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Abstract: A high-resolution (∼500 m) numerical model was used to study the reef and atoll
wakes in the Xisha Archipelago (XA) during 2009. Statistical analyses of simulation data indicated
strong cyclonic dominance in the mixing layer (above ∼35 m) and weak anticyclonic dominance in
the subsurface layer (35∼160 m) for both eddies and filaments in the XA. The intrinsic dynamical
properties of the flow, such as the vertical stratification and velocity magnitude, and the terrain of reefs
and atolls had a significant effect on the asymmetry. Without considering the existence of reefs and atolls,
the “background cyclonic dominance” generated under local planetary rotation ( f ≈ 4.1× 10−5 s−1)
and vertical stratification (with mean Brunt–Väisälä frequency N = 0.02 s−1 at 75 m) was stronger for
filaments than eddies in the upper layer from 0∼200 m, and the larger vorticity amplitude in the
cyclonic filaments could greatly enhance the cyclonic wake eddies. Furthermore, inertial–centrifugal
instability induced selective destabilization of anticyclonic wake eddies in different water layers. As
the Rossby number (Ro) and core vorticity (Burger number, Bu) decreased (increased) with the water
depth, a more stable state was achieved for the anticyclonic wake eddies in the deeper layer. The
stratification and slipping reefs and atolls also led to vertical decoupled shedding, which intensified
the asymmetry.

Keywords: wake eddy; cyclone–anticyclone asymmetry; inertial–centrifugal instability (ICI);
numerical simulation; Xisha Archipelago (XA)

1. Introduction

Oceanic wake eddies and turbulence usually occur in areas of islands, atolls, and reefs
under the comprehensive influence of density stratification and planetary rotation [1–5].
This regime is mainly characterized by the island Rossby number (Ro), Burger number
(Bu), Reynolds number (Re), and Ekman number (Ek), e.g., [6]. A strict symmetry between
cyclones and anticyclones is found in the quasigeostrophic limit (Ro� 1) [7]. However,
this symmetry is usually broken by a finite Ro number [8,9]. Either cyclonic or anticyclonic
eddies may become predominant in the oceanic wake [10–13]. For the mesoscale eddy
wake (rmax ≥ Rd with rmax denoting the characteristic radius of an eddy and Rd as the first
baroclinic radius), when the Bu and island Ro numbers are both small, the flow will follow
the frontal geostrophic regime [14], leading to the more coherent and stable anticyclones
than the cyclones [12]. For some extreme cases, only the anticyclonic vortex street can
be found behind the island, and coherent cyclones will not appear at all [15]. For the
submesoscale eddy wake (rmax < Rd), both the Bu and island Ro numbers increase, and the
relationship between Ro and the local amplitude of the vorticity ζ/ f is not well established.
In other words, the dissipation (related to Re) is important to balance the relationship. Thus,
inertial–centrifugal instability (ICI) may induce selective instability in the anticyclonic
vorticity regions [13]. Studies have shown that the strong stratification coupled with
moderate dissipation can strongly stabilize intense submesoscale anticyclones [16,17].

The Xisha Archipelago (XA), located in the tropical region, is composed of several
coral reefs, including Bei Reef, Huaguang Reef (HR), Panshi Yu, Yuzhuo Reef (YR), and
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Lanhua Reef, three larger atolls called Yongle Atoll (YA), Xuande Atoll (XDA), and Xuande
East Atoll (XEA), and several small islands, such as Yongxing Island and Zhongjian Is-
land [18] (see Figure 1). The XA is close to the northwest of the South China Sea (SCS). Due
to the seasonally reversing monsoons, a basin-scale cyclonic circulation in winter and an
anticyclonic circulation in summer an be found in the SCS [19–21]. Many cyclones and anti-
cyclones are embedded in the basin-scale circulation, forming a multi-eddy structure [22].
Many surveys have shown that the mesoscale eddies are active in the upper waters in
the XA area [23–25]. The SCS Western Boundary Current (WBC) is a major component of
the SCS circulation [25–27], and it changes significantly on seasonal and interannual time
scales [25]. In summer, the energetic WBC east of Vietnam passes through the north of the
SCS, and anticyclonic circulations are often generated [22,28], whereas it flows southward
in winter [25,29], which greatly affects the XA area. In general, a strong northeastward
(southwestward) current with the maximum velocity of 1 m/s (exceeding 1 m/s) can be
observed near the XA area in the summer (winter) [24,25,29,30]. The ocean dynamics of
the XA area are linked to the presence of the Tropical Oceanic Monsoon Climate Zone [31].
In the XA, the sea surface temperature (SST) exhibits obvious seasonal [32] and intrasea-
sonal [33] variations, with a rapid increase and decrease in the SST during the spring and
autumn, respectively. These variations are strongly related to the sea surface wind, which
affects the net surface heat flux (exactly the latent heat flux) and then controls the seasonal
and intraseasonal variations in the SST [32,33]. Thus, the shift of the monsoons induces a
half-year cycle in the latent heat flux, as well as the SST.
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Figure 1. Geometryof the Xisha Archipelago. Color codes are in units of m.

