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Abstract: Automobile emissions in urban cities, such as Peru, are significant; however, there are no
published studies of the effects of these emissions on PM2.5 (fine particulate matter) formation. This
study aims to analyze the contributions of vehicle aerosol emissions to the surface mass concentration
of PM2.5 in the Metropolitan Area of Lima and Callao (MALC), one of the most polluted cities in
Latin America and the Caribbean (LAC) known to have high concentrations of PM2.5. In February
2018, we performed two numerical simulations (control and sensitivity) using the Weather Research
and Forecasting model coupled with Chemistry (WRF-Chem). We considered both trace gasses and
aerosol emissions from on-road traffic for the baseline simulation (hereinafter referred to as “control”);
gasses without particulate emissions from vehicles were considered for the sensitivity simulation
(hereinafter referred to as WithoutAerosol). For control, the model’s performance was evaluated using
in situ on-ground PM2.5 observations. The results of the predicted PM2.5 concentration, temperature,
and relative humidity at 2 m, with wind velocity at 10 m, indicated the accuracy of the model for
the control scenario. The results for the WithoutAerosol scenario indicated that the contributions of
vehicular trace gasses to secondary aerosols PM2.5 concentrations was 12.7%; aerosol emissions from
road traffic contributed to the direct emissions of fine aerosol (31.7 ± 22.6 µg/m3).

Keywords: weather research and forecasting model coupled with chemistry (WRF-Chem) model;
PM2.5 concentration; vehicular emissions; atmospheric aerosol formation; Metropolitan Area of Lima
and Callao (MALC); urban air quality

1. Introduction

Exposure to high concentrations of PM2.5 (fine particulate matter having an aerody-
namic diameter less than 2.5 µm) affects every organ in the human body and is associated
with several diseases, including neuro-degenerative issues [1], alterations in placental
genes [2], pulmonary damage [3,4], and hypertension in young people [5,6]. Sources of
PM2.5 include vehicular traffic, industrial activity, energy generation, sea spray, secondary
aerosol production, and dust [7–9]. The primary source of PM2.5 in urban cities is vehicular
transport, due to the imperfect combustion of fuels, such as gasoline, diesel, and natural
gas, along with emissions from non-exhaust sources, such as brake and tire wear [6,10–14].
Despite the importance of vehicular emissions, to date, no study so far has considered
the contribution of vehicle emissions to the formation of secondary fine particles in any
urban area in Peru. The city of Lima (capital city of Peru) occupies the 22nd position in
the list of 40 most polluted cities in the world, based on the mean annual concentration of
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PM2.5 (28 µg/m3) in 2018, and the 8th position in the list of the 15 most polluted cities of
the Latin America and the Caribbean (LAC) regions [15]. The Metropolitan Area of Lima
and Callao (MALC) has more than 11 million inhabitants [16] over an area of 2819 km2;
notably, 35% of total inhabitants of Peru live in this region, resulting in a population density
of 3809.56 inhabitants/km2. The World Bank reported that the gross domestic product
(GDP) per capita of Peru was USD 6958 in 2018. The MALC is a coastal city with about
2 million vehicles; this region frequently exceeds the annual Peruvian National Ambient
Air Quality Standards (PNAAQS) of PM2.5 (25 µg/m3, annual mean) and World Health
Organization (WHO) Air Quality Guidelines of PM2.5 (10 µg/m3, annual mean) [17]. High
PM2.5 concentration from traffic emissions can reduce road visibility [18].

The weather research and forecasting coupled with chemistry (WRF-Chem) model
has been applied by scholars worldwide to investigate and forecast air pollutants [19–24].
The spatio-temporal traffic emissions were calculated in Colombia by the authors of [24].
The dispersion pollutant was analyzed in a street canyon under traffic flow by the authors
of [25,26]. The COPERT traffic emissions model and WRF-Chem model were coupled to
simulate air pollution concentrations in Budapest, Hungary by the authors of [27]. The
authors of [28] demonstrated that the average temperatures, simulated using CTMs and
observed in February 2016, were higher than those observed in July 2016. Still, there are
limited studies that quantify the impact of vehicular emission on the air quality of LAC
using chemistry transport models (CTMs). The authors of [29] analyzed the impact of
primary trace gasses on the formation of secondary particles in São Paulo, Brazil. In the
MALC, there are very few applications of CTMs [30]. Therefore, new studies are needed to
improve the air quality of the MALC [31].

