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Abstract: The dynamic evolution of particle size distributions (PSDs) during coagulation is of great
importance in many atmospheric and engineering applications. To date, various numerical methods
have been developed for solving the general dynamic equation under different scenarios. In this
study, a radial basis function (RBF) method was proposed to solve particle coagulation evolution.
This method uses a Gaussian function as the basis function to approximate the size distribution
function. The original governing equation was then converted to ordinary differential equations
(ODEs), along with numerical quadratures. The RBF method was compared with the analytical
solutions and sectional method to validate its accuracy. The comparison results showed that the RBF
method provided almost accurate predictions of the PSDs for different coagulation kernels. This
method was also verified to be reliable in predicting the self-preserving distributions reached over
long periods and for describing the temporal evolution of moments. For multimodal coagulation,
the RBF method also accurately predicted the temporal evolution of a bimodal distribution owing
to scavenging effects. Moreover, the computational times of the RBF method for these cases were
usually of the order of seconds. Thus, the RBF method is verified as a reliable and efficient tool for
predicting PSD evolution during coagulation.

Keywords: radial basis function method; particle size distribution; population balance; coagulation

1. Introduction

The population balance equation (PBE), also known as the general dynamic equa-
tion, plays an important role in describing the evolution of particle size distributions for
various atmospheric and engineering applications, including the airborne transmission of
COVID-19 [1], atmospheric aerosol formation and transport [2–4], combustion-generated
nanoparticles [5,6], polymerization and crystallization processes [7,8], and nuclear radioac-
tive aerosols [9]. The basic form of the population balance equation originates from the
Smoluchowski equation, which describes the temporal evolution of a continuous particle
size distribution (PSD) caused by coagulation [10]. Because of complex integral–differential
characteristics, various numerical methods have been proposed to solve the PBE. The
numerical methods can be categorized into the sectional method [11,12], method of mo-
ments [13–15], stochastic method [16–18], and spectral method [19,20]. These methods are
based on different principles and exhibit different accuracies and efficiencies. Detailed
comparisons are provided in previous studies [21,22].

Among the existing numerical methods, many assume that the PSD can be described
by a specific distribution function, and the parameters of this predefined distribution can be
solved using moment equations. The typical distribution patterns include the well-known
log-normal distribution [23], the improved log-skew normal distribution [24], the modal
aerosol approach [25], and weighted sum of number density functions with a log-normal
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kernel, gamma kernel, or beta kernel [26,27]. Although these methods achieve moment
closure and well predict moments, they generally lack accuracy and stability in predicting
the size distribution evolution. This is mainly because the PSD information is missing when
transforming the PBE into a finite set of moment equations [28]. Moreover, the predefined
distributions are not sufficiently flexible to represent the unsolved particle size distribution.

In recent years, radial basis functions (RBFs) have been extensively applied in solving
complex numerical problems involving ordinary differential equations (ODEs), partial
differential equations (PDEs), and integral equations [29–31]. Moreover, RBFs are popu-
lar kernel functions used in neural networks and have many applications in predicting
atmospheric pollutant concentrations [32–35]. The basic principle of RBFs is their superior
ability to approximate continuous functions. Therefore, in a previous study, RBFs were
adopted to solve the PBE for particle coagulation [36]. The number density function was
approximated using two-dimensional Gaussian radial basis functions with volume and
time as the variables, which provided an accurate description of PSDs over a period of time
but were limited to predicting long time-period, self-preserving distributions. Subsequently,
Alzyod and Charton [37] proposed a meshless radial basis method to solve the PBE for
particle growth, nucleation, coagulation, and breakage. They used multiquadric basis
functions and transformed the PBE into ODEs, and, in another study, proposed an adaptive
radial basis method to model the hydrodynamic behavior of liquid–liquid dispersions [38].
However, these method formulations are difficult to use and validations of the method
are only for simple coagulation cases, which cannot guarantee the accuracy of the method
for more general coagulation problems. Therefore, the RBF methods proposed in previous
studies are incomplete and need further improvements and more sufficient validations.

