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Abstract: The coseismic geothermal changes of ground temperature observed at observatories near
the epicenter of the 2020 Jiashi Ms = 6.4 earthquake in China, provide a unique opportunity to
study heat generation and conduction in rock. Here, evolutions of rock temperature at the Xikeer,
Jiashizongchang, and Gedaliang observatories, which are located at epicentral distances of 1.4, 27.42,
and 50 km respectively, were analyzed. Significant coseismic geothermal changes of 0.0432 ◦C were
observed at the Xikeer observatory at the depth of 33.38 m, at which clear diurnal variations can
be observed. Smaller changes of ~0.0001 ◦C were observed at the depths of 12.3 and 22.8 m at the
Xikeer observatory and 22.3 m at the Jiashizongchang observatory. The stress transfer induced by
the coseismic rupture induced a rise in local ground temperature, but the magnitude of the change
was relatively small. The larger amplitude change at the Xikeer observatory was caused by fluid
infiltration. We note that diurnal variation has been recorded at the Gedaliang observatory, but the
coseismic response is no longer in existence. The temperature increases at the hypocentral area were
higher than expected in the ground due to the coseismic stress transfer, but the change attenuated
rapidly with distance.

Keywords: Jiashi Ms = 6.4 earthquake; ground temperature; fluid; coseismic geothermal change;
temperature transfer

1. Introduction

Coseismic geothermal change generally refers to the physical change process of ground
temperature that is a direct response to the occurrence of earthquakes, which could be used
as an effective and useful tool for studying and monitoring coseismic ground deformation
and the rupture process. However, there are not many studies in this field. Many experts
and scholars have carried out coseismic studies in other fields. For example, Timofeev
et al. [1] studied the coseismic changes of the 9.0 Tohoku-Oki earthquake by gravity and
GPS methods. Qu et al. [2] used deformation data to study the coseismic change of the
2010 Yushu Ms = 7.1 earthquake in Qinghai, and Zhu et al. [3] studied the coseismic effect
of an Ms = 9.0 earthquake in Japan around the Yishu fault zone through GPS observations.
Tang et al. [4] used electromagnetic data to analyze the coseismic change of the strong
aftershocks following the 2008 Wenchuan Ms = 8.0 earthquake, and Che et al. [5] used
subsurface fluid observation data to study the 2004 Sumatra Ms = 8.7 earthquake that
triggered the coseismic blowout phenomenon of the Chagan well. The coseismic changes
of strong earthquakes are mostly monitored via technical methods, such as monitoring
groundwater [6,7] and measuring major topographic changes [8]. The studies mentioned
above showed that the coseismic changes of strong earthquakes are mostly triggered by
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seismic wave propagation or stress transfer [9], which raises the question of whether this
process can cause changes in ground temperature.

Chen et al. [10] carried out research on this scientific field. They used Terra and Aqua
satellite surface temperature to observe the coseismic geothermal change induced by the
2008 Wenchuan earthquake. Subsequently, Chen et al. [11] used ground temperature data
to assess the coseismic ground temperature change of the Kangding Ms = 6.3 earthquake in
2014, but the magnitude of the change was small. A similar coseismic geothermal change on
ground temperature was observed again when studying the meta-instability process before
the Jiashi Ms = 6.4 earthquake in 2020 [12], and it has been speculated that the physical
mechanism of the coseismic response can mainly be attributed to changes in seismic stress
and secondary fluid effects.

In fact, the physical mechanism of the coseismic geothermal change can be explained
by the friction along the seismic fault plane [13], the ascension of underground heat
flow [14], and the deformation or fracture attributable to local bedrock stress [15]. Green [16]
found that there is an obvious heat generation phenomenon due to friction during the
high-speed sliding of faults. This phenomenon can also be proven by rock experiments [17].
Gao [18] further found that the sliding friction caused by the rapid displacement of the
fault plane when an earthquake occurs can cause the temperature near the fault plane to
rise sharply, and that the temperature can rise more than 10 ◦C in an instant. Coseismic
geothermal changes in groundwater are generally caused by changes in reservoir and
pore pressure caused by crustal stress, upward movement of magma [19], and convective
oscillations caused by seismic waves [20]. These elevated temperatures are transmitted
through the medium, which may cause the coseismic ground temperature change.

At the same time, the coseismic change of ground temperature can also be caused
by the ascension of underground heat. Wang [21] studied a three-level structural model
of a north–south seismic zone and found that there is a ductile rheological layer in the
middle and lower crust, which serves as an energy storage unit for accumulation and
transformation of seismic energy. The fluid and energy carried by asthenospheric uplift
continues to ascend, and upwelling thermal fluid can cause the ground temperature to rise
rapidly. Xin et al. [22] discovered that there was a participation of subsurface heat flow
when studying the coseismic ground temperature phenomenon of the Tangshan Ms = 7.8
earthquake in 1978.

