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Abstract: Gas flaring from oil and gas fields is a significant source of black carbon (BC) emissions,
a component of particulate matter that damages health and warms the climate. Observations from the
Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instrument indicate that approximately
17.2 billion cubic meters (bcm) of gas was flared from upstream oil and gas operations in the United
States in 2019. Based on an emissions factor equation that accounts for the higher heating value
of the gas, that corresponded to nearly 16,000 tons of BC emitted, though estimates vary widely
across published emissions factors. In this study, we used three reduced-form air quality and health
effect models to estimate the health impacts from the flaring-emitted BC particulate matter in the
United States. The three models—EASIUR, AP3, and InMAP—predict 26, 48, and 53 premature
deaths, respectively, in 2019. The mortality range expands from 5 to 360 deaths annually if alternative
emission factors are used. This study shows that reduced-form models can be useful to estimate the
impacts of numerous dispersed emissions sources such as flares, and that further research is needed
to better quantify BC emissions factors from flares.

Keywords: flaring; methane; reduced-form models; black carbon; particulate matter; emissions; oil
and gas; mortality; morbidity; health

1. Introduction

Flaring is commonly used at oil fields that lack the infrastructure to capture the
associated gas that oil wells typically produce. Flaring is favored over direct venting
because it converts methane (CH4) and volatile organic compounds (VOCs) present in the
associated gas to carbon dioxide (CO2), a less potent greenhouse gas without direct air
quality impacts [1,2]. However, incomplete combustion in flares emits black carbon (BC)
particulate matter (PM), which harms health and warms the climate [3,4].

The World Bank estimated based on satellite measurements that 17.3 billion cubic
meters (bcm) of gas were flared in the United States in 2019 based on satellite measurements
of flaring [5], ranking it among the top three flaring countries for 2019 and correspond-
ing to roughly 1% of US gas production. By comparison, the US Energy Information
Administration (EIA) estimated based on state-reported data that 15.3 bcm was vented
and flared in 2019 [6]. Venting and flaring grew as oil and gas production outpaced the
growth of gas gathering and pipeline infrastructure [6]. North Dakota and Texas account
for a combined 85% of reported US gas vented and flared, driven by the rapid growth of
crude oil production in the Bakken formation in North Dakota and the Permian Basin and
Eagle Ford shale areas in Texas [6]. In November 2021, the US Environmental Protection
Agency (EPA) proposed new regulations for methane emissions from the oil and natural
gas industry [7], which would allow flaring to continue to avoid direct methane emissions.

Estimates of BC emissions factors for gas flaring vary widely [8–17], since emission
factors are mainly derived from small-scale laboratory experiments and limited field
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observations [12]. Recent studies used aircraft [14–16] or ground-based optical methods [17]
to measure BC emissions from flares in various locations. Some of the studies give a range
of emission factors for BC [8,15–17], while others estimate only mean emission factors
across flares [9–14]. We subsequently show details of these estimates in Table 1.

Table 1. Black carbon (BC) emission factors from gas flaring in previous studies.

Emission Factor (g/m3) Source

0.13–0.28 Weyant et al. (2016) [15]
0.51 McEwen and Johnson (2012) [12]
0.57 Schwarz et al. (2015) [14]
0.85 US Environmental Protection Agency (2009) [10]
0.9–6.4 US Environmental Protection Agency (1995) [8]
1.6 Stohl et al. (2013) [13]; GAINS [11]
1.83 Conrad and Johnson (2017) [17]
2.56 Canadian Association of Petroleum Producers (CAPP) (2007) [9]
0.194–4.782 Böttcher et al. (2021) (HHV dependent) [18]

Two studies found that BC emissions factors increase roughly linearly with the heat
content of the associated gas, although the relationships remain uncertain [12,17]. The heat
content of flared gas varies widely across oil and gas fields [18]. Thus, applying a single
emission factor to all flares could misrepresent the BC emissions.