This study further develops a reliable and robust RBF method to solve the PBE for
coagulation and provides an adequate validation of the method under various possible
coagulation situations. Section 2 presents the theory and numerical details of the method.
The governing equations were derived based on the radial basis function approximation.
The integral terms were obtained using the Gaussian quadrature, along with mathematical
treatments that decreased the quadrature error. The final derived equations are a set of
ODEs that can be easily solved using commercial ODE solvers. Section 3 validates the
RBF method for various coagulation cases, including constant kernel and sum kernel
coagulations, realistic Brownian coagulation in the continuum and free-molecular regimes,
self-preserving distributions, and multimodal coagulation. The predictions obtained using
the RBF method were compared with the analytical solutions and those obtained using a
sectional method to validate its accuracy and efficiency. Finally, Section 4 summarizes the
content of this study.

2. Materials and Methods

A radial basis function (RBF) is a function whose value changes with the distance from
a center point. Typical radial basis functions are the Gaussian, multiquadric, and inverse
multiquadric functions. In this section, the theory and numerical procedures of the radial
basis function method are presented in detail.

2.1. Governing Equations

For particle coagulation, the governing PBE to describe the time evolution of particle
size distributions is expressed in the following integral–differential form:

∂n(v,t)
∂t = Bcoag − Dcoag = 1

2

∫ v
0 β(v− v, v)n(v− v, t)n(v, t)dv

−n(v, t)
∫ ∞

0 β(v, v)n(v, t)dv
(1)

where n(v, t) is the number density function for the particle volume v at time t, Bcoag is
the birth term of particles with volume v caused by coagulation, Dcoag is the death term
of particles with volume v caused by coagulation, and β(v, v) is the coagulation kernel for
two particles with volumes v and v, respectively.
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The principle of the RBF method is to approximate the number density function
n(v, t) using the weighted sum of the radial basis functions. In our previous study [36],
both volume v and time t were regarded as the input variables into the two-dimensional
Gaussian functions, thereby complicating the solving process. A convenient approach is to
use only a one-dimensional Gaussian function for volume v and to make the coefficients
time-variant, which can be expressed as follows:

n(v, t) =
1
v

p

∑
i=1

λi(t)ϕi(ln v) (2)

ϕi(ln v) = exp[− ln2(v/vi)

2σ2
vi

] (3)

where λi(t) is the i-th coefficient that changes with time t, ϕi is the i-th Gaussian ker-
nel located at the center point vi, and σvi is the standard deviation of the i-th Gaussian
kernel. It should be noted that the logarithmic transformation from v to ln v is used in
Equations (2) and (3) because aerosol particle sizes are usually distributed on logarithmic
scales rather than on linear scales.

In addition to the normal RBF approximations, Equations (2) and (3) also have phys-
ical implications. The Gaussian function coupled with the logarithmic transformation
is equivalent to the widely used log-normal distribution. Thus, the approximation of
n(v, t) in Equations (2) and (3) can be interpreted as the superposition of many log-normal
sub-distributions, which is also consistent with the idea of a previous study [39]. Each
sub-distribution represents a flexible component; therefore, all sub-distributions have the
ability to approximate distributions of any shape.

Substituting Equation (2) into Equation (1) and calculating the derivative yields:

∂n(v, t)
∂t

=
1
v

p

∑
i=1

∂λi(t)
∂t

ϕi(ln v) = Bcoag(v, t)− Dcoag(v, t) (4)

According to the collocation method principle, for any given point v, Equation (4)
is automatically satisfied. For simplicity and realizability, the collocation points are set
to be the same as the center points of the Gaussian kernels. In this case, Equation (4) is
transformed into the following p equations:

1
vj

p

∑
i=1

∂λi(t)
∂t

ϕi(ln vj) = Bcoag(vj, t)− Dcoag(vj, t) (5)

where j = 1, 2, . . . , p.
Using the matrix representation for Equation (5) leads to the following governing

equations for the coefficients λi(t):
∂λ1(t)

∂t
∂λ2(t)

∂t
. . .

∂λp(t)
∂t

 =

{
1
vi

ϕj(ln vi)

}−1


Bcoag(v1, t)− Dcoag(v1, t)
Bcoag(v2, t)− Dcoag(v2, t)

. . .
Bcoag(vp, t)− Dcoag(vp, t)

 (6)

In Equation (6), the left array represents the time derivatives of λi(t), the first term
on the right-hand side is a constant matrix that depends only on the kernel function and
selected center points, and the second term is an array of coagulation integrals. The
calculations for these integrals are presented in Section 2.2.
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The initial conditions for Equation (6) is simply substituting t = 0 into Equation (2)
and using the initial size distribution, as follows:

n(v, 0) =
1
v

p

∑
i=1

λi(0)ϕi(ln v) (7)

By applying the same procedure as that for Equation (6), the initial values of λi(0) can
be calculated as follows: 

λ1(0)
λ2(0)

. . .
λp(0)

 =

{
1
vi

ϕj(ln vi)

}−1


n(v1, 0)
n(v2, 0)

. . .
n(vp, 0)

 (8)

Thus, Equation (6), together with the initial conditions in Equation (8), constitutes the
governing equations for λi(t), which is relatively concise compared with the original PBE.

