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Abstract: Studies conducted in the early COVID-19 pandemic stages showed positive associations
between chronic exposure to ambient air pollution and COVID-19 morbidity. Here, we examined the
associations between populations’ chronic exposure to air pollutants (NO2, CO, PM10, PM2.5, and
SO2), demographics, and vaccination rates, to COVID-19 morbidity rates in 280 Israeli municipalities
during the Delta-variant-dominated morbidity wave of summer 2021. We found that COVID-19
morbidity was positively associated with chronic exposure to air pollutants, the municipality’s
population density, total population size, and the rate of elderly people. Multivariate linear regression
models showed similar trends: positive associations between COVID-19 rates and density, ratio
of elderly people, and most air pollutants, and a non-significant link to COVID-19 vaccine second
dose ratio. Our results emphasized the effects of chronic air pollution exposure on the spread of
the pandemic and strengthen the urgent need for uncompromising policy for a dramatic reduction
in air pollution. They also highlighted the vulnerable populations (elderly, densely populated
municipalities) during the Delta morbidity wave. These findings could assist policy makers to
better inform the public and manage health policies in future COVID-19 waves, hopefully leading to
a reduced impact on health.

Keywords: air pollution; long-term exposure; PM2.5; PM10; elderly population; SARS-CoV-2

1. Introduction

Prior to the COVID-19 pandemic outbreak, the World Health Organization (WHO)
stated that air pollution is one of the greatest environmental risks to health and emphasized
the need to address it as an imperative act critical to the protection of public health. The
organization estimated in 2016 that 4.2 million premature deaths per year were related to
ambient air pollution exposure [1]. Furthermore, the International Agency for Research
on Cancer (IARC), published an assessment in 2013 that unanimously classified outdoor
air pollution and particulate matter (PM) from outdoor air pollution as carcinogenic to
humans (Group 1, standard IARC classification), based on vast mechanistic evidence of
carcinogenicity in humans and animals. In particular, an increased risk of lung cancer due
to air pollution exposure was consistently reported in studies that included millions of
people across the world [2]. In 2019, 99% of the world population was living in areas where
WHO ambient air quality guidelines were not met [1]. The burden of disease from stroke,
heart disease, lung cancer, and both chronic and acute respiratory diseases, including
asthma, could be locally and globally reduced by reducing ambient air pollution levels [3].

The association between chronic exposure to ambient air pollution and COVID-19
and its manifestation in elevated levels of morbidity and mortality was demonstrated in
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a plethora of recently published studies conducted on a multi-state or global level [4–6] or
on a local and regional resolution of counties and municipalities in the USA, the Nether-
lands, China, Italy, the UK, Israel, and many other countries [7–16].

In those studies, which largely used COVID-19 data from March 2020 to the first
quarter of 2021 (the early global morbidity waves), a positive link was often demonstrated
between long-term exposure to PM2.5 (fine PM with diameter less than 2.5 µm) and PM10
(fine PM with diameter less than 10 µm) and COVID-19 morbidity and/or mortality.
Several studies also showed a positive contribution of chronic exposure to other common
air pollutants, mainly nitrogen oxides (NOx/NO2) and ground level ozone (O3), but also
sulfur dioxide (SO2) and carbon monoxide (CO), to elevated levels of COVID-19 morbidity
and mortality [16]. These results mostly refer to morbidity and mortality caused by the
SARS-CoV-2 original strain and its early dominant lineages, which characterized the first
and second COVID-19 waves [17]. A few studies also referred to variants emerging later,
characterizing the third wave, such as the highly contagious Alpha B.1.1.7 variant, first
reported in the UK in the fall of 2020, and the Beta B.1.351 and Gamma P.1 first reported in
South Africa and Brazil, respectively [10,16,18–20].

The SARS-CoV-2 Delta variant (B.1.617.2) was first detected in October 2020, in the Maha-
rashtra state of India, and was declared a “variant of concern” (VOC) on 15 June 2021 [20,21].
Then, by surpassing other variants of its lineage, the Delta variant became the most preva-
lent and rapidly spreading variant in almost 200 countries across the world. Several
physiological characteristics and clinical features were distinctive to the SARS-CoV-2 Delta
variant compared to other variants, including high viral load, potent transmissibility,
and monoclonal antibodies therapy resistance. These characteristics have led to higher
transmission and mortality rates compared with previous variants [21].