In addition, coseismic ground temperature changes may also be caused by local
bedrock stress loading. Liu et al. [23,24] performed rock thermal stress load experiments
and found that temperature changes occur in the process of rock deformation. They pointed
out that the elastic stage is a stress-heating stage, whereas the stick–slip stage produces a
temperature increase as a result of friction. In the rupture stage, the rapid friction along
the fault plane causes a sharp temperature rise. Chen et al. [25] further found that the
temperature response in the source media is proportional to the body strain, and pure shear
deformation can hardly cause temperature changes.

The high design accuracy of ground temperature observation methods should provide
a useful tool of observing the coseismic ground temperature change. However, due to
the small distribution of ground temperature observations, relatively few earthquake
observations have been acquired. The 2020 Jiashi Ms = 6.4 earthquake and the observation
of proximal ground temperature undoubtedly provided a rare opportunity for research.
In this study, by comparing the coseismic responses recorded at different locations and
different layers within 50 km of the epicenter, we examined the heat source, generation
method, and conduction process of the coseismic geothermal change.

2. Observation Stations
2.1. Geological Setting of the Study Area

The Xinjiang Jiashi Ms = 6.4 earthquake, with a depth of 16 km, occurred on 19 January
2020, and was in the area where the South Tianshan Fold Belt, the Pamir arc structure,
and the Tarim Basin intersect. The seismogenic fault was the nearly east–west Keping
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Fault (KPF in Figure 1). The precise positioning results showed that the aftershocks were
mainly distributed on the north side of the main shock [26,27]. The focal mechanism
results indicated that the earthquake was a thrust-type rupture, which is consistent with
the Kepingtage thrust nappe structure. The Kepingtage nappe structural belt (indicated
by the yellow contour) is an active reverse fault–fold belt formed since the late Cenozoic
in the Tianshan orogenic belt. It consists of a piggyback basin or valley bottom [27] and is
divided into east and west parts by the Puchang fault (PCF in Figure 1). As the collision
front between the Tianshan Mountains in the southwest and the Tarim Basin, this area has
frequented moderate and strong earthquakes (Figure 1).
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2.2. Ground Temperature Monitoring

In 2019, the Institute of Geology of the China Earthquake Administration and the
Xinjiang Earthquake Administration jointly constructed multiple ground temperature ob-
servation stations along the Keping fault in the western section of the South Tianshan
Mountains. There are three ground temperature observation stations within 50 km of the
epicenter of the Jiashi earthquake: Gedaliang (GDL), Jiashizongchang (JSZC), and Xikeer
(XKE). The nearest ground temperature observation station is XKE, which is about 1.4 km
away. According to the seismic rupture area inverted by Li et al. [28], from the interfero-
metric synthetic aperture radar (InSAR) deformation field, the XKE ground temperature
observation station happens to be within the area (Figure 1).

The ground temperature monitoring utilizes wireless ground temperature telemetering
equipment developed by the Geological Institute, with an accuracy of 0.00003 ◦C. In order
to save power, a sampling period of 10 min was adopted. The sensor was installed with
a high-grade cement pour seal, which is closely integrated within the bedrock. The XKE
ground temperature observation station (Figure 1) is located on the hanging wall of the
Keping Fault, at the southern end of the rupture zone. The lithological structure at the
survey point is dominated by sandstone and mudstone. Twelve temperature sensors were
installed at depths of 0–50 m.

3. Coseismic Temperature Change of Jiashi Ms = 6.4 Earthquake
3.1. XKE Ground Temperature Observation Station

At the time of the earthquake, the coseismic temperature changes were detected
at depths of 12.3, 22.8, and 33.38 m in this observation station (Figure 2). The initial
value has been subtracted from the data. The ground temperature changes at 12.3 and
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22.8 m were relatively stable, and the coseismic geothermal changes were relatively small,
about ∆T = 0.0001 ◦C (Figure 3a,b). A significant coseismic change was observed at the
33.38 m layer (Figure 2), and the temperature step increased to ∆T = 0.0432 ◦C. It is worth
noting that the ground temperature of this layer was observed to have obvious diurnal
changes. Previous studies have found that when the layer contains fluid related to the
change of surface temperature, the ground temperature of the layer will show diurnal
change [29]. So fluid infiltration may cause the temperature changes. This layer showed a
rapid temperature rise on 10 January 2020, with an amplitude of ∆T = 0.056 ◦C, which was
the artificial noise.
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3.2. JSZC Ground Temperature Observation Station