2.2. Quadrature Approximation

For the governing Equation (6), the remaining issue is to calculate the complex inte-
grals for the birth term Bcoag and death term Dcoag. In our previous study [36], Bcoag and
Dcoag were calculated using the Gauss–Legendre quadrature and Gauss–Laguerre quadra-
ture, respectively; however, the two quadratures may not accurately predict long-term
coagulation, because the integral error increases with time in the long-term. To address
this problem, this study adopts special mathematical treatments for the integrals, and
the quadrature accuracy can be guaranteed even for long time-period, self-preserving
predictions, as illustrated in Section 3.3.

For the birth term Bcoag, the integral domain of [0, v] should be transformed into
[–1, 1] to satisfy the Gauss–Legendre quadrature. To achieve this, the transformation
v = (u + 1)v/2 is used, and the original integral becomes:

Bcoag(v, t) = 1
2

∫ v
0 β(v− v, v)n(v− v, t)n(v, t)dv

= v
4

∫ 1
−1 β( v

2 −
v
2 u, v

2 + v
2 u)n( v

2 −
v
2 u, t)n( v

2 + v
2 u, t)du

(9)

Applying the Gauss–Legendre quadrature to Equation (9) yields the following final
quadrature formula for Bcoag:

Bcoag(v, t) =
v
4

s

∑
k=1

wkβ(
v
2
− v

2
uk,

v
2
+

v
2

uk)n(
v
2
− v

2
uk, t)n(

v
2
+

v
2

uk, t) (10)

where uk and wk are the nodes and weights of the Gauss-Legendre quadrature, respectively,
and s is the number of Gauss-Legendre quadrature points. Calculations of the nodes and
weights for the quadrature are provided in the literature [40].

For the death term Dcoag, the previous Gauss–Laguerre quadrature is not suitable
for long-term coagulation calculations. Thus, the infinite integral interval [0, ∞] is first
truncated into a finite interval [vmin, vmax], which has a negligible impact on the integral
results. Here, vmin is the smallest volume, and vmax is the largest volume of the computation
domain. Because the entire particle volume range is relatively large in actual situations,
the integral should be calculated under logarithmic scales to decrease the quadrature
error; therefore:

Dcoag(v, t) = n(v, t)
∫ vmax

vmin
β(v, v)n(v, t)dv

= n(v, t)
∫ ln vmax

ln vmin
β(v, ex)n(ex, t)exdx(x = ln v)

(11)
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To satisfy the Gauss–Legendre quadrature rule, the above integral interval
[ln vmin, ln vmax] is transformed into [–1, 1] using the relation x = u ln b + ln a, where
a =
√

vmaxvmin and b =
√

vmax/vmin. Equation (11) then becomes:

Dcoag(v, t) = n(v, t) ln b
s

∑
k=1

wkβ(v, abuk )n(abuk , t)abuk (12)

In Equation (12), the values of n(abuk , t) can be calculated by substituting the obtained
coefficients of λi(t) into Equation (2).

According to Equations (10) and (12), the coagulation integrals Bcoag and Dcoag can be
calculated conveniently using the Gauss–Legendre quadrature. The quadrature calculation
only involves multiplications and additions that can be further integrated into the matrix
computation, which can considerably decrease the numerical costs.

2.3. Numerical Procedures

Based on the RBF approximation in Section 2.1 and the quadrature calculation in
Section 2.2, the original PBE is simplified into the ODEs of the coefficients λi(t), which
can be easily calculated using commercial ODE solvers. Numerically, there are two steps
involved in solving the temporal evolution of an initial PSD for a given coagulation kernel.

