrast, a complex
shape indicates that the city is highly developed, and the human activity intensity is high,
which produces higher particulate emissions and does not facilitate particulate matter
diffusion. SPLIT was negatively correlated with the particulate matter concentration, which
indicates that in areas where the distribution of construction land patches is scattered,
construction land is mostly separated by other land use types, and it is difficult to establish
centralized emission sources. Moreover, the other land use types limited particulate matter
concentrations, and the particulate matter concentrations were therefore low. Among
the seasons, PLAND, LPI, and SPLIT exhibited the highest correlations with the PM2.5
concentration in spring, which demonstrates that the influence of construction land on
the PM2.5 concentration was the strongest in spring. In the other seasons, the PM2.5
concentration was more notably influenced by other factors. PD and LSI showed the
highest correlations with the particulate matter concentration in winter, which may be
related to the overall high particulate matter concentration and highest spatial heterogeneity
in winter.

4. Implications and Limitations

As urbanization continues to accelerate, the extent to which human activities con-
tribute to particulate matter emissions is increasing. A large amount of harmful substances
are emitted into the atmosphere, which poses a great danger to production and living
activities and human health. The problem of atmospheric pollution is receiving more and
more attention from relevant departments and individuals. China, especially the eastern
part of the country, is one of the more serious regions in the world. Many cities have
concentrations of atmospheric pollutants that far exceed the guideline values provided
by the World Health Organization (Geneva, Switzerland). At the same time, with the
rapid expansion of built-up areas, many cities are gradually approaching saturation in
terms of space. Therefore, to control air pollution, a rational planning and layout of the
limited space available is necessary. In this experiment, an attempt was made to establish
the relationship between land use and particulate matter concentrations using geography,
landscape ecology, and statistics. Firstly, the differences in the patterns of change in partic-
ulate matter concentrations on each land use type were analyzed, and then the relationship
between landscape patterns and particulate matter concentrations was compared for each
type. These analyses can provide some theoretical support for the optimization of land use
structures. This can be useful for urban planning in the study area and can also provide
a reference for other regions and cities. The results obtained from the experiments may
be deficient due to limitations in the data sources or experimental methods. The spatial
distribution of particulate matter concentrations is obtained by spatial interpolation of the
Ordinary Kriging method based on the measured data at the stations. Due to the limited
number of stations and the uneven spatial distribution, the interpolation results may have
some errors. The experiment covers the period from 2015 to 2018, which is a limited time
span. It should also be noted that the spatial and temporal characteristics of particulate
matter concentrations are a complex system driven by a combination of influencing factors.
Land use affects air quality both through anthropogenic emissions and agricultural activi-
ties that alter pollutant emission potential, and through interactions with the atmosphere,
such as turbulence stimulation and wind speed reduction. In this manuscript, we have not
explored the influence of meteorological factors in depth. All of the above will be focused
on in subsequent experiments.

5. Conclusions

In this manuscript, we collated land use and atmospheric particulate matter concentra-
tion data pertaining to Beijing, Tianjin, and Hebei in China and analyzed the corresponding
temporal and spatial changes and correlations. The conclusions are as follows:
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(1) The optimized sine function model can better represent periodic changes in atmo-
spheric particulate matter concentrations. The experimental results reveal that the
concentrations corresponding to land use types with higher concentrations, such as
construction land and farmland, generally exhibited rapid downward trends, while
the concentrations corresponding to land use types with lower concentrations, such as
forestland and grassland, generally exhibited gradual downward or consistent trends.

(2) The concentration gradually decreased in spring and summer and rapidly increased
in autumn and winter. Human activities such as heating in winter in construction
land areas and planting and harvesting of crops in farmland areas were the main
factors affecting the concentration fluctuations. The concentrations in forestland and
grassland areas were the lowest; the differences between high and low values were
small; the fluctuation patterns of the particulate matter concentrations remained
relatively uniform; and the peak times occurred slightly later than those of the other
land use types. Natural sources greatly influenced the concentration fluctuations,
among which the frequent dusty weather conditions in spring imposed a greater
influence on forestland and grassland than on the other land use types.

(3) The landscape pattern associated with the land use type significantly affects the
particulate matter concentration. Overall, the lower the aggregation degree, the
higher the fragmentation degree, the more complex the shape, and the higher the
landscape abundance, the lower the particle concentration is. Among the land use
types, the density and diversity of forestland, grassland, farmland, and construction
land patches contribute to a reduction in the particulate matter concentration. The
higher the dominance of forestland and grassland patches in the landscape, the more
favorable the setting is to a reduction in the particulate matter concentration.

(4) The protection of the atmosphere is essential in the context of high social and economic
development. According to the experimentally observed results, the limiting effect
of vegetation such as trees and grasses on the concentration of particulate matter is
significant. Theoretically, increasing the percentage of vegetation can help control air
pollution. However, in a highly developed urban city with high population density
such as Beijing, the area of land that can be changed is very limited. Therefore, it is
more important to adjust the rationality of land use in densely populated and mo-
torized built-up areas. The area of urban green space can be appropriately increased
to create better connectivity of vegetation in order to give full play to the limiting
effect of green vegetation on particulate matter concentration. In addition, targeted
selection of tree species for urban greening and increasing the rationality of the vertical
level of vegetation are also key to improving the efficiency of urban land use and
environmental protection functions.
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