To date, only a few studies have analyzed the sources and impacts of aerosols on
human health in the MALC. Studies have shown a positive association between fine aerosol
and morbidity (mainly related to respiratory and cardiovascular illnesses) in the MALC [17].
The mortality rate drop associated with decreasing PM2.5 concentration was analyzed using
the AirQ+ software (version 2.0) [32]. The authors of [33] also determined the relationship
between mortality due to the COVID-19 pandemic in 2020 and the PM2.5 concentration
from 2012 to 2016. Consequently, several studies have been conducted on the changes
in atmospheric pollution resulting from lockdown measures applied in various countries
in the world, including Peru. The authors of [34] utilized the in situ ground-observed
atmospheric pollutant data from 63 cities worldwide, including MALC; they demonstrated
that, during the full-lockdown phase, the PM2.5 concentration declined by 43% in the
MALC. PM2.5 concentrations were estimated from 2010 to 2016 using a machine learning
(ML) random forest model [31]. The authors of [35] reported that the sulfate concentration
in Lima in Peru was higher than that of São Paulo in Brazil and Medellin in Colombia, and
according to the United States Environmental Protection Agency [36] in the MALC, more
than 10,000 deaths annually can be attributed to fine particle matter exposure.

According to a report of the Asociación Automotriz del Peru (AAP, translated as the
Automotive Association of Peru), in Peru, the average age of private vehicles is about
16 years old, and the average age of public vehicles is about 23 years old [37]. The ages
of vehicles are old and therefore fuel consumption is poor in the MALC. According to
the TomTom Traffic Index (TOM2) report, in 2018, the MALC was the third-most traffic-
congested region in the world, following the cities of Mumbai in India and Bogotá in
Colombia [38]. Additionally, according to the Japan International Cooperation Agency
report [39], on the most important roads of the MALC, the average speed of vehicles during
both the morning and night peak hours of traffic is less than 20 km/h; the cost for working
hours lost because of the traffic congestion add up to USD 6750 [37].

In this study, in 2018–2019, the average, maximum, and minimum annual air tempera-
tures in the MALC were 19.0, 31.0, and 13.2 ◦C, respectively, and the average, maximum,
and minimum annual relative humidity was 84.0, 98.0, and 46.0%, respectively. This study
was carried out in scientific collaboration with the Emissions in South America (EMiSA)
network, made up of five countries from South America, and international scientists [40].
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This study aims to analyze the contributions of vehicle aerosol emissions to the surface mass
concentration of PM2.5 in the Metropolitan Area of Lima and Callao (MALC) in February
2018, using the air quality model WRF-Chem (version 4.0).

2. Materials and Methods
2.1. Description of Study Area and Data

In this study, for the MALC, we selected four automatic air-quality monitoring stations
(AAQMS), due to the availability of the measured concentrations of PM2.5 for these stations.
They were located in Ate [12◦1′34′′ S, 76◦55′7′′ W; altitude: 362 m above sea level (MASL)],
San Borja (SBO) (12◦6′31.06′′ S, 77◦0′27.96′′ W; altitude: 136 MASL), San Juan de Lurig-
ancho (SJL) (11◦58′53.7′′ S, 76◦55′57.6′′ W; altitude: 239 MASL), and Puente Piedra (PPI)
(11◦51′47.71′′ S, 77◦4′26.88′′ W; altitude: 180 MASL), as shown in Figure 1. From the PPI
station, there were also observations of additional meteorological variables. The Ate station,
which was located in the eastern part of Lima, was characterized as the predominant source
of heavy-duty vehicles and light-duty vehicles. The SBO station was located in an area
where the predominant residential source was cooking, and the SJL station, also located
in the eastern part of Lima, was characterized as the predominant source of light-duty
vehicles and residential sources. The PPI station, located in the northern part of Lima, was
characterized by commercial areas, heavy-duty vehicles, and light-duty vehicles.
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Figure 1. Map of the four automatic air-quality monitoring stations (AAQMS) in the MALC selected
for this study. Namely, ATE, SBO and SJL illustrate the locations of the stations: ATE is Ate, SBO is
San Borja, and SJL is San Juan de Lurigancho (SJL), which only recorded the PM2.5 measurements; PPI
is Puente Piedra, where both the meteorological variables and PM2.5 measurements were recorded.