The first step is to define numerical parameters for the calculations. The range of the
particle volume v is denoted as [vmin, vmax], and the range of the physical time is denoted
as [0, tmax]. The selection of the center points in Equation (2) is the same as that used in our
previous study [36]. Thus, the center points are set to be equally distributed in logarithmic
scales and can be expressed as follows:

ln vi =
i− 1
p− 1

(ln vmax − ln vmin) + ln vmin (i = 1, 2, . . . , p) (13)

where p is the total number of center points.
The collocation points are the same as the center points defined in Equation (13). The

standard deviation σvi of each Gaussian function is taken as twice the distance between
the neighboring center points. Detailed reasons for this setting are provided in a previous
study [41]. Since the center points are equally distributed, all Gaussian functions share the
same standard deviation, which is calculated as follows:

σvi =
2(ln vmax − ln vmin)

p− 1
(14)

The second step is to use an ODE solver to calculate the temporal evolution of the
coefficients λi(t) based on Equations (6) and (8). Before running the numerical program,
the initial condition should be determined. The initial coefficient λi(0) can be computed
from the initial PSD n(v, 0) based on Equation (8). This process is concise and robust for
any continuous PSD.

The quadrature approximations for any given coagulation kernel were calculated using
Equations (10) and (12), respectively. The number of quadrature points was determined by
the desired accuracy for the numerical problem. All the program codes were implemented
in MATLAB R2018b on a personal computer with an Intel Core i7-6700 CPU and 16 G
RAM. The calculations were mainly performed using a matrix computation to achieve a
fast computing efficiency. The ODE45 solver was used, which implements a Runge–Kutta
method with a variable time step for efficient computation. Thus, the number of the time
steps changes according to the actual condition of the numerical problem to be solved. All
the codes and models will be open-sourced at a later stage.
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3. Results

To validate the RBF method, a thorough analysis including seven different numerical
cases is presented in this section. The detailed expressions of the coagulation kernel
functions and the initial size distributions of these cases are presented in Table 1.

1. Cases 1 and 2 were constant kernel and sum kernel coagulations, respectively. These
two cases were chosen because they can be analytically solved according to a study
by Ramabhadran et al. [42]. The initial distribution was a normalized exponential
distribution with N0 = 1 and v0 = 1. For Cases 1 and 2, the RBF method was
compared with the analytical solutions to validate its accuracy.

2. Cases 3 and 4 were Brownian coagulations under continuum and free-molecular
regimes, respectively. The two coagulation kernels were selected because they are
widely used to describe submicron particle coagulation dynamics. The initial size
distribution was a normalized log-normal distribution with N0 = 1, vg0 = 1, and
σ0 = 1.5. As there are no accurate analytical solutions for Brownian coagulation, a
highly reliable sectional method was used as a benchmark model [12]. The sectional
code, using a sectional spacing factor of 1.05, was already verified in our previous
study [24]. Thus, the RBF method was compared with the sectional method for
Cases 3 and 4.

3. Cases 5 and 6 were used to verify the self-preserving predictions of the RBF method for
Brownian coagulation under the continuum and free-molecular regimes. Because self-
preserving distributions indicate a long-term asymptotic behavior, the two cases were
selected to verify the accuracy of the RBF method for long-term coagulation simulation.
The initial distribution was the same as those in Cases 3 and 4. Reliable predictions
of the self-preserving distribution were obtained using the sectional method with a
sectional spacing factor of 1.05.

4. Case 7 was a bimodal particle coagulation, which was more complex than the above
unimodal cases. Bimodal size distributions are common in actual situations and were
selected for complete validation. The initial size distribution was a combination of two
normalized log-normal sub-distributions, with the parameters N10 = 0.8, vg10 = 0.1,
and σ10 = 1.3, while N20 = 0.2, vg20 = 10, and σ20 = 1.3. In this case, the RBF method
was again compared with the sectional method to validate its accuracy.

Table 1. Numerical cases for the validation of the RBF method.

