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Abstract: The boundary between high-concentration aerosols (haze) and clouds is ambiguous and
the mixing of aerosols and clouds is complex in terms of composition and structure. In particular, the
contribution of biomass burning aerosols (BBAs) to global warming is a source of uncertainty in the
global radiation budget. In a previous study, we proposed a method to detect absorption aerosols such
as BBAs and dust using a simple indicator based on the ratio of violet to near-ultraviolet wavelengths
from the Global Change Observation Mission-Climate/Second-Generation Global Imager (GCOM-
C/SGLI) satellite data. This study adds newly obtained SGLI data and proposes a method for the
direct detection of severe biomass burning aerosols (SBBAs). Moreover, polarization data derived
from polarization remote sensing was incorporated to improve the detection accuracy. This is
possible because the SGLI is a multi-wavelength sensor consisting of 19 channels from 380 nm in the
near-ultraviolet to thermal infrared, including red (674 nm) and near-infrared (869 nm) polarization
channels. This method demonstrated fast SBBA detection directly from satellite data by using two
types of wavelength ratio indices that take advantage of the characteristics of the SGLI data. The SBBA
detection algorithm derived from the SGLI observation data was validated by using the polarized
reflectance calculated by radiative transfer simulations and a regional numerical model—scalable
computing for advanced library and environment (SCALE). Our algorithm can be applied to the
detection of dust storms and high-concentration air pollution particles, and identifying the type of
high-concentration aerosol facilitates the subsequent detailed characterization of the aerosol. This
work demonstrates the usefulness of polarization remote sensing beyond the SGLI data.

Keywords: GCOM-C/SGLI; polarization remote sensing; numerical model SCALE; color ratio;
radiative transfer

1. Introduction

It is well-known that severe wildfires are not limited to equatorial regions but are
increasing globally [1–7]. Wildfires not only cause extensive damage in the area where
they occur but also in areas far from the fire [8–10]. Biomass burning aerosols (BBAs) can
travel great distances, causing air pollution and posing a health hazard to humans [11–14].
Excessive air pollution due to events such as severe wildfires and desert dust storms [15,16]
is still not fully understood. In urban areas, anthropogenic activities have led to an in-
creased concentration of small harmful aerosols known as suspended particulate matter
(PM2.5) [17,18]. Nevertheless, such severe haze events are often left as “undecided” pixels
in satellite products because aerosol retrievals from passive satellite sensors are usually
restricted to cloud-free scenes. Here, over 20 years of aerosol observations by satellite are
briefly reviewed. Historically, the Total Ozone Mapping Spectrometer (TOMS) played an
important role in aerosol remote sensing. The TOMS demonstrated that ultraviolet data
were available for the detection of absorbing aerosols such as carbonaceous aerosols or
mineral dust [19]. The imaginary part of the refractive index of an absorbing aerosol takes
a large value. The moderate resolution imaging spectroradiometer (MODIS) is the most
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popular satellite-based tool for aerosol observations [20]. The polarization and directional-
ity of the Earth’s reflectance (POLDER) is an innovative sensor for aerosol remote sensing.
The POLDER has demonstrated the usefulness of polarization information for the analysis
of aerosols [21], clouds, and aerosol above cloud systems [22].

The “undecided” pixels show the mixing phase of clouds and aerosols. It has been
demonstrated that aerosols have various direct and indirect effects on the climate and
that aerosols have negative effects on surface temperatures and positive effects on cloud
cover [23,24]. Further knowledge of cloud formation and microphysics is necessary to
address these problems [25]. In any case, retrieving aerosols in cloudy scenes is difficult
but unavoidable. Aerosol modification due to fog and clouds has been reported from
ground observation data over the years [26]. The spectral radiance measurements from the
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)
have been examined to derive the aerosol contribution in cloudy scenes [27]. Rosenfeld
has done a lot of excellent work on the impacts of cloud–aerosol interactions on cloud
microstructure and precipitation by using a combination of in situ aircraft measurements,
satellite remote sensing, and model simulations [28]. However, the uncertainty regarding
radiative forcing through aerosol–clouds is still problematic [29]. Indeed, the boundary
region between aerosols and clouds is a fascinating subject and their similarities and
differences can be examined both theoretically and observationally.