The hourly concentrations of the PM2.5 data were obtained from the AAQMS operated
by the National Meteorology and Hydrology Service of Peru (SENAMHI) for February
2018. Additionally, we considered the hourly measurements of air temperature at a height
of 2 m (T2), relative humidity at a height of 2 m (RH2), and wind speed at a height of 10 m
(WS10) that were available for the PPI AAQMS acquired from the SENAMHI for the same
study period. These environmental data were used to evaluate the performance of the
outputs of the WRF-Chem model for different scenarios.

According to a report by [41] for PROTRANSPORTE (Instituto Metropolitano Pro-
transporte de Lima, translated as Metropolitan Protransport Institute of Lima), the total
vehicle fleets in the MALC consisted of six vehicle types: light vehicles (47.7%), taxis (7.7%),
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pickup trucks (27.6%), motorcycles (1.4%), busses (3.1%), and trucks (12.3%). According to
a report by the Instituto Nacional de Estadistica e Informatica (INEI; translated as “National
Institute of Statistics and Informatics”), the total vehicular traffic was 72,238,205 (79%) units
per year for light-duty vehicles (LDV) and 19,282,049 (21%) units per year for heavy-duty
vehicles (HDV), as counted at the toll collection sites in the MALC in 2018. In addition, the
total traffic volume was 91,520,254 (100%) units in 2018 in the MALC [42].

2.2. Meteorological Conditions in February 2018

On 1 February 2018, an anticyclonic circulation (ACi) was observed at 500 hPa, SW
of MALC (16◦ S, 77◦ W); this ACi generated a temperature inversion, which resulted in
a static stability at low atmosphere. The average air dewpoint temperature during the
study period was 19.5 ± 0.6 ◦C. The accumulated daily precipitation on 26 February 2018,
was 1.0 mm, which could be attributed to the cyclonic circulation at 850 hPa, NW of the
MALC (11◦ S, 80◦ W); no precipitation occurred on the other days of February 2018. The
maximum (Tmax), minimum (Tmin) air temperature measured at JCAi was 24.3–29.5 ◦C
and 19.0–21.9 ◦C, respectively, while the thermal amplitude (Tmax–Tmin) was 2.8–9.4 ◦C
(Figure 2), with relatively minor variations, due to the permanent presence of low stratus
clouds over the MALC and JCAi, owing to their locations being close to the sea.
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2.3. Ground-Measured PM2.5 Records: Filling Data Gaps with Machine Learning (ML)

We employed the simple linear regression (SLR) ML model to record the hourly PM2.5
measurements from the on-ground AAQMS, to predict the missing data (MID) of the
PM2.5 in the four AAQMS: Ate (9.97% of MID), SBO (13.1% of MID), SJL (6.99% of MID),
and PPI (6.69% of MID). The SLR was implemented in Python, using scikit-learn ML
reference library, as previously applied by [43]. Notably, the SLR model was dependent
on the unknown PM2.5 data-gaps predicted (target or response) from the AAQMS PM2.5
observation-data (predictor) [44]. For the test set phase of the SLR model, the training
set was chosen randomly, with 80% of the available measured data acquired from the
four AAQMS (487 hourly PM2.5 data) and 20% being the measured dataset (122 hourly
PM2.5 data). The SLR model performed efficiently, with a mean absolute error (MAE) of
8.3 µg/m3 and RMSE (root mean square error) of 12.46 µg/m3. More details of the MAE
and RMSE have been explained [45–47].
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2.4. Weather Research and Forecasting Coupled with Chemistry (WRF-Chem) Model Description

The WRF-Chem model is a numerical model that can simulate meteorological vari-
ables and the concentrations of atmospheric pollutants simultaneously [19,48]. In this study,
we applied the WRF-Chem model (version 4.0) to the entire MALC region. For the initial
and boundary conditions of the WRF model, we retrieved the meteorological variables
from the Global Tropospheric Analyses and Forecast Grids (GDAS/FNL), with a hori-
zontal resolution of 0.25◦ × 0.25◦ (https://rda.ucar.edu/datasets/ds083.3/, accessed on
10 August 2020), developed by the National Center for Environmental Prediction (NCEP).
We selected the following physics schemes: Purdue Lin for microphysics [49], rapid ra-
diative transfer model for longwave radiation [50], Goddard shortwave for shortwave
radiation, Noah land surface model for land surface physics, Yonsei University for plane-
tary boundary layer scheme [51], Grell 3D scheme for cumulus parameterization [52], and
four surface-soil levels for land surface; the vertical resolution was implemented using
32 levels. Further, we selected the vegetation and land-use types of classifications based on
the 24-category data of the United States Geological Survey (USGS) [53]. The topography
was retrieved from the advanced spaceborne thermal emission and reflection radiometer-
global digital elevation Model (ASTER GDEM). The resolution of the WRF-Chem model
was 5 × 5 km; this model domain surrounded the MALC with 50 (W − E) × 50 (S − N)
grids, as suggested by [30].