Number Cases Kernel Function β(v,
¯
v) Initial Distribution

1 Constant kernel coagulation K ninit(v) =
N0
v0

exp(− v
v0
)

2 Sum kernel coagulation K(v + v) Same as Case 1

3 Brownian coagulation
(continuum regime) K(v1/3 + v1/3)(1/v1/3 + 1/v1/3) ninit(v) =

N0

3
√

2πv ln σ0
exp[− ln2(v/vg0)

18 ln2 σ0
]

4 Brownian coagulation
(free-molecular regime) K(v1/3 + v1/3)

2
(1/v + 1/v)1/2 Same as Case 3

5 Self-preserving distribution
(continuum regime) K(v1/3 + v1/3)(1/v1/3 + 1/v1/3) Same as Case 3

6 Self-preserving distribution
(free-molecular regime) K(v1/3 + v1/3)

2
(1/v + 1/v)1/2 Same as Case 3

7 Bimodal coagulation K(v1/3 + v1/3)(1/v1/3 + 1/v1/3) ninit(v) =
N10

3
√

2πv ln σ10
exp[− ln2(v/vg10)

18 ln2 σ10
]+

N20

3
√

2πv ln σ20
exp[− ln2(v/vg20)

18 ln2 σ20
]

The numerical settings for these cases are listed in Table 2. The particle volume domain
depends on the minimum volume vmin and maximum volume vmax. The minimum volume
vmin is determined from the truncated smallest volume of the initial size distribution. The
maximum volume vmax is determined to ensure that the particle volume does not exceed
the upper limit at a given coagulation time. Setting a very large value for the vmax is
feasible, but this increases the computational costs and is not recommended. The physical
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time tmax is determined by the demand for the numerical problem. Five center points are
generally sufficient to cover a unit logarithmic interval; therefore, the number of center
points was set to p = 5(ln vmax − ln vmin) + 1. The larger the number of center points, the
higher the accuracy and computational costs. The number of quadrature points varies
under different situations because the quadrature accuracy depends on the coagulation
kernel and numerical case. In the following sections, the validation results of the RBF
method for seven numerical cases are presented.

Table 2. Numerical settings of the RBF method for different cases.

Cases Volume Domain Physical Time Number of Center Points Number of Quadrature Points

1 [10−3, 102] [0, 10] 26 (5 × 5 + 1) 20
2 [10−3, 102] [0, 1] 26 (5 × 5 + 1) 20
3 [10−2, 103] [0, 5] 26 (5 × 5 + 1) 25
4 [10−2, 103] [0, 2] 26 (5 × 5 + 1) 25
5 [10−2, 105] [0, 1000] 36 (5 × 7 + 1) 60
6 [10−2, 105] [0, 100] 36 (5 × 7 + 1) 60
7 [10−3, 104] [0, 1] 36 (5 × 7 + 1) 60

3.1. Constant Kernel and Sum Kernel Coagulation

Figure 1 shows a comparison of the RBF method and the analytical solution for
predicting the temporal evolution of the PSD for the constant kernel coagulation (Case 1)
and sum kernel coagulation (Case 2). As coagulation proceeds, the PSD becomes shorter
and shifts to the right side. The reason for this is that the particle number concentration
decreases and the average particle size increases as particles collide and coagulate to
form bigger particles. At different coagulation times, the predictions of the RBF method
were the same as the results of the analytical solutions, meaning that the RBF method
could almost accurately predict the temporal evolution of the PSDs for the two cases. In
addition, the present RBF method could provide an explicit formula of the number density
function from Equation (2). Therefore, the RBF method has similar accuracy and features
as analytical methods.
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evolution of particle size distributions: (a) constant kernel coagulation; (b) sum kernel coagulation.
The solid lines are predictions obtained using the analytical solutions and the plus symbols are
predictions obtained using the RBF method.
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To further quantify the error between the predictions of the RBF method and the
results of the analytical solutions, the root mean square error (RMSE) was used in this study
to describe the deviation, which is expressed as follows:

E =

√√√√ 1
p

p

∑
i=1

[vinRBF(vi, t)− vinAnalytical(vi, t)]2 (15)

According to Equation (15), the RMSE value represents the average deviation of the
RBF method predictions from the analytical solutions within a given range.