As the first step in the original task of elucidating these high-concentration aerosols,
this work proposes a method for the direct detection of severe wildfire-derived BBAs
(SBBAs) from satellite data. The Japan Aerospace Exploration Agency’s Global Change
Observation Mission-Climate (JAXA/GCOM-C) was launched on 23 December 2017, with
a second-generation global imager (SGLI) on board. The SGLI is a 19-channel multispectral
sensor with wavelengths ranging from near-ultraviolet (UV) to thermal infrared (IR),
including red and near-IR polarization channels. Our recent work demonstrates that these
features of the SGLI are useful for characterizing BBAs. The near-UV data are available for
the detection of absorbing aerosols such as BBAs or dust [30]. The radiation simulation has
been simplified by using the vector type radiative transfer equation because polarization
information mainly represents the upper atmospheric field [31]. Furthermore, we show
that SBBAs can be detected directly from SGLI data using these two unique SGLI features.

The remainder of this paper is organized as follows. Section 2 describes the method
used to perform this study. The results of the SGLI data processing over the period
2018–2021 are described. Section 3 presents the specific results of SBBA detection according
to the methods used in Section 2. In Section 4, the results are carefully examined from
the standpoint of simulations with a regional numerical model—scalable computing for
advanced library and environment (SCALE), and radiative transfer calculations [32–34].
Finally, a summary of the results and our future research plans are presented.

2. Method
2.1. Detection of SBBAs with SGLI Near-UV Data

The characteristics of aerosols can be represented by size and composition. Atmo-
spheric aerosols are classified into six categories based on accumulated NASA/AERONET
data: (1) biomass burning, (2) rural, (3) continental pollution, (4) dirty pollution, (5) desert
dust, and (6) polluted marine [35]. We restricted our study to continental particles of natural
origin, that is, BBAs and dust. Thus, identifying the aerosol type and cloud discrimination
were performed using ADEOS-2/GLI data [30]. The ADEOS-2/GLI (Advanced Earth
Observing Satellite-2/Global Imager) is the predecessor of the SGLI. BBAs and dust have
the property of absorption at ultraviolet wavelengths. Using this property, TOMS extracted
absorbing aerosols [19].
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The term absorbing aerosol means large values for the imaginary part of the refractive
index. Our absorbing aerosol index (AAI) followed the TOMS-AI (Aerosol Index) [19], but
in a much simpler form, that is, the ratio of observed data alone [30]:

AAI = R(412)/R(380), (1)

where R represents the reflectance observed by the SGLI at the near-UV (380 nm) and violet
(412 nm) wavelengths. BBAs and dust aerosols are considered as they are typical examples
of absorbing aerosols. The primary sources of BBAs and dust are wildfires and deserts,
respectively. We chose the area over a large-scale wildfire outbreak as it was regarded as
a proper candidate for the BBAs feasibility study. Figure 1 shows that between 2018 and
2021, the areas most affected by wildfires were North America, Amazon, South Africa,
Siberia, and Southeast Asia, and the Sahara Desert emitted the most dust. We chose the
GCOM-C/SGLI/level-2 data in the EQA format (sinusoidal equal area), with a resolution
of 1/24 degrees (4.6 km). The number of total pixels for the BBAs was approximately
3,000,000. Note that the cloud pixels were excluded by using the GCOM-C/SGLI L2 cloud
flag classification. As wildfires are a sudden natural phenomenon and are strictly limited
to the area of intense wildfire, the data available for BBAs were less than those for dust.
However, because we strictly selected severe wildfires, the contamination of other types
of aerosols was reduced, and we considered this number of pixels to be sufficient for the
statistical analysis of BBAs. On the other hand, the number of total pixels for dust was
approximately 2,000,000.
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Figure 1. Data sampling areas from GCOM-C/SGLI data from 2018 to 2021. Coastlines are repre-
sented using the equal-latitude and equal-longitude projection method from the World Data Bank
(https://www.evl.uic.edu/pape/data/WDB/, accessed on 1 September 2022).