Several studies quantified the human health impacts of PM emissions from gas
flares [19–25]. Anejionu et al. (2015) [19] and Nwosisi et al. (2021) [20] found that flaring
poses a substantial threat to human health, such as respiratory and dermal diseases in the
Niger Delta. Motte et al. (2021) [21] computed health impacts of PM and hydrocarbons emit-
ted from flares globally based on emission factors and concentration-response functions,
but their country-level analysis did not account for the locations of flares within countries.
They showed that the vast majority of direct air pollution health impacts from flares come
from PM rather than gas-phase air pollutants. Cushing et al. found in a 2020 study that
proximity to flares was associated with preterm birth, shorter gestation, and lower birth
weight [22], and in a subsequent study estimated that over half a million Americans live
within 5 km of a flare [23]. Mirrezaei and Orkomi (2020) [24] computed health effects of
air toxics but not PM from flares in Iran. Willis et al. (2020) [25] observed elevated rates
of pediatric asthma hospitalizations in communities near natural gas production sites in
Texas, but did not find consistent associations with flaring volumes.

Health impacts of flaring emissions are difficult to quantify via morbidity and mortality
data, since those emissions are small relative to sources such as vehicles. Three-dimensional
modeling can simulate health impacts across broader regions but requires computationally
intensive models to represent meteorology, photochemistry, and health effects. In contrast,
reduced-form models enable more computationally efficient analysis by precomputing the
sensitivity of air quality and health to changes in emissions from any location within a
modeling domain. Recent studies found that reduced-form models simulate health impacts
consistent with each other and with three-dimensional air quality models over the United
States [26–28].

In this study, we use three reduced-form air quality models, the Estimating Air pol-
lution Social Impact Using Regression (EASIUR) model [29], the Air Pollution Emission
Experiments and Policy analysis Version 3 (AP3) model [30], and the Intervention Model for
Air Pollution (InMAP) [31], to quantify the morbidity and mortality impacts of all observed
flares at upstream oil and gas operations in the United States in 2019. BC emission rates
are computed for each flare based on the volume of flared gas and an emission factor that
accounts for the higher heating value of gas in each region. We test the sensitivity of results
to alternative BC emission factors and to the choice of reduced-form model.
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2. Materials and Methods
2.1. Flared Gas Volume

We adopted data from the National Oceanic and Atmospheric Administration (NOAA)
Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instrument, as analyzed using
the methodology of [32], to identify flaring sites and estimate the volume of gas flared at
each site using a linear calibration method based on radiant heat. Among over 7000 identi-
fied flare sites globally, half of the flared gas volume is concentrated at fewer than 400 flares.
The flared volume data are available from 2012 to 2020 ( https://eogdata.mines.edu/
download_global_flare.html, accessed 6 August 2021).

Elvidge et al. (2016) [32] categorized each site as “upstream” (oil and gas production
sites) or “downstream” (refineries and other processing sites). Over 97% of the US flared
gas volume in 2019 came from upstream flares. For simplicity, we consider only upstream
flares in this study.

2.2. Black Carbon Emission Factors

We used the Böttcher et al. [18] heat content-dependent emissions factor for BC from
associated gas for our central case, and used results from other published emissions factors
(which are not heat-content dependent) for sensitivity analyses.

For the central case, we adopted Equations (1) and (2) from Böttcher to estimate the BC
emissions factor (EFBC, in g/m3 ) for each flare as a nonlinear function of the heat content
(higher heating value, HHV, in MJ/m3) of the gas:

EFBC = 0.0112(ln(HHV − 37.6))4.612 + 0.194, ∀HHV > 38.6 MJ/m3 (1)

EFBC = 0.194, ∀HHV ≤ 38.6 MJ/m3 (2)

The heat content of the flared gas is calculated from the gas composition reported by
oil and gas production facilities to the EPA Greenhouse Gas Reporting Program (GHGRP)
Subpart W [33]. Facilities are required to report CH4 and CO2 mole fractions and flaring
CH4 emissions annually from 2011 to 2020 at the county level. Thus, the weighted average
CH4 and CO2 mole fraction from all facilities within a county can be expressed as in
Equations (3) and (4):

X̄CH4 =
∑n

i=1 Xi,CH4 ∗Mi,CO2

∑n
i=0 Mi,CO2

(3)

X̄CO2 =
∑n

i=1 Xi,CO2 ∗Mi,CO2

∑n
i=0 Mi,CO2

(4)

where n denotes total number of facilities within a county and i denotes the facility. Xi, CH4
is the mole fraction of CH4, Xi, CO2 is the mole fraction of CO2, and Mi,CO2 is the flaring
CO2 emissions reported by facility i.