In this study, the gas-phase chemical reactions were considered using the regional
acid deposition model (RADM2) chemical mechanism, while the aerosol reactions were
considered using the modal aerosol dynamics model for Europe (MADE) combined
with the secondary organic-aerosol model (SORGAM). For the preparation of boundary
conditions for chemical analysis, an idealized profile was used, such as the one used
by [19], for gas species and aerosols, respectively. We incorporated the dry deposition,
according to the authors of [48]. The parameterizations of this model for the control case
are consolidated in Table 1. The predictions were established to run from 30 January
2018 to 2 March 2018; the run for 30–31 January 2018 was considered for the spin-up
of the model to reduce the effects of the initial chemical and meteorological conditions.
In this study, the WRF dynamical core selected the Advanced Research WRF (ARW)
model to run an ARW simulation. We used Eulerian nonhydrostatic equations, Arakawa
C-grid staggering, and three-dimensional for real data, and adaptive time step (adjusted
based on the Courant-Friedrichs-Lewy condition), simple diffusion, and positive-definite
advection for moisture. The format of the input, history, restart, and boundary files are
netCDF format. We selected the dry deposition of gas species and aerosols, no biomass
burning emissions, no Goddard Chemistry Aerosol Radiation and Transport aerosol
module (GOCART) dust emissions, no GOCART Dimethyl Sulfate (DMS) emissions
from the sea surface, and no feedback from the aerosols to radiation schemes; emissions
were speciation for RADM2/SORGAM.

Table 1. Different types of parameterizations selected for the control case simulations.

Model Organized Used

Domain
Simulation time

Lima
1 February–2 March 2018

Spin-up 30–31 January 2018
Horizontal resolution 5 km

Centered −12.034 S, −77.033 W
Map projection Mercator

Physical alternatives Selected scheme
Microphysics Purdue Lin

Shortwave radiation Goddard
Longwave radiation Rapid radiative transfer model

Cloud fraction option Xu-Randall method
Surface layer Revised MM5 surface layer scheme
Land surface Noah Land Surface Model

https://rda.ucar.edu/datasets/ds083.3/
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Table 1. Cont.

Model Organized Used

Boundary layer scheme Yonsei University
Cumulus parameterization Grell 3D

Dynamics alternatives Selected scheme
Diffusion Simple diffusion

K coefficients 2D (horizontal) deformation
Chemical alternatives Selected scheme

Photolysis scheme Madronich F-TUV
Gas-phase mechanism RADM2 1

Aerosol model MADE 2/SORGAM 3

Emission RADM2/MADE/SORGAM anthropogenic emissions
1 Regional acid deposition model (RADM2); 2 Modal aerosol dynamics model for Europe (MADE); 3 Secondary
organic-aerosol model (SORGAM). The horizontal (Kh) and vertical (Kv) eddy viscosities (K).

2.5. Anthropogenic Vehicle Emissions in the Metropolitan Area of Lima and Callao (MALC)

We calculated the total vehicle emissions in the MALC using the motor vehicle emis-
sions model established by [54]. In general, this method requires three parameters from
ground transportation (mobile emission factor, number of vehicles, and the distance (km)
covered by vehicles per day for each type of vehicle). Therefore, the total emissions of CO,
SO2, volatile organic compounds (VOCs), PM2.5, PM10, NO2, and NO were input as the
vehicle emissions data in each grid cell, obtained using Equation (1) [55], as follows:

VE = Num * EF * VKTr (1)

where,
VE = vehicle emissions (g/day),
Num = number of vehicles,
EF = mobile emission factor (g/km), and
VKTr = vehicle kilometer travel per day for each type of vehicle (km/day).
The EF and VKTr data for Equation (1) were obtained from [41]; the EF data was for six

vehicle types (motorcycles, buses, trucks, pickup trucks, LDV, and taxis) for the following
pollutants: CO, NOx, particulate matter, SO2, and VOCs.