Based on Equation (15), Figure 2 shows the temporal evolution of the RMSE values
for constant kernel coagulation (Case 1) and sum kernel coagulation (Case 2). For Case 1,
the maximum RMSE value over the entire coagulation time was 5.61 × 10−5. This is a
considerably small value, which again proves the accuracy of the RBF method compared
with the analytical solutions. Moreover, the RMSE values in Figure 2a decreased with time,
indicating that the RBF method maintained a high accuracy during the entire coagulation
process. For Case 2, the maximum RMSE value was 3.42 × 10−5 (Figure 2b), which is also
considerably small compared to the absolute values in Figure 1b. The RMSE curve first
increased with the coagulation time and then gradually plateaued. This indicates that the
RBF method also maintained a high accuracy during the sum kernel coagulation. From the
above comparisons, the RBF method can provide almost the same predictions as can the
analytical solutions for constant kernel and sum kernel coagulations.
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3.2. Brownian Coagulation under the Continuum and Free-Molecular Regimes

Figure 3 shows a comparison of the RBF and the sectional methods for predicting the
temporal evolution of the PSD for Brownian coagulation under the continuum (Case 3) and
free-molecular (Case 4) regimes. The evolution patterns of the PSDs in Figure 3 are similar
to those in Figure 1 as the result of particle coagulation. At different coagulation times,
high consistency was observed between the predictions of the RBF method and those of
the sectional method under both cases. Thus, the RBF method can accurately predict the
temporal evolution of the PSD for actual Brownian coagulation problems.

In addition to predicting the size distribution evolution, the moments of the particles
are of great interest in many situations. For the present RBF method, the k-th moment Mk
can be directly obtained by integrating Equations (2) and (3) from 0 to ∞, as follows:

Mk(t) =
∫ ∞

0
n(v, t)vkdv =

p

∑
i=1

λi(t)
√

2πσvvk
i exp(−k2σ2

v /2) (16)
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Thus, the RBF method can also be used to predict moments of arbitrary order based
on the obtained coefficients λi(t).

Based on Equation (16), Figure 4 further compares the temporal evolution of the
first two moments, M0 and M1, predicted using the RBF and the sectional methods for
Cases 3 and 4, respectively. M0 is the total particle number concentration and M1 is the
total particle volume. Because particle coagulation means that two particles collide to form
one larger particle, the particle concentration should decrease during coagulation, while
the particle volume remains constant. This is highly consistent with the results in Figure 4,
which show that the M0− t curves decrease with time and M1− t curves remain horizontal.
The predictions of M0 and M1 using the RBF method are highly consistent with the results of
the sectional method. This indicates that the RBF method can provide accurate predictions
of the temporal evolution of the first two moments. Thus, the RBF method can also be
used as a benchmark for predicting the moment evolution for Brownian coagulation in the
continuum and free-molecular regimes.

In addition to the continuum and free-molecular regimes, atmospheric PSDs also
cover the intermediate transition regime. As for the transition regime, the mathematical
expression of the coagulation kernel is more complicated [23]. Since the RBF method directly
uses numerical quadrature for the coagulation integrals, the solution process does not
depend on the specific form of the coagulation kernel, as shown in Equations (10) and (12).
Thus, the present RBF method can be easily extended to solve the transition regime and
even more complicated coagulation regimes.

3.3. Self-Preserving Distributions

Particles undergoing Brownian coagulation finally reach a self-preserving state, in-
dicating a long-term asymptotic behavior. Self-preserving distributions are important
characteristics that need to be correctly predicted. In our previous study [36], the two-
dimensional RBF method lacked the ability to predict the self-preserving distribution,
owing to the RBF approximation for both the volume v and time t. For the present RBF
method, only the volume v is pre-discretized, and the time t is driven by the time stepping
of ODEs, allowing the RBF method to predict self-preserving distributions.
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A self-preserving distribution is normally expressed using the dimensionless particle
volume η and dimensionless number density function ψ, as follows:

η =
v

vavg
=

Nv
V

(17)

ψ =
nvavg

N
=

nV
N2 (18)

where vavg is the mean particle volume calculated as vavg = V/N = M1/M0 (V is the total
particle volume, and N is the total particle number concentration). The values of the first
two moments can be calculated using Equation (16).

Figure 5 compares the self-preserving distributions predicted using the RBF and
the sectional methods for Brownian coagulation under the continuum (Case 5) and free-
molecular (Case 6) regimes. The self-preserving distribution curves were obtained by
applying the transformation in Equations (17) and (18) for the number density function
over the long-term coagulation. The entire physical times were set to 1000 and 100 for
Cases 5 and 6, respectively, which is regarded as approaching the long-term limit (Table 2).
For both the continuum and free-molecular regimes, the RBF method provided almost the
same predictions for the self-preserving distribution compared with the results obtained
using the sectional method. Thus, the present RBF method is verified to be reliable in pre-
dicting long-term coagulation behavior and is not limited by the physical coagulation time.