A handful of recently published studies examined the association between Delta-
variant-induced morbidity and air pollution concentrations. In Indonesia, air pollution
levels were monitored during and post lockdown, resulting in reduced CO, NO2, SO2,
and O3 levels in the outbreak’s center due to the lockdown followed by increased levels
after seven weeks [22]. In east China, the association between short-term exposure to
outdoor PM and the risk of severe Delta-variant COVID-19 morbidity was examined among
476 adult patients. A study showed that short-term exposure to outdoor PM was positively
related to the risk of severe COVID-19 [23]. In southern California, a cohort study of
50,010 COVID-19 patients associated prior PM2.5 and NO2 exposure levels (one month and
one year) with an increased risk of COVID-19-related hospitalizations [24].

In Israel, the number of COVID-19-positive cases (“COVID-19 rates”) started to
rise exponentially in June 2021, generating a fourth COVID-19 morbidity wave. From
15 June 2021, the number of new cases per day (7-day average) increased dramatically from
just 17 to a peak of 11,027 new daily cases on 14 September, dropping down to 254 new
cases per day on 28 November 2021 (Figure 1) [25]. Of note is the fact that, compared to
previous morbidity waves, during this wave, no lockdown measures were applied. The
rise in community transmission was followed by an increase in the number of severe cases
and deaths, both in vaccinated and unvaccinated populations. Genetic analysis showed
that in June 2021, more than 98% of positive COVID-19 cases were attributed to the Delta
variant. By 1 June 2021, the nationwide Israeli vaccination campaign, which began on
20 December 2020, had already reached a staggering number of 5,279,926 fully vaccinated
individuals (i.e., receiving two doses of the Pfizer–BioNTech BNT162b2 vaccine) above the
age of 16 [18].
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 Figure 1. Daily new confirmed COVID-19 cases in Israel (presented as rolling seven-day average). 
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Engineering (CSSE) COVID-19 Data https://github.com/CSSEGISandData/COVID-19, Published 
online at: OurWorldInData.org [25]. 
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The following demographic information per Israeli municipality was collected from 
the Israeli Central Bureau of Statistics (CBS) website: municipality’s total population  size 
in 2020, proportion of elderly (age 60 and above) in 2020, proportion of children (ages 0–
11) in 2020, density (population per Km2) in 2019, municipality’s socioeconomic cluster (a 
CBS socioeconomic index ranging between 1–municipality’s lowest socioeconomic 
ranking to 10-municipality’s highest socioeconomic ranking, calculated for each 
municipality based on 14 socio-demographic parameters and other quality of life 
variables) in 2017, and population natural growth per 100,000 capita in 2019 [26]. 

Figure 1. Daily new confirmed COVID-19 cases in Israel (presented as rolling seven-day average).
Morbidity waves are numbered one to four. The fourth is the Delta-variant (B.1.617.2) dominated
morbidity wave. Data source: Johns Hopkins University Center for Systems Science and Engineering
(CSSE) COVID-19 Data https://github.com/CSSEGISandData/COVID-19, Published online at:
OurWorldInData.org [25].

To the best of our knowledge, during the Delta-variant-dominated morbidity wave,
no positive link has been reported to date between statewide long-term exposure to air
pollution and COVID-19 morbidity levels. Furthermore, in our previous study in Israel,
a positive link was observed between long-term exposure to air pollutant concentrations
and COVID-19 morbidity rate following the first two morbidity waves, while no such link
was found during the third (Alpha B.1.1.7-variant-dominated) wave [10]. Therefore, the
aim of this ecological study was to examine the association between population chronic
exposure to key ambient air pollutants, populations’ demographics, and vaccination level to
Delta-wave COVID-19 morbidity rates in Israel. We examined the association between the
annual average concentrations of five dominant ambient air pollutants: PM10, PM2.5, NO2,
CO, and SO2, in 2020, and COVID-19 rates in 280 Israeli cities and towns (municipalities)
during the increasing phase of the Delta variant morbidity wave (15 August and 22 August)
and at its morbidity peak (3 September) in the summer of 2021 (Figure 1).