Subsequently, we carried out the distribution of the spatial disaggregation of an-
thropogenic mobile emissions (CO, NOx, particulate matter, SO2, and VOCs), based on
a mass-conserving emissions preprocessor [29,56] with the horizontal resolution of the
grid cells being 5 × 5 km (see Figure 3); the spatial distributions were based on the traffic
emissions approach [54], while assuming that the total vehicle numbers were distributed
proportionate to the road’s length, for each grid cell of 5 × 5 km. The road informa-
tion was systematized by the OpenStreetMap data (https://www.openstreetmap.org/
relation/288247, accessed on 19 July 2021) and retrieved freely from the Geofabrik website
(https://www.geofabrik.de/, accessed on 21 July 2021), in accordance with [29,54].

The hourly variations in the mobile ground emissions data in each grid cell in the
WRF-Chem model are based on the temporal profile of [57] was used (Figure 4). In addition,
the temporal variations in the data for LDV could be mostly attributed to the CO emissions
and those in the data for HDV could be mostly attributed to the NOx emissions [58].

The spatiotemporally allocated emissions were utilized as input for the WRF-Chem
model, as previously applied by [24]. Notably, in this study, we considered only automobile
emission inventories, e.g., previous works of [29,54], because according to a report of the
Ministerio del Ambiente del Peru (MINAM, translated as the Ministry of Environment of
Peru), the primary source of air pollution in the MALC is vehicular transport, accounting
for 89% of the total emissions [59].

https://www.openstreetmap.org/relation/288247
https://www.openstreetmap.org/relation/288247
https://www.geofabrik.de/
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2.6. Statistical Metrics Approach to Evaluate the Model Performance

We evaluated the output of the meteorological variables predicted by the WRF-Chem
model by comparing the output data with the hourly measurements data of the meteoro-
logical variables (ground temperature, surface relative humidity, and wind speed) acquired
from the SENAMHI (available for the PPI station). These simulated hourly meteorological
variables were evaluated using the following statistical techniques: mean bias (MB), RMSE,
and mean gross error (MGE), in accordance Appendix A with [60–62]. Air temperature at
a height of 2 m above the ground, relative humidity at a height of 2 m above the ground,
and wind speed at a height of 10 m above the ground were measured hourly using the
automatic meteorological monitoring system operated by the SENAMHI.

The performance of the model to predict the PM2.5 concentrations was evaluated
using the statistical approach proposed by [63], including the determination of the mean
fractional bias (FraB) and mean fractional error (FraE), with the recommended criteria being
−60% ≤ FraB ≤ 60% and FraE ≤ 75%. At the PPI, SBO, and Ate stations, the hourly PM2.5
concentrations were measured 3 m above the ground, while at the SJL station, the hourly
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PM2.5 concentrations were measured 6 m above the ground, using the Thermo Scientific
Model 5014i Beta, which is automatic equipment that utilizes Beta ray attenuation, at each
of the four AAQMSs operated by the SENAMHI.

2.7. Sensitivity Tests

To evaluate the impact of aerosol vehicular emissions on PM2.5 concentrations in
the MALC, we considered two vehicle emissions in the WRF-Chem (version 4.0) model:
(i) simulations of hourly measurements of air pollutants and meteorological variables
were carried out for both vehicular emission gasses and aerosols, which was used as the
simulation control case, hereinafter referred to as “Control”, to evaluate the performance
of the model; (ii) simulations of vehicular gas emissions, without considering vehicular
aerosol-emissions, hereinafter referred to as “WithoutAerosol,” were employed to evaluate
the contribution of vehicular aerosol emissions to the surface concentration of PM2.5.
The differences between the results of the Control and WithoutAerosol simulations were
considered as the impact of vehicular aerosol emissions on the PM2.5 formations in the
MACL; this numerical simulation was adapted from previous works [29,56,64].

3. Results and Discussion
3.1. Evaluation of Model Performance in Terms of Determining PM2.5 Concentration and
Meteorological Variables

As shown in Figure 5, we compared the results of the simulations of the hourly con-
centrations of PM2.5 obtained using the WRF-Chem model for the control case simulation
(Control) and those measured at Ate AAQMS for February 2018. The hourly temporal
variation simulations of PM2.5 concentrations captured the fine aerosol hourly temporal
variations in the observed PM2.5 in Ate (Figure 5). At this station, the measured hourly
PM2.5 concentrations were 5–160 µg/m3, whereas the predicted hourly PM2.5 concentra-
tions were 7–143 µg/m3 (Figure 5).
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comparison to the control case model result (predicted).