The sum of weighted average CH4 and CO2 mole fractions is always smaller than
one because there are other constituent species of associated gas such as ethane, propane,
etc. For the nonmethane and non-CO2 composition, we used the Energy Information
Administration (EIA) data, listed in the Appendix A Table A1, on regional natural gas
liquid (NGL) production ratio [6] to represent the remaining mole fraction. Once we
obtained the full gas composition, we calculated the heat content of the flared gas from
each county following Equation (5):

HHVcounty = X̄CH4 × HHVCH4 + X̄ethane × HHVethane + X̄propane × HHVpropane

+X̄butane × HHVbutane + X̄pentane × HHVpentane
(5)

where X̄x indicates the mole fraction in associated gas of constituent X (i.e., methane, ethane,
propane, butane, pentane), and HHVx indicates the heat content of constituent x. We were
able to directly calculate the heat content of over 95% of flares observed by VIIRS in the US
in 2019 using this method.

https://eogdata.mines.edu/download_global_flare.html
https://eogdata.mines.edu/download_global_flare.html
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For upstream flares in counties that had no data reported in EPA’s GHGRP, we esti-
mated the heat content using one of the following methodologies:

1. Average gas composition (weighted by flaring volume) in a neighboring county
(applied to flares accounting for 1% of flaring volume);

2. Average gas composition (weighted by flaring volume) in the entire basin, for counties
where option 1 is inapplicable (applied to flares accounting for 1% of flaring volume);

3. Simple average of gas composition in the entire basin for counties where options 1
and 2 are both inapplicable (applied to flares accounting for 2% of flaring volume).

For sensitivity analysis, we used the heat content-independent BC emission factors
reported in other studies (Table 1).

2.3. Black Carbon Emissions

BC emissions from gas flaring in the United States in 2019 were estimated by multiplying
the BC emission factors by the volume of gas flared at each site i, as shown in Equation (6):

Mass o f BC =
n

∑
i=1

EFBC ×V (6)

We assume a ground-level stack height based on the EPA’s Air Pollution Control Cost
Estimation Spreadsheet for Elevated Flares, which shows that the typical heights for flares
are lower than 15 m [34]. Sensitivity analysis with EASIUR and AP3 indicates that assuming
a stack height of 100–200 m would reduce impact estimates by approximately 5–20%. We
use annual data for flared gas volumes, which are more robust than monthly data because
the Colorado School of Mines Payne Institute Earth Observation Group (EOG) develops
them based on clear-sky observations throughout the year rather than as a sum of monthly
estimates (personal communication with EOG, 6 August 2021).

2.4. Reduced-Form Models

Given the expense involved in running three-dimensional atmospheric models, a
number of reduced-form models were developed and made available to the research
community in recent years. These tools were used to estimate health impacts from a
number of diverse sources of pollution in the United States. We briefly describe the three
models used in this study, with references to full descriptions of these models.

EASIUR is an online model which estimates the PM2.5-caused mortality directly
from emissions of primary PM2.5 (prPM2.5) and three precursor gases—sulfur dioxide
(SO2), nitrogen oxides (NOx), and ammonia (NH3) [29] (Table 2). EASIUR derives health
impacts from regressions on a dataset consisting of small emissions perturbations at 100
sample locations using the CAMx photochemical model [35]. The base meteorology and
emissions are simulated with a 36 km resolution based on Year 2005 conditions. The
EASIUR model reports the marginal damages ($/t) for the four emitted species at three
stack heights during four seasons and an annual average. The default concentration–
response function (CRF) used in EASIUR is taken from a cohort study conducted by the
American Cancer Society [36]. EASIUR presents marginal health damages as a look-up
table without providing the air quality changes that led to those health damages.