We hypothesized that populations living in municipalities with chronic elevated air
pollution levels would have higher morbidity rates compared with populations from
municipalities with relatively low air pollution. Additionally, we hypothesized that high
population density, high elderly rate, and low vaccination rates would also contribute to
the municipalities’ morbidity rates.

2. Methods
2.1. Data Collection

The following demographic information per Israeli municipality was collected from
the Israeli Central Bureau of Statistics (CBS) website: municipality’s total population size
in 2020, proportion of elderly (age 60 and above) in 2020, proportion of children (ages 0–11)
in 2020, density (population per Km2) in 2019, municipality’s socioeconomic cluster (a CBS

https://github.com/CSSEGISandData/COVID-19
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socioeconomic index ranging between 1–municipality’s lowest socioeconomic ranking to
10-municipality’s highest socioeconomic ranking, calculated for each municipality based
on 14 socio-demographic parameters and other quality of life variables) in 2017, and
population natural growth per 100,000 capita in 2019 [26].

Data on COVID-19 rates and vaccinated individuals (1st and 2nd dose) in 280 Israeli
cities, towns, villages, etc., (municipalities scattered across the country, representing 99%
of the Israeli population), were collected from Israel’s government COVID-19 dataset
website [27]. We focused on COVID-19 rates on three selected dates (all in 2021) that
covered different stages of the Delta variant morbidity wave. Two dates were in the
increasing phase of the wave, i.e., 15 August and 22 August, and another was within the
morbidity peak (3 September). To reflect the “spread value” of the pandemic on these
dates (positive rate), for each date, we calculated the difference between the number of
COVID-19-positive cases three days ahead, and the COVID-19 rate three days before.

The numbers of elderly people, children, COVID-19 rates, and numbers of vaccinated
individuals per municipality were normalized by dividing each of these values by the
municipality’s total population.

Estimation of the population’s exposure to different air pollutants was calculated using
a hybrid model provided by the Israeli Ministry of Environmental Protection (IMoEP). This
hybrid model merged two sources of information: (a) Annual averages of the CHIMERE
model [28]. This is a multi-scale photochemical and transport model used by the IMoEP
as a forecast model that provides forecasts (on an hourly basis) at a spatial resolution of
3 Km over the entire area of Israel. The model is based on both meteorological forecast
and air pollutants’ emissions data from industry, power production, gas stations, road
traffic, and others. The CHIMERE model also takes into account surface topography, land
cover, land use, etc. (b) Air pollutant concentrations, measured by the Israeli air quality
monitoring network measurements. Additional details regarding the hybrid model can
be found in Yuval et al. [29]. The hybrid model forecasts were averaged for each pollutant
(NO2, CO, PM10, PM2.5, and SO2) in 2020, resulting in an annual average level of each of the
air pollutants. We calculated the population exposure weighted mean per municipality for
each air pollutant by extracting the pollutant’s average concentration in the areas attributed
to the municipality in 2020 [28,30].

2.2. Statistical Analyses

Since most of the variables were nonlinearly distributed, Spearman’s correlations
were used to test the associations between COVID-19 rates (the spread value described in
Section 2.1) and the demographic, socioeconomic, vaccination, and environmental data.

Multivariate linear regressions were used to examine the associations between the
demographic and vaccination data, air pollution measures, and between the rates of
COVID-19 in the aforementioned dates. Every regression model included the following
variables: the municipality’s population density, total population size, the rate of elderly
residents, and the rate of residents who were fully vaccinated at the time (two doses). The
other two parameters (socioeconomic cluster and proportion of children (ages 0–11) in
2020) were not used due to co-linearity with other parameters. Every model included the
average concentration of one of the five air pollutants: NO2, CO, PM10, PM2.5, and SO2. We
used the logarithm value of the morbidity rates. For each model, we calculated statistical
significance, root mean square error (RMSE), and the coefficient/p-value of each parameter.