Figure 2a,b show the results for BBAs while 2c and 2d are the results for dust.
Figure 2a,c show the change in AAI values versus the aerosol optical thickness at 500 nm
(AOT (500)) provided by JAXA/SGLI/L2/ver-2 for BBAs and dust. The AOT is the thick-
ness of the atmosphere from an optical point of view. Note that the values of AOT > 5.0
are unavailable from SGLI/L2/ver-2 products; hence, the areas of AOT > 5.0 are colored
grey. That is, the AOT ranges from 0 to 5. Figure 2b,d present the histograms of AAI
pixel numbers. Figure 2a,c show that the most pixels are concentrated in AOT < 2. Fur-
thermore, the surface reflection is no less than the scattering by atmospheric particles in
AOT < 0.3 when the atmosphere is optically clear. Therefore, the histograms of the AAI
pixel numbers are shown in Figure 2b,d. Additionally, histograms of the AAI divided into
three parts (AOT ≤ 0.3, 0.3 < AOT ≤ 2, 2 < AOT ≤ 5) are presented in Figure 2(b1–b3)
for BBAs and in Figure 2(d1–d3) for dust, where N, m, and σ denote the total number of
data items (forest fires or dust pixels), mean value, and standard deviation, respectively.
Figure 2(b1–b3,d1–d3) also show that many pixels have an AOT < 2.

https://www.evl.uic.edu/pape/data/WDB/
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Figure 2. (a) AAI as defined by Equation (1) versus AOT (500) from JAXA/SGLI/L2/ver-2 for BBAs.
Gray areas indicate AOT > 5.0 without SGLI/L2/ver-2 products. (b) Frequency histograms of AAI
for BBAs. Histograms of AAI divided into three parts (AOT ≤ 0.3, 0.3 < AOT ≤ 2, 2 < AOT ≤ 5) are
presented in (b1–b3) for BBAs, where N, m and σ denote the total number of data items, mean value
and standard deviation, respectively; (c) same as (a) but for dust; (d) same as (b) but for dust. This is
denoted by the arrows at both ends drawn in (a,c). The dashed and dashed-dotted lines represent
AOT (500) = 0.3 and AOT (500) = 2, respectively. The asterisk in (d3) represents the scale of the
vertical axis on the right side. The scale of the vertical axis on the left side is used in (d1,d2). The red
dots indicate the average value of the AAI for every 0.001 of the AOT (500).
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From Figure 2, the following can be inferred:

1. For AOT ≤ 0.3, the effect of ground surface reflection can be seen (as the aerosols
are optically thin and the ground can clearly be seen). In particular, for BBAs, the
histograms show two peaks, indicating a difference in the AAI between reflected
and scattered light. There is no apparent bimodal shape for dust, probably because
dust aerosols are derived initially from desert soils and have the same wavelength
characteristics.

2. Most of the aerosols exist in AOT ≤ 2. As a result, AAI values are concentrated in
this region, and the mean value for the entire AOT region is within 0.3 < AOT ≤ 2.
This tendency is particularly strong in the case of dust, with almost all data falling
within AOT ≤ 2. Therefore, the units on the vertical axis in Figure 2(d3) were changed.
Naturally, it is necessary to take into account that the number of dust data items is
only two-thirds that of the BBAs, that the data is limited to the Sahara Desert, and
that it is challenging to retrieve the AOT from the satellite over the desert.

3. The AAI values increase with AOT for BBAs and may exceed 1.1, around the limit
value of AOT, which is 5. Then, BBAs with AOT (500) > 5, which are not derived in
the official product, are referred to as SBBAs in this work.

4. In the case of dust, the increasing trend in the AAI values with AOT stops around
AOT = 2, converges, and never exceeds 1.1. Therefore, AAI = 1.1 can be regarded as a
threshold that differentiates between SBBAs and dense dust. This is the intention of
the arrows at both ends drawn in Figure 2a,c.