Submesoscale wake eddies have been observed on the downstream sides of atolls and
reefs in the XA [13,34]. Cyclonic dominance has been observed at the surface, which is
attributed to the ICI [34]. In the activated upper layer (0∼200 m) of the XA, the intrinsic
dynamics such as those of the current and stratification may be very different according
to the depth, and they vary with the seasons. Thus, the eddy shedding process and
cyclone–anticyclone asymmetry may also be different. A similar phenomenon was studied
by Roullet and Klein [11], who performed an ideal numerical simulation of geophysical
turbulence characterized by a finite Ro number (∼0.6). This simulation included the active
upper boundary and interior dynamics, which is similar to a real marine environment, such
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as in the XA area. Their results indicated strong cyclonic dominance in the upper layers,
which was stronger for filaments than vortices. Furthermore, under strong stratification,
vertical decoupled eddy shedding appeared downstream of the slipping seamounts [35].

Most of the studies mentioned above were based on laboratory experiments and ideal
numerical simulations. However, in actual marine environments, the real topography
such as the XA reefs and atolls developed from carbonate platforms [36], variable vertical
stratification [37,38], and currents [24] may greatly change the process, thereby leading
to complicated physical dynamics, as well as cyclone and anticyclone asymmetry in the
island wakes. To the best of our knowledge, the variations in the cyclonic and anticyclonic
asymmetry of reef and atoll wakes in the XA are not well known, especially in the vertical
direction. In this study, we investigated the vortical asymmetry of reef and atoll wakes
in the XA. High-resolution numerical simulations were first conducted by employing the
unstructured grid finite-volume community ocean model (FVCOM) [39–41]. Cyclonic
and anticyclonic asymmetry in the wakes was then examined, and the physical process
was studied.

2. Model and Data
2.1. XA-FVCOM

The XA-FVCOM is a high-resolution regional model designed to simulate the sub-
mesoscale wake eddies in the XA [13]. The horizontal resolution ranges from ∼500 m
around the reefs (atolls) to ∼8.8 km at the open boundary, in order to conform to the Global
HYCOM grid. A uniform σ-coordinate was used in the vertical, with a total of 80 layers.
The vertical grid resolution was maintained at ∼10 m in the XA. The XA-FVCOM was
driven by 3-hourly Global HYCOM/NCODA oceanic reanalysis data [42,43] and 6-hourly
NCEP CFSR atmospheric reanalysis data (wind stress, long wave–short wave irradiance,
and evaporation–precipitation at the surface of the sea). The temperature and salinity fields
of the XA-FVCOM were initialized by the Global HYCOM. The model was spun up from
undisturbed sea surface elevation and zero velocity. More details of the XA-FVCOM can be
found in our previous study [13].

The simulation was integrated for 14 months (covering the period from 1 November 2008
to 31 December 2009). The external time step was 2.5 s, and the internal time step was 5 s.
The established solution was achieved after the second month (spin-up period). Thus, only
the results obtained after 1 January 2009 were analyzed.

2.2. Observational Data

The simulated results were compared with several observations including in situ data,
Argo data, and satellite data.

The in situ data from two stations (Points A and B in Figure 2d) in the XA were
first collected: Point A stands for a tidal gauge station monitoring sea surface elevation
from June 2007 to December 2013, with a 10 min sampling frequency; Point B stands for a
subsurface buoy, which is loaded with one downward 150 kHz acoustic Doppler current
profiler (ADCP) and one upward 75 kHz ADCP in order to cover the whole water column.
The in situ data were provided by the Lake-Watershed Science Data Center, National Earth
System Science Data Sharing Infrastructure, National Science & Technology Infrastructure
of China (http://lake.geodata.cn (accessed on 7 October 2017)).

Hydrographic data obtained from Argo floats (ID 2901144 and ID 2901145) were
also used to compare the ocean with the temperature and salinity vertical profiles pro-
duced by the numerical simulations. The Argos were present in the XA from 9 August to
27 December 2009.

The advanced very-high-resolution radiometer (AVHRR) SST data with a resolution
of 1.1 km were obtained from the CoastWatch program [44]. The error was within ± 0.5 ◦C.
The sea surface height and geostrophic current data obtained from the weekly AVISO
(http://www.aviso.oceanobs.com (accessed on 7 October 2017)) were also used to validate
the model.