All statistical analyses were performed using Matlab© version R2021b. The level of
significance was 0.05 in all analyses.

3. Results
3.1. Air Pollutant Concentrations in Israel during 2016–2020

We examined the annual national average concentrations of five air pollutants: NO2,
CO, PM10, PM2.5, and SO2. The observed generally decreasing trend in CO and NO2
concentrations during 2016–2019 dramatically deepened in 2020. The sharply decreasing
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trend in SO2 during 2016–2019 stopped in 2020. PM2.5 and PM10 concentrations that were
generally gradually increasing during 2016–2019 dropped dramatically during 2020 (see
supplementary Figure S1).

3.2. Associations between Demographic Parameters, Vaccination Level, and Rates of Positive Cases

We calculated Spearman’s correlations between demographic parameters and the
rates of COVID-19 in each municipality’s local population. Statistically significant positive
correlations were found between total population size (r = 0.38, p < 0.001 on 15 August,
r = 0.36, p < 0.001 on 22 August, r = 0.15, and p = 0.04 on 3 September), rate of elderly people
(aged above 60) (r = 0.82, p < 0.001 on 15 August, r = 0.54, p < 0.001 on 22 August, r = 0.22,
and p = 0.002 on 3 September), the municipality population density (r = 0.5, p < 0.001 on
15 August, r = 0.36, p < 0.001 on 22 August, r = 0.28, p = 0.0004 on 3 September), and the
rates of COVID-19 among the municipality’s population (“COVID-19 rate”) (Figure 2).
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at specific time points in the Delta variant morbidity wave (All statistically significant).

The correlation between the COVID-19 rate and the proportion of the population
that had received the first vaccination dose revealed a statistically significant negative
association (r = −0.33, p < 0.001) only on 22 August, while the negative association between
the COVID-19 rate and the rate of population that had received the second vaccination dose
was statistically significant (r = −0.41, p < 0.001) only on 15 August. The rate of children
in the municipality was not statistically significant when correlated with COVID-19 rates
(see supplementary Table S1). Additionally, the socioeconomic cluster had a statistically
significant positive association with COVID-19 rates (r = 0.57, p < 0.001, r = 0.93, p < 0.001,
and r = 0.82, p < 0.001) at all three time points, respectively. Finally, the population natural
growth was negatively associated (r = −0.31, p < 0.001, r = −0.7, p < 0.001, and r = −0.75,
p < 0.001) at all three time points, respectively (Figure 2).

3.3. Associations between Air Pollutant Concentrations and Rates of Positive Cases

Statistically significant positive correlations were found between the studied pollu-
tant concentrations and COVID-19 rates at all the examined time points (except CO on
3 September) throughout the Delta wave (Figure 3). For all five pollutants, the positive
association was the strongest at the first time point and became slightly weaker with time.
SO2: r = 0.56, p < 0.01; r = 0.51, p < 0.01; r = 0.31, p < 0.01; PM2.5: r = 0.4, p < 0.01; r = 0.37,
p < 0.01; r = 0.19, p = 0.01; PM10: r = 0.47, p < 0.01; r = 0.43, p < 0.01; r = 0.2, p = 0.005;
CO: r = 0.4, p < 0.01; r = 0.35, p < 0.01; r = 0.13, p = 0.07; and NO2: r = 0.4, p < 0.01; r = 0.37,
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p < 0.01; r = 0.16, p = 0.03 on 15 August, 22 August, and 3 September, respectively, (see
supplementary Table S2).
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3.4. Multivariate Linear Regressions

Multivariate linear regression models were used to predict the COVID-19 rates on
two of the selected dates: 15 August and 3 September, based on the following parameters:
municipality’s population size, density, rate of elderly people, rate of the population with
a second dose of the COVID-19 vaccine, and the concentrations of the five examined air
pollutants. Due to the significant correlation between the air pollutant concentrations (data
not shown) [10] and to avoid collinearity, we developed different models for each date
(two dates: 15 August and 3 September), and for each pollutant (five pollutants: NO2, CO,
PM10, PM2.5, and SO2) using only one pollutant in each model, resulting in ten different
models. Of note, all the models were statistically significant (p < 0.05).