The JSZC ground temperature observation station, which is 27.42 km from the epi-
center, is located on the hanging wall of the Keping fault, at the junction of basins and
mountains. The station has a depth of 50.6 m, and the lithology is dominated by interbed-
ded siltstone and mudstone. There are 12 temperature sensors in different layers. However,
due to sensor failure, there were only three continuous records, at 12.3, 22.3, and 27.9 m
(Figure 4a). At the time of the earthquake, a coseismic geothermal change was observed
at the 22.3 m layer (Figure 4b), which had a temperature change of ∆T = 0.0001 ◦C. The
temperature change of the bedrock at this station may have been caused by the stress
released by the earthquake rupture or an extension of heat conduction to the area. From
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the rock thermal stress load experiments, Liu et al. [23,24] found that the temperature of
rock can be changed due to deformation. Due to the heterogeneity of rock, the stress of
different layers varies. Some layers may be deformed, the others may be intact or only have
minor deformation.
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3.3. GDL Ground Temperature Observation Station

The ground temperature observation station GDL is 50 km from the epicenter, and
the depth of the observation point is 50.6 m. Twelve temperature sensors are distributed
within the range of 0–47.9 m. The record results showed no coseismic geothermal changes
in all layers after the Jiashi Ms = 6.4 earthquake (Figure 5). This may be caused by the
increased distance from the epicenter of the earthquake; meanwhile, the station is located
in the shallow area of the coseismic coulomb stress field (Figure 6), calculated by using the
software of the Coulomb stress 3.3 [29], https://pubs.usgs.gov/of/2011/1060/ (accessed
on 3 January 2016). Detailed source models were from Yao et al. [30], with strike = 221,
dip = 20, and slip = 72. Similar changes have been observed by Chen et al. [15] when they
studied the coseismic response of rock temperature during the Kangding China Ms = 6.3
earthquake in 2014.
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The temperature changes on 33 m are similar in amplitude similar to fluctuations
before and after the earthquake. The only significant feature is the gradual increase of
temperature a couple of days before the earthquakes. We also noted that clear diurnal
variation can be observed in this layer. The lithology of this layer is dominated by sandstone.
It is speculated that the change may be caused by fractures in the rock mass and fluid
infiltration into the fissures [31,32]. Generally, the temperature of the rock in the deeper
layer is not affected easily by a surface temperature change.

4. Analysis and Discussion
4.1. Heat Source Analysis

There are three possible mechanisms for the heat source of ground temperature
changes. One is that the rock medium at the observation station generated heat due to seis-
mic stress compression or stick–slip friction. Another is that the seismic fault ruptured and
generated heat, causing the fault to release a large amount of heat instantaneously, leading
to a rapid heating effect. The third is ascending flow of subsurface heat. When the rupture
channel is opened, such heat flow will induce a warming. These three mechanisms have
been illustrated by previous studies [13–15]. However, the reason for the change in bedrock
temperature is very complex. It is difficult to estimate temperature changes by taking into
account distance and depth of the earthquake if three mentioned mechanisms were in-
volved. This paper focuses on the explanation derived from the magnitude of the observed
coseismic variations at different stations during the 2020 Jiashi Ms = 6.4 earthquake.

When comparing the temperature records at 12.3 and 22.8 m at XKE and at 22.3 m
at JSZC, it is obvious that the recorded data are stable and of high quality. The coseismic

https://pubs.usgs.gov/of/2011/1060/
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geothermal change of the Jiashi earthquake is obvious and has a consistent variation, about
∆T = 0.0001 ◦C for both stations. This synchronous temperature change is not likely to
have been caused by the same heat source, such as the epicenter rupture or upwelling of
heat source material, because the epicenter is not located in the middle area between the
two ground temperature observation stations, but rather in a southwest direction from
both XKE and JSZC. Therefore, it can be inferred that the coseismic stress transfer in the
vicinity of the source area caused the ground temperature observation stations to heat due
to stress compression. According to the study of Yang et al. [33], the magnitude relationship
between stress change and temperature response is 0.0015 ◦C/MPa. From the coseismic
temperature change of ∆T = 0.0001 ◦C, we obtain the coseismic stress change at these
stations, which should be enhanced by 0.067 MPa (0.67 bar). This value correlates well with
the coseismic Coulomb stress distribution of the Jiashi earthquake (Figure 6). Both XKE
and JSZC stations were located in the increased Coulomb stress area with a stress increase
of about 0.8 bar. However, the coseismic geothermal changes in only a few observation
layers. This may be caused by the heterogeneity of the rock. The lithology of XKE 12.3 m
and 22.8 m is red, fine sandstone, and the other layers are mudstone and core fractured
sandstone. The layers above 18.5 m of JSZC are mudstone, and the layers below 18.5 m
are the gray siltstone in which the core fissure is developed, and the bottom rock layer is
vertical. Only a complete core can be seen near 22.3 m. The lithology and integrity of the
core determine the effectiveness of stress transfer.