AP3 is the updated version of the APEEP model, which has been widely used for
policy analyses related to air pollution in the United States (https://public.tepper.cmu.
edu/nmuller/APModel.aspx, accessed 4 October 2021). AP3 takes county-level emissions
of PM2.5 and its precursors and simulates atmospheric transport, chemical transformation,
and deposition across the contiguous United States. AP3 links emissions in source counties
(s) to ambient PM2.5 concentration changes in receptor counties (r) via a source-receptor
matrix that was precomputed by a modified Gaussian plume model [37,38]. In this study,
we assume flaring emissions are released at ground level. To estimate the corresponding
health effects, AP3 uses a CRF relating the average annual PM2.5 concentration to annual
mortality for adults older than 30 years old [36] and infants younger than one year old [39].

https://public.tepper.cmu.edu/nmuller/APModel.aspx
https://public.tepper.cmu.edu/nmuller/APModel.aspx
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Table 2. Intercomparison of three reduced-form models, including resolution, input emissions,
and outputs.

Reduced-Form Models Resolution Input Emissions Outputs Reference

Estimating Air Pollution
Social Impacts Using
Regression (EASIUR)

36 km Primary PM2.5 *, SO2, NOx ,
and NH3

Marginal damage ($/ton) Heo et al.,
2016 [29]

Air Pollution Emission
Experiment and Policy
Analysis Model (AP3)

US Counties Primary PM2.5 *, SO2, NOx , NH3,
and VOC

PM2.5 (µg/m3), mortality
per county

Muller,
2014 [30]

Intervention Model for Air
Pollution (InMAP) 1–288 km Primary PM2.5 *, SO2, NOx , NH3,

and VOC
PM2.5 (µg/m3), mortality per
grid cell

Tessum, Hill, et al.,
2017 [31]

* Focus of this study.

The InMAP reduced-form air quality model uses spatially resolved annual aver-
age photochemical relationships derived from a state-of-the-science WRF-Chem chemical
transport model [40] to simulate the formation and transport of primary and secondary
PM2.5 [31]. InMAP also developed a S–R matrix to create spatially explicit estimates of
ambient PM2.5 concentration differences caused by primary PM2.5 emissions from flaring.
InMAP runs at a varying spatial resolution with cell length ranging from 1–288 km based
on population density. InMAP also estimates premature mortalities with its internally
embedded CRF using relative risks from [36,41].

2.5. Health Impacts

We apply all three models to compute health impacts per ton of emissions from each
flaring site. EASIUR outputs only monetized mortality impacts and only on a domain-wide
aggregated basis. We divide the monetized outputs by the model’s value of a statistical life
(VSL) [29] to convert them into excess mortalities. The other models indicate the county
(AP3) or grid cell (InMAP) where impacts occur.

To further compare the performance of AP3 and InMAP, we aggregated results to the
county- and state-level. AP3 provides results on a county-level basis, thus aggregation to
the state level is straightforward. For InMAP, health impacts in grid cells that straddle state
or county boundaries were divided equally among those states or counties.

We also estimated the morbidity incidences by taking the PM2.5 concentration surfaces
generated by AP3 and InMAP into EPA’s Environmental Benefits Mapping and Analysis
Program-Community Edition (BenMAP-CE) model [42]. We selected several of the health
endpoints from BenMAP-CE to provide examples of nonmortality health impacts from
flaring. Those endpoints are taken from the EPA Standard Health Functions (2021), which
reflects recent epidemiological literature from EPA’s Integrated Science Assessments for
PM2.5 and Ozone (BenMAP-CE Release Notes 2021). We focus on 8 of the 64 PM2.5-related
morbidity endpoints represented in EPA’s analysis: acute myocardial infarction [43], ER
visits due to respiratory distress [44], Alzheimer’s disease [45], asthma [46], lung cancer [47],
stroke [48], and work loss days [49]. All morbidity estimation includes a 95% confidence
interval (2.5–97.5%). We do not monetize morbidity outcomes due to a lack of consensus
cost per endpoint estimate.