Population density was positively associated with COVID-19 rates on both dates, but
this association was statistically significant (p < 0.001) only in the models that predicted
COVID-19 rates on 15 August. Additionally, the proportion of the elderly (>60) was
positively associated with COVID-19 rates on both dates but was statistically significant
(p < 0.03) only in the models that predicted COVID-19 rates on 3 September. The rate of
people with a second dose of the vaccine was negatively associated with COVID-19 rates
on 15 August and positively associated with COVID-19 rates on 3 September. However,
these associations were not statistically significant (see supplementary Table S2). All air
pollutant concentrations in 2020 were positively associated with COVID-19 rates on both
dates. Most of these associations were statistically significant: 15 August: NO2 (β = 1.3,
p < 0.001), CO (β = 2.0, p < 0.001), PM10 (β = 1.56, p < 0.001), and SO2 (β = 0.72, p = 0.02);
3 September: PM2.5 (β = 0.56, p = 0.02), PM10 (β = 0.74, p = 0.008), and SO2 (β = 1.05,
p = 0.001) (Figure 4).
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models used to predict COVID-19 rates at specific time points during the Delta morbidity wave
according to several parameters. Pink colors represent significant positive correlations while green
colors represent significant negative correlations.

4. Discussion

The aim of this study was to examine the associations between the Israeli popula-
tion’s chronic exposure to air pollution (during 2020), demographics, and health factors to
COVID-19 morbidity, during the Delta variant morbidity wave.

4.1. Air Pollutant Concentrations in Israel during 2016–2020

The declining trend observed in SO2 concentrations between 2016 to 2019 (from
1.79 µg/m3 to 1.06 µg/m3, respectively) (see supplementary Figure S1), was attributed to
the national policy of gradually switching from coal-dominated electricity production to
natural gas in Israeli power plants [31]. The sharp declines in four of the air pollutants’
national average concentrations (except SO2) (see supplementary Figure S1), observed in
2020, was attributed to that year’s two major lockdowns that were implemented in Israel
(from mid-March until the third week of April and from 18 September to 17 October),
and to additional local lockdowns and limitations introduced during June and July in
neighborhoods and towns suffering from high COVID-19 infection rates. Although the
concentration of pollutants generally attributed to transportation emissions dropped in
2020, SO2 levels did not change significantly (see supplementary Figure S1), possibly
due to the 0.6% increase in electricity consumption compared to 2019. This increase
was related to climatic events (such as atypical heat waves leading to intense use of air
conditioning), causing an increase of 1.9% in electricity consumption and eliminating
the 1.3% consumption reduction attributed to COVID-19 lockdowns and the decreased
economic activity in 2020 [32].

4.2. Associations between Demographic Parameters, Vaccination Level, and Rates of Positive Cases

COVID-19 rates were positively correlated with municipality total population size
and population density (per Km2) (Figure 2). Such positive associations were also found
in our previous study at the first, pre-second, and second COVID-19 Israeli morbidity
waves (in March, July, and September 2020, respectively). Nevertheless, in the third
local morbidity wave (January 2021), which was characterized by wide-scale morbidity,
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population density and municipality total population were not statistically associated with
COVID-19 morbidity rates. The impact of population density and the total population size
at that time was possibly diminished by the fast-growing vaccination campaign, and also
by socioeconomic parameters that might have boosted inhouse infection chains during
the lockdown, especially in large households or multigenerational households where the
youth and the elderly tend to share accommodation. Both characterized cities and towns
with a low socioeconomic status [10].