Our previous work revealed that the condition of AAI ≥ 0.83 indicates the presence
of BBAs [31]. These results coincide with those presented in Figure 2a. Furthermore, the
current study shows that the AAI would have a value of 1.1 or higher in the case of SBBAs.
Notably, the AAI values of BBAs increased with optical thickness, while those of dust show
similar behavior with optical thickness but they converge around AOT = 2, suggesting that
AAI ≥ 1.1 helps to detect extremely severe biomass burning aerosols.

2.2. Detection of SBBAs with Polarized Radiance

GCOM-C/SGLI is a multi-channel sensor that includes near-ultraviolet wavelengths
that can observe various geophysical parameters including not only aerosol properties,
but also cloud, land cover, land biomass, ocean biomass, and coastal changes. Thus, it can
detect SBBAs using the indicator AAI defined in Equation (1); however, it has already been
in operation for five years. Therefore, it is necessary to develop and operate a successor
to the SGLI, and an alternative to the indicator AAI should also be considered. The SGLI
is a follow-on sensor in the POLDER series of ADEOS-1, -2, and PARASOL and it has
unique capabilities for measuring polarization [19,21]. It was designed to acquire scattered
light Stokes vector parameters (I, Q, and U) at moderate scattering angles (approximately
90–120◦) with a 45◦ back and forth tilt observation at two wavelengths, red and near-IR.
Polarization information provides new opportunities for future Earth observation satellite
data applications and a return to the polarization remote sensing era. First, it is expected to
be applied to EU-METSAT/EPS-SG/3MI, which is scheduled to be launched in 2024 [22].
In addition, it would be useful to validate the AAI index if another detection method for
SBBAs could be devised.

Figure 3 is the same as Figure 2 but for the ratio of polarized radiance (PRI), which is
defined as

PRI = PR(869)/PR(674), (2)

where PR represents the polarized radiance of reflectance observed by the SGLI defined in
the case of Stokes parameters (I, Q, U, V) at the wavelength (λ) as

PR(λ) =
√

Q(λ)2 + U(λ)2, (3)
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Gray areas indicate AOT > 5.0 without SGLI/L2/ver-2 products. (b) Frequency histograms of AAI
for BBAs. Histograms of AAI divided into three parts (AOT ≤ 0.3, 0.3 < AOT ≤ 2, 2 < AOT ≤ 5) are
presented in (b1–b3) for BBAs, where N, m, and σ denote the total number of data items, mean value,
and standard deviation, respectively; (c) same as (a) but for dust; (d) same as (b) but for dust. The
asterisk in (d3) represents the scale of the vertical axis on the right side. The red dots indicate the
average value of the PRI for every 0.001 of the AOT (500).

As shown in Figure 3, the typical values of PRI for the dust aerosols did not change
much with AOT. The PRI in AOT ≤ 2 has large variations, occasionally reaching as high as
1.5, while that in AOT > 2 tends to converge to a smaller value. On the other hand, PRI
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values for BBAs increase with AOT, exceeding 1.2 for AOT > 2, and they show a tendency
for PRI ≥ 1.2 cases to increase with AOT. This indicates that if AOT > 5, the PRI value of
SBBAs is more than 1.2.

Figure 4 presents the scatterplots for AAI and PRI. For BBAs, AAI, and PRI have a
linear proportional relationship (see Figure 4a and the correlation coefficient γ). However,
in the case of dust (Figure 4b), the linear relationship between the two indices is not clear,
AAI and PRI. Figure 4c is a superimposed image of Figure 4a,b. Here, red represents BBAs,
blue represents dust, and green represents the area where the two overlap. In other words,
the AAI and PRI in the green region are not useful for separating BBA and dust, and denote
“not identifiable.” It was observed in Figure 2 that AAI increases with AOT. The SBBAs
are referred to as BBAs with AOT (500) > 5. Therefore, the lower red part in Figure 4c
represents the BBAs and the upper SBBAs.
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3. Specific Results of SBBA Detection