3. Results
3.1. BC Emissions from Flaring

Figure 1 shows the spatial distribution of flare sites identified by VIIRS, with the
colors indicating BC emissions per site in 2019. The color of points indicates the annual BC
emissions per site (red: high; green: low) [32]. VIIRS identified 2652 flare sites spanning
22 states and offshore locations, with a total volume of 17.21 bcm of gas flared. North
Dakota and Texas, as the two largest oil and gas producing states, had the most flaring
observed in 2019, as shown in the enlarged maps in Figure 1.
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Figure 1. Locations of gas flaring sites in (a) contiguous US (plus Alaska), (b) North Dakota, and
(c) Texas. Color and size of circles denote annual tons of BC emitted per site in 2019 (red: high;
green: low).

Based on the flaring data, 22 states in the United States plus the offshore regions
flared 17.21 bcm gas in 2019. Figure 2 shows the flared gas volume by state, led by Texas
(8.73 bcm), North Dakota (6.09 bcm), and New Mexico (1.38 bcm). Over 95% of the volumes
came from the Permian (TX, NM), Williston (ND, MT), and Western Gulf (TX) basins (See
Figure A1 in the Appendix A).

BC emissions factors vary widely across sites, ranging from 0.19 to 4.78 g/m3, with an
average of 0.76 g/m3, varying with differences in gas composition (Figure 3). Among states
with more than 10 flaring sites, Montana and North Dakota have the highest emission
factors (1.87 and 1.74 g/m3) due to the high HHVs (>55 MJ/m3) of the gas flared there. The
weighted average of emission factors in Texas is 0.48 g/m3, since its HHV is lower than the
national average.

Figure 2. Flared gas volume (yellow bars) and BC emissions (red bars) by state in 2019.
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Figure 3. BC emission factors estimated for all flares based on Böttcher et al. [18]. Left: relationship
between HHV (MJ/m3) and emissions factor (EF) (g/m3), where darkness indicates number of points
overlapped. Right: a histogram of black carbon EFs, weighted by volume of gas flared.

BC emissions from upstream flaring in the contiguous United States totaled 15,968 tons,
with per-site levels ranging from 0.04 to 113.68 tons and averaging 6 tons. North Dakota
and Texas led all states with 10,036 and 4317 tons, respectively, of BC emissions from flaring,
combining for 89.9% of the total BC emissions from flaring nationwide (Figure 2). Two
basins, Williston Basin and Permian Basin, emitted 10,519 and 3913 tons of BC, respectively,
corresponding to 90.4% of total emissions.

3.2. Air Quality

EASIUR outputs only domain-wide mortality impacts, leaving spatial patterns of
ambient air quality impacts unknown. Thus, we focus our air quality analysis on AP3
and InMAP, which provide the PM2.5 concentration changes simulated by its underlying
air quality model; thus, the air quality impacts from flaring cannot be estimated from the
EASIUR model.

By contrast, both AP3 and InMAP provide spatially resolved changes in ambient
PM2.5 resulting from emissions. Among 3109 counties, AP3 simulated the greatest PM2.5
concentration increases in eight North Dakota counties, followed by 10 Texas counties
and one Montana county. Four core oil and gas producing counties—McKenzie, Moun-
trail, Williams, and Dunn in North Dakota—had modeled PM2.5 increases of more than
0.84 µg/m3. Due to their low baseline PM2.5 concentrations, flaring was responsible for
16–25% of total PM2.5 in those counties.

Since the InMAP model provides outputs on grid cells with resolution ranging from
1–288 km, we spatially joined all grids to state polygons and labeled each grid cell by state.
If a grid cell lays on the state boundary, it would be assigned with multiple states and all
states would incorporate the ambient PM2.5 change from this cell. Modelled PM2.5 increases
were highest in a cell along the North Dakota–Montana border (0.26 µg/m3), followed by a
cell in Texas (0.25 µg/m3).

To compare with AP3’s results, we also aggregated InMAP results to the county-
level. InMAP simulated smaller peak PM2.5 impacts than AP3, with the largest PM2.5
impact being 0.26 µg/m3 in Williams County, ND and impacts of at least 0.10 µg/m3 in
45 additional counties.