The results of the WRF-Chem model for control portrayed four AAQMSs in the MALC,
namely, Ate, SBO, SJL and PPI; we used the FraB and FraE metrics, as per the criteria
suggested by [63], to enable the model to accurately predict the PM2.5 concentrations for
the different stations (Table 2). The statistical indicators of the accuracy of the WRF-Chem
model were comparable with previous works [65].

In Figure 6, we showed a comparison between the measured and simulated hourly
air temperature data at a height of 2 m (T2), measured and simulated hourly relative
humidity data at a height of 2 m (RH2), and hourly wind speed measured and simulated
data at a height of 10 m (WS10) for February 2018 in the MALC. The model slightly
underestimated the T2 data, compared to the observed data (Figure 6a). In addition, the
simulated maximum temperatures were a little lower than the measured values. Hourly
temperature (T2 data) and simulated maximum temperature were slightly lower than
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their measured temperatures. This may be due to the fact that the sensible heat flux (SHF)
simulated with the WRF model was slightly lower than the SHF measured in Metropolitan
Lima, whereas the measured and simulated minimum temperatures were similar for most
of the time series during the study period (Figure 6a). The diurnal variations in the observed
RH2 were well-captured by the WRF-Chem model (Figure 6b). The diurnal variations in the
high values of the measured hourly RH2 data were also accurately simulated by the model.
The RMSE of RH2 at PPI was 7.05% (Table 3), which is smaller than other values calculated
in other studies, such as one conducted in China, the authors of [66] calculated an RMSE of
12.7% for RH2. The authors of [67] calculated an RMSE of 16.60% for RH2. In this study,
the hourly WS10 values simulated by the WRF-Chem model was overpredicted (Figure 6c).
Another previous study has also proven that the WRF-Chem model overpredicts the WS10
values [62,68–71].

Table 2. Hourly PM2.5 concentrations for the stations predicted using the WRF-Chem model for
case-control.

Site Code Num 4 FraB 5 (%) FraE 6 (%)

Ate 672 −21.1 53.9
SBO 1 672 55.4 73.6
SJL 2 672 34.9 52.5
PPI 3 672 22.8 64.3

Results indicated in bold met the criteria for PM2.5 proposed by [63]. 1 San Borja (SBO); 2 San Juan de Lurigancho
(SJL); 3 Puente Piedra (PPI); 4 Num is the number of observed and predicted pairs hourly; 5 Mean fractional bias
(FraB); 6 Mean fractional error (FraE).

Table 3. Comparison of meteorological variables for Lima for case-control (Control).

Statistical Calculate Lima

Temperature (T2)
Modeled (◦C) 24.0 ± 2.1
Observed (◦C) 24.6 ± 2.7

MB 1 (◦C) −0.57
MGE 2 (◦C) 1.05
RMSE 3 (◦C) 1.38

Relative humidity (RH2)
Modeled (%) 72.4 ± 9.6
Observed (%) 68.7 ± 11.1

MB (%) 3.63
MGE (%) 5.86
RMSE (%) 7.05

Wind velocity (WS10)
Modeled (m/s) 3.3 ± 1.7
Observed (m/s) 1.6 ± 1.0

MB (m/s) 1.66
MGE (m/s) 1.72
RMSE (m/s) 2.05

Numbers indicated in bold met the criteria of model accuracy used by [65]. 1 Mean bias (MB); 2 Mean gross error
(MGE); 3 Root mean square error (RMSE).

Table 3 portrays the model performance in determining the meteorological variables
for Lima. The air temperature was slightly underpredicted. The MB of the temperature
was −0.57 ◦C. The mean gross error (MGE) of the temperature was 1.05 ◦C, which was
less than the benchmark (≤2.0 ◦C) applied by [68]. The measured and simulated average
temperatures during the study period were 24.6 ± 2.7 ◦C and 24.0 ± 2.1 ◦C, respectively,
which were close; therefore, we could conclude that the WRF-Chem model was effective
in simulating the temperature for the study area, with an RMSE error of 1.38 ◦C (Table 3).
The measured and simulated average relative humidity values were 68.7 ± 11.1% and
72.4 ± 9.6%, respectively, which confirmed that the relative humidity was overestimated
by the MB value of 3.63% that met the benchmark of RH2 (≤±10%) applied by [65]; the
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MGE was 5.86%, which met the benchmark of RH2 (≤20%) applied by [65], and RH2
portrayed an RMSE simulation error of 7.05% (Table 3). However, for China, the authors
of [71] underpredicted the RH2, with MB = −7.3%. In this study, the wind velocity was
overpredicted; the MB of wind velocity was 1.66 m/s. The MGE of wind velocity was
1.72 m/s, which was below the benchmark (≤2.0 m/s) applied by [68]. The RMSE of wind
velocity was 2.05 m/s.
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3.2. Effect of Vehicular Aerosol Emission on PM2.5 Formation