Interestingly, in the Delta morbidity wave, socioeconomic cluster positively correlated
with COVID-19 rates at all time points, and population natural growth was negatively
correlated with COVID-19 rates at all time points. The comparison of these finding with
our opposite findings from the third wave mentioned above [10] suggested that the ini-
tiation of the Delta wave, as well as its progress, had different characteristics from the
previous morbidity waves in Israel. While in the third morbidity wave a lockdown dra-
matically reduced public gatherings and the tourism sector was almost at a halt, perhaps
making inhouse infection chains in large or multigenerational households a dominant
infectious mechanism, in the summer of 2021, the Delta wave was characterized by no
lockdown and relatively vibrant activity in the tourism and aviation sectors. In addition, in
May 2021, prior to the Delta wave initiation, infection rates had decreased to a few dozen
cases daily, mostly in people that were unvaccinated or returning from abroad. The
COVID-19 morbidity rate then began to rise exponentially in June 2021, with more than
98% of the positive cases attributed to the Delta variant [18]. These different conditions
might have led to an initial spread of the Delta variant in communities with a higher so-
cioeconomic status (which fit with our findings) that tend to travel abroad more frequently,
before it had spread to the wider Israeli population.

In the current study, the proportion of elderly was positively correlated with COVID-19
morbidity rates (Figure 2). The total population size, population density, and the rate of el-
derly people (also in Figure 2) were also reported to be positively corelated with COVID-19
morbidity and mortality rates in other studies around the world. Yu et al. [33], who in-
vestigated the spatial relationship between COVID-19 infection and mortality, population
density, and PM2.5 concentrations in 251 countries, reported that population density was
strongly correlated with COVID-19 infection and mortality rates, along with PM2.5 concen-
trations. P’aez-Osuna et al. [34] reported a higher COVID-19 mortality rate during the first
and second waves of the COVID-19 pandemic in Mexico in the denser municipalities of the
state of Sinaloa. In our previous study conducted on 36 OECD countries, we found positive
correlations between state population density and the rate of COVID-19 death on the 40th
and 80th days since the reporting of the first confirmed case of COVID-19 [4].

The observed partial negative correlation between the COVID-19 rate and the rate
of population that had received the first and second vaccination dose (22 August and
15 August, respectively) (see supplementary Table S1), was attributed to the waning im-
munity against the Delta variant observed in all age groups several months after receiving
the BNT162b2 vaccine second dose. As vaccine protection waned in the Israeli popu-
lation since mid-June 2021, both the infection rate and rate of severe morbidity in the
elderly population (>60) were higher among persons who became fully vaccinated in
January 2021 in comparison to those fully vaccinated two months later. Similar trends
in infection rates were reported in other age groups (40–59 and 16–39 years old), when
the infection rate among those fully vaccinated at the first authorized time was higher
than for those who got fully vaccinated two months later [18]. At that time, these findings
provided an epidemiologic basis for the decision of the Israeli Ministry of Health to approve
the administration of a booster (third vaccine dose) to those individuals that were vacci-
nated five months earlier (or more) on 30 July 2021 in the middle of the Delta morbidity
wave increasing phase (Figure 1), which probably impacted the Delta wave’s magnitude
and duration.
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4.3. Associations between Air Pollutant Concentrations and Rates of Positive Cases

In this study, we examined the association between the annual average concentrations
of five air pollutants (PM10, PM2.5, NO2, CO, and SO2) and COVID-19 rates in 280 Israeli
municipalities during the summer of 2021 Delta variant morbidity wave increasing phase
(15 August and 22 August) and its morbidity peak (3 September). Statistically signifi-
cant positive correlations were found between the studied pollutant concentrations and
COVID-19 rates at all the examined time points throughout the Delta morbidity wave
(except CO on 3 September) (Figure 3). For all five pollutants, the positive association was
the strongest at the first time point and became slightly weaker with time.