3.3. Health Impacts

We applied all three models to simulate health impacts from our base case BC emis-
sions estimates for 2019. EASIUR simulates that those emissions caused 53 deaths, including
32 deaths from North Dakota emissions and 16 from Texas emissions, but does not indicate
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where the deaths occurred (see Figure A2 in the Appendix A). By contrast, AP3 and InMAP
provide source-receptor matrices that allow us to examine the locations of both emissions
and health impacts. Figure 4 maps the receptor counties of mortality impacts based on AP3
and InMAP simulations. AP3 estimates a total of 48 excess deaths, while InMAP predicts
only 26 deaths nationwide.

Figure 4. Spatial distribution of flaring-caused mortality in contiguous US as simulated by the AP3
(top) and InMAP (bottom) models, plotted by receptor county.

The receptor counties of health impacts simulated by AP3 and InMAP are plotted in
Figure 5a. Assuming a zero intercept, the linear correlation between AP3 and InMAP results
on a county-level basis has an R2 of 0.62. A majority of counties have nearly zero mortality,
and the county with highest estimation of flaring-caused deaths from both models is Bexar
County, Texas, due to its large population and proximity to the Western Gulf Basin (Eagle
Ford shale).

Figure 5b compares the receptor locations of AP3 and InMAP mortality estimates on
a state-level basis. AP3 simulates that gas flaring causes 13 deaths in Texas, which is the
highest among all states, and another four deaths in North Dakota. Ten other states (IL, FL,
MO, OH, MI, MN, OK, PA, WI, IN) are modeled to have at least one death despite very
little flaring within those states, due to transport of emissions from other states. InMAP, on
the other side, predicts only 10 deaths occurring in Texas and two in North Dakota.

In addition to mortality, flaring-caused morbidity was estimated using BenMAP-
CE, which translated the air pollution surfaces generated by AP3 and InMAP to selected
morbidity endpoints (Table 3). AP3 estimates nationwide impacts of 1.1 acute myocardial
infarctions, 51.6 emergency room visits for respiratory cases, 23.5 cases of Alzheimer’s
disease, 178.2 pediatric asthma onset, 4.2 lung cancers, and 8,481 lost workdays, whereas
InMAP estimates less than half as many incidents for each outcome.

3.4. Sensitivity to Emission Factors

Given the uncertainty across published estimates of emission factors, we conducted
a sensitivity analysis by applying alternative emission factors from Table 1 in place of
our base-case estimate from [18] (Equation (1) and (2)) to understand how they influence
mortality estimates. In Figure 6, all three models establish a linear correlation between the
emission factors and predicted mortality. AP3 and EASIUR show highly consistent mortal-
ity estimates as the emission factor changes, while InMAP predicts a lower mortality value.
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Under different emission factors, the flaring-caused deaths have fallen in a wide range
between 5 and 368 annually, with a median of 51. Thus, the models are highly sensitive
to the emission factor used to estimate BC emissions. All mortality results predicted from
the three models under the alternative emission factors can be found in the Appendix A
(Table A2).

Figure 5. AP3 and InMAP simulations of flaring induced mortalities based on location of impacted
population, plotted by (a) county and (b) state. Line in (a) assumes a linear fit and zero intercept.

Table 3. BenMAP-CE estimates of morbidity caused by US flaring BC emissions in 2019, based on
PM2.5 contributions modeled by AP3 and InMAP and dose-response relationships from cited sources.