Figure 7 portrays a comparison of the hourly time series for February 2018 between
the control and WithoutAerosol scenarios, with the difference between the control and
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WithoutAerosol (Control-WithoutAerosol) results indicating the impacts of vehicle aerosol
emissions on the formation of PM2.5 in the four AAQMSs considered in this study in the
MALC. First, at the Ate AAQMS, the hourly values of the impact of transport aerosol
emissions on the hourly formation of PM2.5 were 6–128 µg/m3, whereas the hourly values
of the control scenario were 7.4–142.8 µg/m3 (Figure 7a); in terms of the hourly values for
the entire month of February for the WithoutAerosol scenario, the vehicular gas emissions
added to the formations of fine aerosol were 16.9% of the total PM2.5. Second, for the
SBO AAQMS, the contribution of vehicular aerosol emissions to the hourly formation of
PM2.5 was 7.5–117.7 µg/m3 (Figure 7b); the hourly levels for the control scenario varied
from 8.1 µg/m3 to 122.9 µg/m3 (Figure 7b). Third, for SJL AAQMS, the vehicular aerosol
emissions contributed 10.4–119.1 µg/m3 to the hourly formation of PM2.5 (Figure 7c).
Fourth, for the PPI AAQMS, the contribution of transport aerosol emission to the hourly
formation of PM2.5 was 6.4–100.5 µg/m3; however, the hourly values for the control
scenario were 8.5–113.6 µg/m3 (Figure 7d). Considering the four AAQMSs mentioned
above, the results of the WRF-Chem model indicated that the impact of vehicular aerosol
emissions on the formation of the maximum hourly PM2.5 and in terms of the hourly
values for the entire month of February for the (Control-WithoutAerosol) scenario of PM2.5
contributed 128.2 µg/m3 and (31.7 ± 22.6 µg/m3) to the formations of secondary fine
aerosols, respectively. In addition, the impact of primary-gas automobile emissions could
be attributed to the formation of secondary particles of PM2.5, with 12.7% of the total PM2.5
mass concentrations compared to the control scenario in February 2018.
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Figure 8 portrays a spatial distribution of the mean monthly PM2.5 concentrations for
the control scenario during February 2018. For the Ate AAQMS, the simulated PM2.5 con-
centrations was 20–25 µg/m3; for SBO station, the simulated PM2.5 concentrations varied
from 15–20 µg/m3. For SJL AAQMS, the simulated PM2.5 concentrations were 30–40 µg/m3;
in addition, for PPI AAQMS, the simulated PM2.5 concentration was 45 µg/m3. The mean
simulated values for PM2.5 concentration for the control in all study areas of the MALC were
15–45 µg/m3. Moreover, the prevailing wind direction during our study period was from the
south of the MALC; therefore, low concentrations of PM2.5 remain in the southern regions of
Lima and high values were simulated for the northern regions of Lima, such as PPI (Figure 8).
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investigation period; Namely, ATE, SBO, SJL and PPI illustrate the locations of the stations: ATE
is Ate, SBO is San Borja, SJL is San Juan de Lurigancho (SJL), and PPI is Puente Piedra. A colorful
vertical legend portrays the different PM2.5 values.