Ample studies have demonstrated the association between chronic exposure to ambi-
ent air pollutants and COVID-19 elevated levels of morbidity and/or mortality. Various
studies have been conducted since 2020 on a regional scale of counties, metropolitan areas,
and municipalities, in China, India, Bangladesh, the Republic of Korea, Canada, USA, Mex-
ico, Italy, Austria, Spain, the Netherlands, Israel, and many other countries [16]. Several
studies conducted on a multi-state or global level have also observed a similar association
to the one found in the current study between chronic exposure to ambient air pollutants
and COVID-19 morbidity and/or mortality [4–6]. The majority of the published studies
used COVID-19 data from March 2020 until 2021′s first quarter, including the early global
morbidity waves caused by the SARS-CoV-2 original strain and its early lineages. Generally,
positive associations were shown between PM2.5 and PM10 long-term exposure (and to
a lesser extent NOx/NO2, O3, SO2, and CO) and elevated levels of COVID-19 morbidity
and/or mortality [16].

Our previous study, conducted on COVID-19 morbidity data from 279 Israeli mu-
nicipalities, included the first three local morbidity waves. While the first two waves
demonstrated positive correlations between nearly all air pollutant concentrations and
COVID-19 rates, no such correlation was found in the third morbidity wave [10], which
was characterized by an Alpha B.1.1.7 variant dominancy [18,20]. At that time point,
the morbidity pattern was associated to socioeconomic and demographic parameters,
which characterized municipalities in low socioeconomic clusters, and the COVID-19 mor-
bidity rate was also affected by the growing vaccination campaign of primarily elderly
citizens [10].

In contrast to the third wave, in the fourth wave (dominated by the Delta variant),
morbidity began to increase (Figure 1), as vaccine protection waned in the Israeli population,
and the rate of infection in the elderly population also surged among persons who became
fully vaccinated 5–6 months earlier or more [18]. We suggest that under these conditions, air
pollution long-term exposure once again became a significant additional factor impacting
the COVID-19 morbidity rate together with demographic factors.

Currently, a substantial growing body of evidence supports the positive association
between chronic exposure to air pollution and exacerbated COVID-19 morbidity and
mortality rates [16]. Nevertheless, the mechanism by which ambient air pollution effects
COVID-19 morbidity, severity, and mortality remains largely unclear to date, although
several pathways involving increased human sensitivity to pathogens had been suggested.
These pathways include elevated human sensitivity to respiratory pathogens due to in-
creased oxidative stress via air pollution exposure [35]; the creation of abnormalities in the
human respiratory tract cilia structure affecting its function, reducing mucociliary clearance
ability, consequently reducing the removal of and increasing sensitivity to inhaled particles
and respiratory pathogens due to air pollution exposure [36]; and an additional hypoth-
esis about PM aerosols serving as a vector for transporting bacteria and viruses deeply
into the lungs through airborne diffusion (in high PM and SARS-CoV-2 concentration
environments) [12,15]. Altogether or separately, these pathways enhance the SARS-CoV-2
virus transmission mechanism or reduce the body’s ability to protect itself against it. These
potential pathways need to be further examined.
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4.4. Multivariate Linear Regressions

The multivariate linear regression models for 15 August (morbidity increasing phase)
and 3 September (morbidity wave peak), showed similar trends (Figure 4) to the correlations
results (Figures 2 and 3). A positive association of population density with COVID-19
rates was statistically significant only in the 15 August models, i.e., in the spreading
phase of the wave. Therefore, should future waves occur, dominated by highly infectious
variants, it would be advisable to take preemptive health and safety measures in denser
municipalities where past higher COVID-19 morbidity rates were found in order to slow
down the general COVID-19 infection rate. At the morbidity wave’s peak (3 September),
population density showed a similar trend of higher morbidity rates in densely populated
areas, although this was not statistically significant, implying that morbidity was already
much more widespread in dense and non-dense municipalities alike, thereby reducing the
effectiveness of density-based preventive health policies. Since a governmental or local
lockdown policy was not applied in the fourth wave, it was challenging to compare these
results to the previous three morbidity waves, in which state-wide or regional lockdowns
were implemented [10].

The proportion of the elderly in the general population was positively associated
with COVID-19 on both dates but was only statistically significant in the 3 September
models, together with the non-statistically significant COVID-19 vaccine second dose
ratio (Figure 4), with both findings strengthening ours and others previous findings about
a waning immunity against the Delta variant. Such waning immunity was reported in
Israel during July 2021 for all age groups that were vaccinated by two doses earlier that
year, when they were first eligible, and especially for elderly people who were able to get
fully vaccinated first, back in January 2021 [18].