Endpoint Source Morbidity (AP3) (Incidents
per Year)

Morbidity (InMAP)
(incidents per Year)

Acute myocardial infarction Zanobetti et al (2009) 1.1 (95% CI: 0.5, 1.7) 0.4 (95% CI: 0.2, 0.7)
ER visits (Respiratory) Krall et al. (2016) 51.6 (95% CI: 8.5, 93.1) 20.4 (95% CI: 3.4, 36.8)
Alzheimer’s disease Kioumourtzoglou et al. (2016) 23.5 (95% CI: 17.6, 29.3) 12.2 (95% CI: 9.1, 15.2)
Asthma onset Tetreault et al. (2016) 178.2 (95% CI: 171.0, 185.2) 72.0 (95% CI: 69.0, 74.8)
Lung cancer Gharibvand et al. (2016) 4.2 (95% CI: 1.3, 6.9) 1.7 (95% CI: 0.51, 2.8)
Stroke Kloog et al. (2012) 3.3 (95% CI: 0.9, 5.7) 1.4 (95% CI: 0.3, 2.3)
Work loss days Ostro (1987) 8480.6 (95% CI: 7147.7, 9764.7) 3383.2 (95% CI: 2851.4, 3895.5)
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Figure 6. Sensitivity of US flaring BC mortality estimates to emission factor and model used. Hori-
zontal bars reflect range of emission factors from [18].

4. Discussion

The flaring of natural gas from the upstream oil and natural gas industry in the United
States emitted approximately 16,000 tons of BC in 2019, according to our baseline estimates.
That corresponds to approximately 8% of nationwide total BC emissions, or 10% of total
anthropogenic BC emissions [50]. Most emissions originated from North Dakota and Texas,
since over 86% of nationwide flaring occurred in those two states. Although North Dakota
flared a lower volume of gas than Texas, it emitted more BC because the heat content of
North Dakota gas, and thus the BC emission factors of its flares were higher than those
in Texas.

Based on three reduced-form models and our baseline emission factors (Equations (1)
and (2)) [18], BC emissions from flares were estimated to be responsible for 26–53 excess
premature mortalities in 2019. Based on a $8.5 million VSL, that would correspond to a
monetized annual cost of $219 to $449 million. The most important source of uncertainty
in these results is the uncertainty in the emission factor for BC from flaring; the choice of
reduced-form model is secondary. Under the highest black carbon emissions factor, flaring
could potentially cause over 360 deaths per year. Future research is needed to narrow the
uncertainty in BC emission factors for flares.

At the time of this writing (December 2021), EPA proposed aggressive actions to
reduce direct methane emissions from the oil and natural gas industry and is considering
requirements to reduce associated gas flaring. Controlling or eliminating flaring activities
requires a reduction in oil and gas production or the build-out of infrastructure to capture,
transport, and process associated gas. The lack of effective regulations and policies is
another culprit for routine gas flaring. Current solutions such as utilizing gas gathering
pipelines, small-scale gas utilization technologies [51], or reinjecting the gas back into the
ground are mature; however, they are not universally deployed due to a lack of planning,
regulatory requirements, and economic incentives. To tackle the problem for the future,
the World Bank and the UN Secretary-General launched the Zero Routine Flaring by 2030
(ZRF) initiative to commit governments and oil companies to end routine gas flaring in
new oil fields and eliminate the existing flaring before 2030 [52]. ExxonMobil announced in
December 2021 that it aims to achieve net-zero greenhouse gas emissions from its operations
in the Permian Basin by 2030 [53].
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Beyond their direct health impacts, BC emissions can also contribute to climate change
by absorbing solar radiation in the atmosphere, influencing clouds, and reducing the surface
albedo and accelerating the melting of ice and snow [4,54,55]. However, quantifying the
climate effects of BC requires detailed modeling of its impacts on radiation and clouds and
its deposition onto snow and ice, which is beyond the scope of this study.

A parallel objective of this study is to evaluate the consistency of three reduced-form
models by comparing the mortality predicted from flaring in the US. Estimates of US deaths
from flaring in 2019 were similar in AP3 (48 deaths) and EASIUR (53 deaths), and a factor
of two lower in InMAP (26 deaths). Results were strongly correlated spatially for the two
models with spatially resolved impacts. Consistency across the reduced-form models is at
least as strong as that observed across full-form atmospheric models in intercomparison
studies such as the Air Quality Model Evaluation International Initiative [56,57] and the
Model Intercomparison Studies–Asia [58,59].

Overall, the reduced-form models are shown to be highly efficient in estimating flaring-
induced human health impacts and to yield results that are sufficiently consistent to inform
policy. Although this study lacks a comparison with a full-form chemical transport model
to validate the results, previous studies [26,27] provided detailed inter-comparisons of
model performance for other emission scenarios.