Figure 9 portrays the spatial distribution of the simulated average monthly PM2.5
concentrations for February 2018 for the WithoutAerosol simulation performed using the
WRF-Chem model. In the WithoutAerosol simulation at the SBO station, the contribu-
tions of gaseous-phase emissions from vehicles to formations of secondary fine particles
ranged from 1 µg/m3 to 2 µg/m3. For the other three AAQMS (Ate, SJL, and PPI), in the
WithoutAerosol simulation, the contributions of vehicle gas emissions to the formation
of secondary fine aerosols ranged from 5 µg/m3 to 10 µg/m3. Additionally, the values of
the WithoutAerosol in the MALC noted that the contributions of secondary fine particles
ranged from 1 µg/m3 to 10 µg/m3, with low values of mean monthly PM2.5 observed in the
southern region of the MALC, and high values observed in the northern and eastern regions
of the MALC. The highest values of the simulated mean monthly PM2.5 for WithoutAerosol
in the study area were located NE of the MALC (11.65◦ S; 76.8◦ W); the plume observed
from 10 µg/m3 to 15 µg/m3 may indicate the PM2.5 formations transported to the peak
plume by the wind blowing from the SW direction (Figure 9).
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Figure 10 portrays the spatial distribution of the impact of vehicle aerosol emissions
on PM2.5 formation for February 2018. The contributions of automobile aerosol emissions
ranged from 15 µg/m3 to 20 µg/m3 at the AAQMSs of Ate and SBO, respectively. For
the SJL site, the contribution of vehicular aerosol emissions to the formation of secondary
particles varied from 30 µg/m3 to 40 µg/m3. For PPI, the formation of PM2.5 ranged from
40 µg/m3 to 45 µg/m3. In addition, the impact of road-traffic aerosol emissions contributed
to the formation of secondary PM2.5 particles, ranging from 15 µg/m3 to 45 µg/m3 in the
MALC during the total investigation period. The high PM2.5 values were observed in the
northern regions of the MALC, such as PPI; the PM2.5 particles were transported from the
central and southern regions of Lima to the northern part of Lima by the wind, with the
wind being blown from the southern direction (Figure 10).
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4. Conclusions

Although the important role of road-traffic transport emissions for local environments
is well established, there is a lack of evidence regarding the effects of fine atmospheric
aerosol (PM2.5) emissions from automobiles. Furthermore, such studies have not been
conducted in Peru. The aim of this study was to analyze the contributions of vehicle
aerosols emissions to surface mass concentration of PM2.5 in the MALC megacity.
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We carried out two numerical simulations using the CTM named WRF-Chem model
(version 4.0). First, we applied the control simulation (control), in which we performed
atmospheric environmental simulations. We used the WRF-Chem model and considered
both primary gas and aerosol emissions from automobiles. Two statistical techniques,
the FraB and FraE, were applied to validate the predicted PM2.5 concentrations, using
the in situ PM2.5 data observed on the ground. Second, a model sensitivity simulation
was applied, which considered the same control simulation, without the emissions of
aerosols from vehicles (WithoutAerosol). The simulations of the PM2.5 concentrations for
the control examination met the precision criteria of the model because the FraB and FraE
values met the criteria for PM2.5 recommended by [63]. The simulations of air temperature,
relative humidity, and wind speed for the control examination met the accuracy criteria
of the model, as the MGE and RMSE results met the accuracy criteria applied by [65].
The WithoutAerosol scenario portrayed that the vehicular gas emissions contributed to
the formation of the secondary particles of PM2.5 concentrations significantly (12.7%),
compared to the control scenario; however, the impact of aerosol emissions from road
traffic was attributable to the formation of secondary fine aerosol (31.7 ± 22.6 µg/m3).

Future studies must perform vertical measurements of atmospheric pollutants, mainly
in the planetary boundary layer of the atmosphere of the urban cities in Peru, to validate
the vertical simulations using the WRF-Chem model.
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Appendix A

The formulas for statistical model evaluation used in this study are described below:

1. Mean bias (MB):

MB =
1
N

N

∑
k=1

(Ak −Ok)

2. Root mean square error (RMSE):

RMSE =

√√√√ N

∑
k=1

(Ak −Ok)
1
N

3. Mean Gross Error (MGE):

MGE =
1
N

N

∑
k=1

|Ak −Ok|
Ok

× 100

4. Fractional bias (FraB):

FraB =
2
N

N

∑
k=1

(Ak −Ok)

(Ak + Ok)
× 100

5. Fractional error (FraE):

FraE =
2
N

N

∑
k=1

|Ak −Ok|
(Ak + Ok)

× 100

6. Mean absolute error (MAE):

MAE =
1
N

N

∑
k=1
|Ak −Ok|

where Ak and Ok are the predicted and observed PM2.5 and meteorological variables,
respectively, and N is the hourly PM2.5 concentration or meteorological variables
observed-predicted pairs.
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