Figure 5 presents the biomass burning events captured by GCOM-C/SGLI on
12 September 2022, in western North America. Figure 5a is a color composite image
in which the three primary colors (R, G, B) correspond to the usual (674, 530, 443 nm)
wavelength bands, and a large amount of smoke from the wildfire is clearly visible. The
red and orange dots represent the hotspots on 11 and 12 September 2020, respectively,
obtained from Terra/MODIS [36]. Note that the transit time of Terra is 19:35 (UTC) and
that of GCOM-C is around 19:11. Although the transit times of both satellites are nearly
identical, the smoke in the SGLI image on September 12 originated from fire prior to the
SGLI observation. Figure 5b presents the AOT (500) derived from JAXA/SGLI/L2/ver-2,
where the definite clouds are denoted by gray, and the white pixels represent uncertain
pixels, namely, those left as “uncertain” pixels in JAXA/SGLI/L2/ver-2 products. These
uncertain white-colored pixels represent pixels with an AOT > 5.0 and pixels with an
undetermined AOT due to various causes, such as the complex structure of the ground
surface and cloud shadow. The latter can be inferred from the quality assurance (QA)
flag of the SGLI/L2 aerosol product. Figure 5c shows the results obtained by subtracting
these pixels from the total number of uncertain pixels to obtain the pixels corresponding
to AOT > 5.0 (hereafter named SBBAs candidate pixels for convenience). In other words,
these pixels may indicate the presence of optically dense aerosols, the SBBAs from wildfires
that are the target of this study. The light pink color in Figure 5c represents those candidate
pixels that exist for SBBAs. The red squares in Figure 5b denote the NASA/AERONET
stations for reference [37]. Several AERONET sites exist in our target area. The ground
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observation data from NASA/AERONET is valuable and indispensable for validating the
characteristics of the atmospheric particles from satellite observations [34].
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Figure 5. SGLI observation results in western North America on 12 September 2020. (a) SGLI color
composite image with MODIS hot spots from Terra/MODIS/MOD14 [36]. Orange and red dots
represent the AERONET/PNNL site and MODIS/hot spot on 11 and 12 September, (b) SGLI AOT
(500) from SGLI/L2/ver.2 with NASA/AERONET sites [37], (c) the candidate areas for the existence
of SBBAs.

Figure 6a presents the distribution of AAI obtained from the SGLI over the same area
as that shown in Figure 5b. Figure 6b, a clipped version of Figure 6a, shows the candidate
areas for SBBAs (denoted by light pink in Figure 5c), and the definite clouds defined with
JAXA/SGLI/L2/ver-2 are represented by gray. Note that the color scale of Figure 6b is
enlarged to [1.0, 1.2] from [0.8, 1.3] in Figure 6a to make the SBBA candidate area more
detailed for clarity. The pixels with lower values than the threshold of the AAI for the
indication of SBBAs, i.e., AAI = 1.1, are denoted by green. There is a substantial number
of green pixels on the periphery of the SBBA candidate area. This is also confirmed in
Figure 2a, where AAI = 1.1 is close to the upper limit in the SGLI/BBA sampling data.
In other words, a pixel that meets the requirements of AAI ≥ 1.1 meets the rigorous
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requirements for SBBA certification. Figure 6c,d are the same as Figure 6a,b, respectively,
but for PRI, it can be seen that there are no green pixels at all. Almost all of the candidate
pixels for SBBAs satisfy the condition of PRI ≥ 1.2. These results are consistent with those
presented in Figure 3a. This shows that BBAs may satisfy the condition of PRI ≥ 1.2 even if
the AOT is not so high. Figure 6 shows that the pixels satisfying the conditions of AAI ≥ 1.1
and PRI ≥ 1.2 meet the necessary and sufficient conditions for SBBA detection. This is
also indicated in Figure 4a, which presents a clear linear relationship between AAI and
PRI. The condition of AAI ≥ 1.1 is more demanding for the detection of SBBAs, at least
in this scenario. The AAI ≥ 1.1 pixels in Figure 6b can be identified as SBBAs. For the
detection of SBBAs, only AAI is required, meaning that the indicator PRI is useless or an
auxiliary condition; however, there could be more. This point, including the usefulness of
polarization information, is addressed in the next section. There is no strict delineation of
SBBAs. In this study, we are merely using SBBAs to indicate highly optically thick BBA
particles. From this perspective, the green area in Figure 6b is of great interest as a transition
zone or a mixing zone from BBA to SBBAs. It would be preferable to assume that the
candidate site for SBBAs satisfies AAI ≥ 1.1 or PRI ≥ 1.2.
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Of note, there is no discontinuity between the cloud and SBBA regions, as shown in
Figure 6a,c. For reference, the distribution of the cloud optical thickness (COT (500nm))
obtained from the SGLI/L2/ver.2 product is shown in Figure 6e. The COT values are
almost equivalent to those of the AOT in Figure 5b. Figure 6f is a superimposed view
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of both. Figure 6a,c,f show that there is no clear boundary between aerosols and clouds
and that the quantity of each is continuously distributed. This suggests that very thick
BBAs or SBBAs cover the land area in the upper center half of Figure 6. In particular,
the PRI distribution in Figure 6c strongly indicates that this is the situation. Polarization
information is considered in the next section. In the discussion below, the small black
square represents the NASA/AERONET site PNNL and the black circle indicates a point
in the cloud.