3.4. Multimodal Coagulation

Previous studies have focused only on unimodal particle coagulation problems. In
many actual situations, particle sizes are described by bimodal or multimodal distribu-
tions [25]. Thus, the RBF method must be validated for multimodal particle coagulation.
Here, a bimodal coagulation case (Case 7) was selected as a representative, and a detailed
description of this case is provided at the beginning of Section 3.

Figure 6 shows the temporal evolution of an initial bimodal distribution predicted us-
ing the RBF and sectional methods for Brownian coagulation under the continuum regime.
The peak of the smaller particles rapidly decreased, and the peak of the larger particles
gradually shifted to the right. The evolution results indicate that smaller particles were scav-
enged by larger particles due to intra-particle coagulation. At different coagulation times
(t = 0, 0.3, and 1.0), the RBF method provided almost the same predictions of PSDs as did
the sectional method, and differences between the two methods were difficult to identify.
Thus, the present RBF method can accurately predict bimodal coagulation evolution.
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For cases of more than two modes, the RBF method can be smoothly extended be-
cause RBFs have been proved to have the best approximation ability to any continuous
functions [43]; therefore, the RBF method should not be limited by the number of modes of
an initial size distribution.

3.5. Computational Time

In addition to the accuracy of the RBF method, computational speeds are very im-
portant when evaluating numerical methods. Table 3 lists the computational times of the
RBF method and sectional method for the different numerical cases. For Cases 1 and 2,
the computational times of the sectional method are not listed because the two cases were
analytically solved as discussed in Section 3.1. From this table, the computational times
of the RBF method were less than one second or just a few seconds, which were at least
100 times smaller than those of the sectional method. Thus, the RBF method was highly
efficient for the tested cases compared to the sectional method. Based on an in-depth
analysis, the computational costs of the RBF method resulted mainly from two factors. One
was the numerical solution of the ODEs, and the other was the quadrature calculation. This
indicates that the computational time increases with an increase in the number of center
points and quadrature points. In addition, the range of the physical time significantly and
greatly affects the computational time.
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Table 3. Computational times of the RBF method and sectional method for different numerical cases.

Cases Computational Time
RBF Method

Computational Time
Sectional Method

1 0.22 s -
2 0.19 s -
3 0.31 s 92 s
4 0.29 s 200 s
5 2.2 s 7434 s
6 3.9 s 3079 s
7 0.70 s 72 s

4. Conclusions

This study presents a reliable and robust radial basis function (RBF) method for
predicting the evolution of particle size distributions during coagulation. The basic idea of
the RBF method is to approximate the number density function n(v, t) using the weighted
sum of the radial basis functions with the coefficients λi(t). The Gaussian function serves as
the basis function and is distributed evenly in a logarithmic volume space. The governing
equations were derived based on the RBF approximation, after which the original PBE was
transformed into the simple ODEs of λi(t). The integral terms were obtained using the
Gauss–Legendre quadrature and could be efficiently calculated using a matrix. Thus, the
RBF method solves the number density function by using ODEs and numerical quadratures.

Subsequently, the accuracy and efficiency of the RBF method was validated under
various numerical cases. These cases covered many key issues in this field and could
either be analytically solved (Cases 1 and 2) or numerically solved using a highly reliable
sectional method (Cases 3–7). The comparison results show that the RBF method can
provide nearly the same predictions as can analytical solutions for constant kernel and sum
kernel coagulations. For realistic Brownian coagulation, the RBF method can accurately
predict the temporal evolution of PSDs as well as the moments of particles. Moreover,
the RBF method provides almost accurate predictions of the self-preserving distributions
for Brownian coagulation; therefore, it is verified to be reliable for long-term coagulation
simulations. In addition to unimodal cases, the RBF method can also solve bimodal
coagulation problems, and the predictions are highly consistent with the results of the
sectional method. The computational time of the RBF method is typically of the order of
seconds for all cases, meaning that the RBF method is numerically efficient.

Based on these validations, the RBF method has a high accuracy and has a high
computational efficiency. It directly provides a continuous number density function through
an explicit formula, which has features similar to those of analytical solutions. Thus, the
proposed method can be used as a reference method for aerosol coagulation simulations.
Future work should focus on extending and validating the RBF method for more complex
particle dynamics, including nucleation, coagulation, and surface growth.
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