In an evaluation of the three reduced-form models used here, Industrial Economics,
Incorporated (IEc) found that AP3 and EASIUR agreed well with the paired state-of-the-
science Community Multiscale Air Quality (CMAQ) [60] and BenMAP-CE models [42] in
estimating excess mortalities from scenarios involving power plants, cement kilns, pulp
and paper mills, and refineries, while InMAP produced higher estimates [26]. Here, we
likewise found AP3 and EASIUR to yield similar estimates, but found InMAP to yield
lower estimates for flaring impacts. Gilmore et al. [27] found all three reduced-form
models to yield estimates of PM responsiveness to emissions that were consistent with
WRF-Chem [40], and they also produced similar value across all counties for ground-level
primary PM2.5.

The limitations of this study arise mainly from the availability of flaring data, the
uncertainty in emission factors, and the US-only scope of these reduced-form models. Our
use of annually aggregated estimates of flaring volumes from VIIRS precluded us from
considering the seasonality of air quality responsiveness to emissions. To our knowledge,
these reduced-form models have not been extended to other parts of the world, except for
a recent adaptation of InMAP to China [61].

5. Conclusions

Although gas flaring reduces direct venting of methane and other hydrocarbons, their
black carbon (BC) emissions are unhealthful and deadly. Associated mortalities in 2019
in the US likely numbered in the dozens, with uncertainty in the estimates arising more
from uncertainty in the BC emission factor than from the choice of reduced-form model.
Our study demonstrates that reduced-form models can be useful tools for estimating the
impacts of numerous dispersed emissions sources, such as flares, and that further research
is needed to improve estimates of BC emission rates from flares.
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Appendix A

Figure A1. Volume of gas flared per US basin. Over 95% of US flaring in 2019 occurred in Permian,
Williston, and Gulf Coast basins. Map on left shows all shale oil and natural gas basins in lower
48 states, with three leading basins labeled.

Figure A2. Spatial distribution of flaring-caused mortality simulated by EASIUR, plotted by emis-
sion county.

Table A1. Energy Information Administration (EIA) data on regional natural gas liquid (NGL)
production ratio.

Region Area Ethane Propane Butane Isobutane Natural Gasoline (Pentane Plus)

PADD 1 East Coast 0% 33% 67% 0% 0%
Appalachian 39% 35% 11% 5% 10%

PADD 2
IN, IL, & KY 28% 44% 10% 10% 8%
MN, WI, ND, & SD 21% 40% 18% 5% 16%
OK, KS, & MO 41% 32% 11% 6% 11%

PADD 3

LA (Gulf) 38% 33% 11% 7% 10%
N. LA & AR 28% 26% 11% 9% 26%
NM 41% 32% 10% 7% 11%
TX (Inland) 43% 31% 10% 6% 10%

PADD 4 Rocky Mountain 25% 37% 14% 7% 16%
PADD 5 West Coast 0% 17% 16% 21% 46%

https://eogdata.mines.edu/download_global_flare.html
https://eogdata.mines.edu/download_global_flare.html
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Table A2. Predicted mortality from three reduced-form models using the alternate emission factors
for the flaring BC.

EF (g/m3) Source EASIUR AP3 InMAP

0.13 Weyant et al. (2016) 7 7 5
0.28 Weyant et al. (2016) 16 16 11
0.51 McEwenand Johnson (2012) 29 29 20
0.57 Schwarz et al. (2015) 33 32 22
0.85 US Environmental Protection Agency (2009) 49 48 33
0.9 US Environmental Protection Agency (1995) 52 51 35
1.6 Stohl et al. (2013); GAINS 92 91 62
1.83 Conrad and Johnson (2016) 105 104 71
2.5632 CAPP (2007) 147 145 100
4.2 US Environmental Protection Agency (1995) 242 238 164
6.4 US Environmental Protection Agency (1995) 368 363 249
0.194–4.782 Bottcher et al. (2021) 53 48 26
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