4. Discussion: Role of Polarization

Here, we consider polarization more carefully. Figure 7 compares the SGLI measure-
ments with the wind speed and direction simulated by the numerical regional model,
SCALE over the same area as Figure 5a on 12 September 2020. Figure 7a–d show the images
from the SGLI measurement over the same scene as Figure 5a at wavelengths of 674 and
869 nm. The PR is shown in Figure 7a,b, and R is shown in Figure 7c,d at wavelengths
of 674 and 869 nm. The radiance images correspond well to the color composite image
in Figure 5a. Typically, AOT decreases with wavelength, and the amount of light scat-
tered decreases; hence, the R at the top of the atmosphere decreases, but the distribution
pattern of the radiance is maintained. On the contrary, the polarized radiance image in
Figure 7a,b show a different pattern. Considering the wavelength dependence of AOT,
Figure 7a,b show that the polarized radiance reflects the aerosol properties of the optically
thin atmosphere or those in the upper atmosphere. For more clarity, the wind behavior at
10 m above the ground and at 500 hPa from 15:00 to 19:00 (UTC), which is approximately
10 min before the SGLI passage, has been simulated by a regional numerical model—SCALE
with a 30 × 30 km resolution [34]. Figure 7e shows the time-averaged value of the wind at
500 hPa (corresponding to an altitude of about 5500 m) from 15:00 to 19:00 (UTC). Figure 7f
shows the same wind behavior as that in Figure 7e at 10 m above the ground. It can be seen
how the wind from the southwest to the northeast carries the wildfire smoke, as indicated
by the many hot spots, which are denoted by orange dots in the lower left to the upper
right. The small black square in Figure 7 denotes the NASA/AERONET site PNNL. The PR
reflects the upper atmosphere motion well (Figure 7e), and the R reflects the accumulated
atmospheric dynamics (Figure 7f). PR is sensitive to phenomena on a short space scale,
even in a very optically thick atmosphere. That is, polarization information is useful for
understanding aerosols in the upper layer of the atmosphere at the time of observation.

Radiative transfer calculations in the polarized radiation field of the combined sys-
tem of Earth’s atmosphere and Lambert’s bottom surface would help us understand the
issues discussed above, namely, the roles of polarized radiation and radiance in satellite
observation analysis. Figure 8a,b present the numerical results of PR and R, respectively,
at a wavelength of 674 nm and 869 nm, denoted by the dashed curve and the dotted one,
respectively, from radiative transfer simulations in the Stokes vector field (I, Q, U, V) against
AOT (500 nm). For reference, AOT (674 nm) and AOT (869 nm) corresponding to AOT
(500 nm) are shown at the bottom table outside the frame of Figure 8a. Of note, Figure 8 is
just an example of the simulated results of radiative transfer for validating the SGLI data
analysis presented in Figures 2 and 3. However, the directional information in Figure 8 uses
an AERONET/PNNL site on 12 September 2020 (see Figures 7 and 9). The characteristics
of BBAs, especially the complex refractive index, have been actively discussed in recent
years in terms of observation, experiment, and theory; these are briefly reviewed in the next
section, although the basic BBA model [38] is used in Figure 8. The solid curve in Figure 8a
represents the PRI calculated by Equation (2) using numerical values of the simulated PR
(674) and PR (869). Figure 8 shows:

1. The value of the PR (674) increases with AOT up to AOT (500) ≈ 2 (i.e., AOT (674) ≈ 1)
while maintaining a higher value than PR (869) and then converging to a constant value;

2. The value of the PR (869) increases with AOT up to AOT (500) ≈ 4 (i.e., AOT (869) ≈ 1)
and continues to increase slowly thereafter. The PR (869) has higher values than PR
(674) after AOT (500) ≈ 2;
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3. The resulting PRI, the ratio of the PR (869) to PR (674), exceeds 1 after AOT (500) ≈ 2
and has a value of 1.2 at AOT (500) = 10, the maximum value of AOT (500) in Figure 8;

4. The R values at both wavelengths increase with AOT.
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Figure 7. (a) PR (674 nm), (b) PR (869 nm), (c) R (674 nm), and (d) R (869 nm) observed by the SGLI;
(e) wind behavior at 500 hPa and (f) wind behavior at 10 m above the ground simulated by numerical
regional model SCALE over the same scene as Figure 5a on 12 September 2020. The magnitude of
the wind speed is presented below the figure. The small black square and orange dots represent the
AERONET/PNNL site and MODIS/hot spots on 11 and 12 September, respectively.
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Figure 8. Numerical results of the reflectance from the finite atmosphere consist of the basic BBA
model in terms of the vector radiative transfer method. The polarized radiance (PR) in (a) and the
radiance (R) in (b) at a wavelength of 674 nm and 869 nm are represented by a dashed curve and
dotted one, respectively, against AOT (500 nm). The solid curve in (a) denotes the PRI defined in
Equation (2).
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(a) Directional information from SGLI and observed data. (b) Spectral AOT by AERONET.
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The specific values depend on the BBA model, but the trend in Figure 8 remains the
same. This has been confirmed by other BBA models with different sizes and refractive
indices. Thus, the PR begins to saturate when AOT (λ) exceeds one, suggesting that the PR
reflects the optical properties of the upper atmosphere even in an optically thick atmosphere.
Therefore, it makes sense that the upper atmospheric wind behavior in Figure 7e is similar
to the PR distributions in Figure 7a,b, as already noted above. On the contrary, R increases
with AOT, although the rate of increase depends on λ. Radiative transfer calculations
equivalent to the AAI were not made here because of the strong dependence of the BBA
model on the refractive index at short wavelengths. However, it is also convincing because
the distribution of the satellite-observed R shown in Figure 7c,d is consistent with the
behavior of the ground surface winds. Based on the above, it can be stated that PRI > 1.2
has been validated as an indicator for detecting SBBAs.

Figure 9 shows the measurements at the NASA/AERONET/PNN site on 12 September
2020, when the Ångströme Exponent (AE) takes around 1.63 as a reference. If the goal is to
derive aerosol properties, the aerosol model needs to be more rigorously described and
optimized for measurements at PNNL NASA/AERONET sites by varying the characteristic
parameters. As this work aims to propose an index for detecting SBBA candidate pixels
directly from satellite data, as a preliminary step for exact aerosol characterization, we
adopted a basic BBA model [39] rather than one specific to the object of analysis. For
example, the small black circles in Figure 6c,d,f point to a pixel in the water cloud. That
pixel has a COT(500) ≈ 6.4. Similarly, the small black squares in Figure 6c–e denote
AERONET/site PNNL, for which AOT values have not been determined in the official
product from JAXA/SGLI/ver.2 due to an AOT (500) > 5. Ground measurements at the
NASA/AERONET/PNNL site suggest a larger AOT (500) value than 5.0 (refer to Figure 9).
However, there is no discontinuity between the black circles and black squares in the
distribution plots in Figure 6c–f. The numerical results in Figure 8 also indicate a smooth
transition from optically thick aerosols to thin clouds. This may suggest the need to treat
the coexistence and mixing of clouds and aerosols as a whole rather than treating clouds
and aerosols as separate phenomena. This is an urgent and necessary task but highly
challenging. First, it is essential to describe the geometry of the mixed state of the two and
elucidate their optical and chemical properties before radiative transfer computations.