Interestingly, in parallel with the waning vaccine immunity of the fourth wave, the
2020 air pollutant concentrations became once again a dominant factor, as was the case in
the first two waves, impacting COVID-19 morbidity rates, with most pollutants (excluding
PM2.5 on 15 August and NO2 and CO on 3 September) being positively associated with
COVID-19 rates on both dates (Figure 4). In our previous research, about a year earlier
(July–September 2020), at the pre-second wave peak (24 July), PM2.5, PM10, and NOx mean
2016–2019 concentrations had a significant positive association with COVID-19 rates, while
the trend in the second wave (27 September) was similar only for PM2.5 concentrations.
Later, during the third wave, this positive association with air pollution concentrations
was not found [10]. As reported here, the positive association between air pollutant
concentrations and COVID-19 morbidity rates recurred during the fourth morbidity wave,
although most air pollutant average concentrations were lower in 2020 compared with the
2016–2019 concentrations (see supplementary Figure S1).

Overall, our results are supported by numerous recently published studies conducted
on a global, statewide, and local-municipalities scale. This study’s strengths include:
(a) the focus on 280 Israeli municipalities, comprising the vast majority (99%) of the Israeli
population; (b) the analysis of the highly reliable databases of the Israeli Ministry of Health
COVID-19 data, the Ministry of Environmental Protection 2020 air pollution exposure
data, and the Israeli Central Bureau of Statistics demographic data; (c) the robustness of
the results, in which different statistical tools led to similar results. Yet, it is vital to point
out the current study’s limitations: (a) the lack of 2021 exposure levels to the above air
pollutants and (b) the ecological nature of this study pointing out correlations between
COVID-19 and air pollutions without a causation, which will require further epidemiologi-
cal research. Despite the above limitations, we successfully showed an association between
chronic exposure of the vast majority of the Israeli population to major air pollutant levels,
demographic and health parameters, and COVID-19 rates in 280 Israeli municipalities.

5. Conclusions

In this study, we showed statistically significant nationwide positive associations
between COVID-19 rates and chronic exposure of the population to five main air pollutants,
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municipalities’ total population, population density, the rate of elderly population and
socioeconomic cluster in 280 Israeli municipalities throughout the 2021 Delta-variant-
dominated morbidity wave.

Our findings could be important in assisting policy makers to better manage health
policy measures in future COVID-19 waves in at least two aspects: the study emphasized
that chronic exposure to air pollution might increase morbidity rates and may affect the
pandemic progress, and it also strengthened the urgent need to reduce air pollution and its
harmful effects. Additionally, this study highlighted COVID-19-vulnerable populations
during the Delta morbidity wave progress stages, specifically those in densely populated
municipalities and the elderly. It also emphasized that the decision of which health policies
to implement, such as lockdowns or ‘business as usual’, should strongly take into account
the policy’s impact on those vulnerable populations.

Regardless of the current pandemic, the adverse health outcomes stemming from long-
term exposure to various air pollutants has long been recognized worldwide by the scientific
community and decision makers. Yet, severe ambient air pollution is still responsible
annually for the estimated premature deaths of 4.2 million people worldwide. Therefore,
only an uncompromising policy for a dramatic reduction in air pollution (including the
electrification of transportation systems and an accelerated shift to renewable energy
sources, supplemented by enhanced enforcement of WHO air quality standards) can lead
to improved public health, reducing chronic respiratory and cardiovascular morbidities
and their related premature death-toll.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13111845/s1, Figure S1: Annual average concentrations of
air pollutants in Israel: 2016–2020: NO2, CO, PM10, PM2.5, and SO2.; Table S1: Spearman’s correlation
results: coefficients and p-values of the correlations between demographic parameters and COVID-19
morbidity rates at specific time points in the Delta variant morbidity wave.; Table S2: Multivariate
linear regressions results: coefficients and p-values for predicting the COVID-19 rate based on a single
air pollutant and selected demographic features.
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