The coseismic geothermal change at the 33.38 m layer of XKE showed that a large
amount of heat was released when the Jiashi Ms = 6.4 earthquake occurred, causing the
temperature of the adjacent ground to rise (0.0432 ◦C). In combination with the observation
of obvious diurnal variation in this layer, it can be further speculated that the large coseismic
geothermal changes at XKE may have been caused by an increase in the surrounding water
temperature. The thermal conductivity at this layer is more than 400 times that of the 12.3
and 22.8 m, which is determined by the porosity and permeability of the rock [15].

Although the 33.0 m layer of GDL 50 km from the epicenter also has recorded diurnal
variation, no obvious similar coseismic geothermal change was recorded, indicating that
the distance between the heat source and XKE was much smaller than the distance between
the heat source and GDL, that is, the GDL was farther from the rupture point. It is easier to
observe changes in ground temperature at a proximal location, so it can be inferred that
the source of the heat was the seismic source area. The heat release may be attributable to
earthquake fault rupture, frictional heating, or upwelling of hot subsurface material. Yao
et al. [30] found that sand liquefaction occurred in the area southeast of the epicenter and
that gray-brown muddy sandstone gushed from cracks in some roads. The XKE ground
temperature observation station is located to the southeast of the epicenter. It is located
between the epicenter and the XKE reservoir, indicating that there may have been an
upwelling of underground fluids in this area.

4.2. Heat Transfer Analysis

There are eight temperature observation layers below 10 m at the XKE ground temper-
ature observation station. The formations at 12.3 and 22.8 and from 34 to 50 m comprises
sandstone, which is relatively fractured. Mudstone and conglomerates are also observed
at several depths. The deeper observation data at 43.49 m and 48.55 m are stable, and
the coseismic diurnal variation change of the Jiashi earthquake was not recorded. This
indicates that the thermal conductivity of the sandstone was insufficient to transmit the
heat generated during the earthquake rupture to the temperature sensor. However, the
coseismic heating change recorded by the 33.38 m layer temperature sensor at XKE was two
orders of magnitude larger than the coseismic response at 22.8 and 12.3 m. This difference
is unlikely to be resulted from the depths of different layers. It is speculated that the fluid
in the fractures played a major role in the coseismic heat transfer, which is also consistent
with the experimental results of Guo et al. [34] showing that the thermal conductivity of
sandstone increases with the increase of water content. The heat transfer efficiency of
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sandstone containing fluid is higher than that of ordinary sandstone. As shown in Figure 7,
the temperature attenuation rates before (Figure 7a) and after (Figure 7b) the earthquake
were not consistent. The post-earthquake temperature attenuation trend was linearly fitted
to the pre-earthquake temperature attenuation trend. The attenuation curve before the
earthquake is y = −3 × 10−5x + 17.042, and the attenuation curve after the earthquake is
y = −2 × 10−5x + 17.033. A comparison of the slopes of the curves shows that the tem-
perature attenuation rate before the earthquake was 1.5 times faster than the rate after the
earthquake, which may be attributable to some factors slowing the temperature attenuation.
The XKE ground temperature observation station is in the southern part of the epicentral
rupture zone, which is the uplift area [27]. There may have been ascending subsurface
heat flow associated with the surface deformation, which caused the temperature to rise.
Replenishment of this heat flow would have slowed the temperature attenuation. From
another perspective, the temperature increase caused by the upwelling of hot matter after
the earthquake did not reach the magnitude of the Jiashi coseismic change. Therefore, the
coseismic geothermal change of the Jiashi Ms = 6.4 earthquake may have been the result of
the combination effect of earthquake rupture friction and subsurface upwelling.
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5. Conclusions

By studying the coseismic temperature variation of the Jiashi Ms = 6.4 earthquake,
three important conclusions were obtained: (1) Coseismic stress transfer can cause local
bedrock compression and heating at the ground temperature observation station. (2) Jiashi
Ms = 6.4 earthquake fault rupture and friction released a large amount of heat quickly,
formed a thermal field, and caused a temperature surge. Due to the lower thermal conduc-
tivity of the sandstone with high porosity, the heat decayed quickly during the sandstone
transfer process, but the fluid in cracks played a major role in assisting the transfer of heat.
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(3) The heat source of the Jiashi Ms = 6.4 earthquake should have been an upwelling of
subsurface fluids, which could be approved by Xin et al. [22].

In general, the coseismic geothermal changes of the Jiashi Ms = 6.4 earthquake provide
a case study revealing the frictional heating of earthquake rupture and seismic fluid migra-
tion. The study also provides practical experience illustrating the temperature efficiency
of ground conduction. There are additional deep-seated problems associated with the
relationships among ground temperature changes, stress changes, and earthquakes, which
need to be explored further.
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