5. Summary and Future Plans

In this study, we proposed two efficient indices: AAI, as found by Equation (1) and
PRI, as found by Equation (2) to detect SBBAs caused by wildfires directly from satellite
observations by utilizing GCOM-C/SGLI, which can simultaneously observe radiance and
polarization, and we attempted to demonstrate their utilization from various standpoints.
By first detecting the existence of SBBAs, the preparation of detailed BBAs models can
be facilitated based on the satellite data before aerosol retrieval, where our algorithm has
been described in detail in previous work [34]. Wildfires have usually been thought of as
local, short-term phenomena [40,41]; however, in recent years, large-scale forest fires have
become more frequent in many parts of the world. It is well-known that the long-distance
transport of smoke particles significantly impacts air pollution and global warming [9].
Thus, the optical properties of aerosols derived from wildfires, as discussed here, have
been recognized, and their chemical and microphysical properties are frequently referred
to [42–49]. The next challenge is to achieve aerosol retrieval that considers the characteristics
of this multifaceted BBA model. As updrafts accompany forest fires, the generated aerosol
particles flow to higher altitudes. A number of reports indicate that up to about 30% of
fire plumes over North America have reached the free troposphere [50]. Plumes that are
sufficiently buoyant due to the affective air currents of the fire tend to be trapped near
stratified stable layers. Aerosols injected at high altitudes significantly impact atmospheric
chemistry and climate [51]. The polarization information is also useful for understanding
the dynamics of aerosols in the upper layer. In the future, we would like to compare the
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results of our simulations with those of chemical transport models. Our challenge is to
introduce a more realistic description of wildfires into the regional numerical model.

Our intention in focusing on optically thick aerosol events (SBBAs) was to take the
opportunity to clarify the boundary between clouds and aerosols or the mixing region [26].
In addition, we wanted to demonstrate the usefulness of polarization information as a
means of achieving this. Figure 10 illustrates how the multidirectional observation data
of radiance can be obtained by using the different observation barrel angles of the SGLI
radiation observation optics and polarization optics. Figure 10 shows how both the radiance
optics and polarization optics of the SGLI can be used to obtain multidirectional observation
data for radiance. As shown in the figure, the radiance optics takes a straight down view,
and the polarization optics take an oblique observation of ±45◦ (the switch between 45◦ and
−45◦ is made above the equator) [52]. We want to capture the geometric attributes of the
atmosphere based on the multidirectional information of R in addition to information on
the upper atmosphere, which is a characteristic of PR. The SGLI multidirectional database
is currently being prepared for this purpose. Once the candidate area for SBBAs has been
selected, we can continue to the characterization step of the BBAs around the SBBA area.
An example of this task has already been described in our previous work [34]. However, at
that time, the detection of SBBAs was only performed using AAI values based on SGLI data
for the two-year period from 2018 to 2019. In this paper, we have added newly obtained
SGLI data for 2020 and 2021, as well as the AAI and PRI index using polarization data to
further improve the detection of SBBAs. We are currently refining the processing steps and
RT methods in order to extend the derivation of aerosol properties over a wider range of
regions and days. Above all, we aim to obtain geometric information by taking advantage
of multi-directional data rather than limiting it to the cases described in this work. If we can
obtain cross-sectional observation information, we expect to capture the growth process of
aerosols to clouds and the layer structure of clouds and aerosols (aerosols above clouds and
the aerosol layer below clouds). Then, the numerical model simulation can be of great help.
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