http://lake.geodata.cn
http://www. aviso.oceanobs.com
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XA regional mean current, and (c) velocity magnitudes (in cm/s) at point B against in situ monitoring
data and/or AVISO data during 2009; and (d) modeled annual averaged surface elevation (in m)
and geographic current (at a depth of 15 m) against AVISO in 2009. An annual mean northeastward
geographic current can be observed in the XAzzm. Points A and B are the tidal gauge station located
at 16.84◦N, 112.33◦E and Xisha subsurface buoy located at 17.10 ◦N, 110.39◦E, respectively. Point C is
an upper layer velocity observation point, as mentioned in Section 4.
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Figure 2. Comparison of the modeled time sequences for: (a) surface elevations at Point A, (b) the
XA regional mean current, and (c) velocity magnitudes (in cm/s) at Point B against in situ monitoring
data and/or AVISO data during 2009; (d) modeled annual averaged surface elevation (in m) and
geographic current (at a depth of 15 m) against AVISO in 2009. An annual mean northeastward
geographic current can be observed in the XA. Points A and B are the tidal gauge station located at
16.84◦ N, 112.33◦ E and the Xisha subsurface buoy located at 17.10◦ N, 110.39◦ E, respectively. Point
C is an upper layer velocity observation point, as mentioned in Section 4.

2.3. Model Validation

The surface circulation of the model result was first validated by the in situ and
AVISO data. The modeled daily surface elevation was compared with the in situ and
weekly AVISO data, as shown in Figure 2a, which indicates that the overall trend was
simulated well during 2009. Compared with the in situ data, the root-mean-squared
error of the modeled surface elevation was small (∼0.069 m). The changes in the XA
regional mean current are presented in Figure 2b. Compared with the weekly AVISO
data, the model satisfactorily represented the annual variation in the current (at a depth
of 15 m). It should be noted that the AVISO data only contained geographic components.
Our modeling results could represent abundant instant current events. The modeling
results and observed data indicated that the current strengthened from March to July
and from September to November, and it remained weak from December to February
in 2009. As shown in Figure 2c, the general trend of the vertical distribution of the daily
mean horizontal velocity magnitudes in the upper seawater was also captured by the
XA-FVCOM. Figure 2d compares the annual averaged AVISO observations and FVCOM
results in 2009. The modeling results accurately represented the mean surface elevation
and geostrophic current in the region. The presence of cyclonic and anticyclonic mesoscale
eddies was observed in the west and east of the XA, respectively. Thus, the annual mean
current in the XA was northeastward.

The model results also indicated that the XA-FVCOM was in good agreement with
the thermodynamic properties found in the XA. Indeed, the model accurately reproduced
the SST cycle and vertical temperature profiles during 2009. Figure 3a shows the good
agreement of the SST between the model outputs and AVHRR data, where the root-mean-
squared error was ∼0.69 ◦C. The observations and model showed that the SST increased
from 29 January to 9 July, before decreasing from 9 July to 29 January, with large fluctua-
tions from late August to early September in 2009. The warmest season occurred from June
to September. By contrast, the coldest season occurred between December and February,
and the minimum values occurred in 29 January. The XA was characterized by a north-
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west/southeast SST gradient, as shown by the AVHRR remote sensing data and modeling
results (Figure 3b). Vertical profiles based on the means and standard deviations of the
temperature and salinity are plotted in Figure 3c (right) for the different sites represented
by red dots in Figure 3c (left). The Argos were present in the XA area from 9 August
to 27 December in 2009. The vertical profiles of the modeled temperature and salinity
were in good agreement with the observations. According to the modeled results, the
upper thermocline was located between 18 and 148 m [45]. The simulation performance
assessment results indicated that the model could reproduce the main surface circulation
and thermodynamics in the oceanic region of the XA.
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27 December 2009, and the trajectories are depicted in the figure on the left. Color codes are in ◦C.

3. Cyclone–Anticyclone Asymmetry in the XA
3.1. Wake Eddy Shedding Process

In the XA, the wakes of the reefs and atolls change with the seasons due to the active
WBC and mesoscale eddies. In order to provide insights into the cyclone–anticyclone
asymmetry of the wake eddies, the instant evolution of the wake eddies between 0 and
200 m based on the sequential maps of vorticity is shown in Figure 4. The boundaries of
the coherent wake eddies detected by the vector-geometry-based eddy detection algorithm
(VGED) [46] are also depicted. We used the VGED to automatically identify the charac-
teristics of the eddies such as the eddy core, sign, boundary, radius, and trace. Each eddy
core was detected based on a point with a minimum velocity and the surrounding velocity
vector rotating around it. Eddy boundaries are defined as the outermost closed streamline
around the core, across which velocity magnitudes are still increasing in the radial direction.
The eddy radius is calculated as the mean distance between the eddy core and all the
points defining the boundaries. Once eddies have been detected at each time step, the eddy
trace can be tracked using the method proposed by [46]. The XA-FVCOM data were first
interpolated into the structured mesh grid with a resolution of 0.005◦× 0.005◦ to meet the
requirements of the VGED. The vorticity maps were characterized by the distribution of
eddies coupled with many filaments, especially in the surface layer. In the upper 50 m, the
cyclonic wake eddies (CWEs) were clearly merging filaments and small eddies. By contrast,
in the layer from 150∼200 m, the anticyclonic wake eddies (AWEs) were activated.
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Figure 4. Sequential maps of vorticity at different depths (0 ∼ 200 m) downstream of reefs and atolls
starting from April 13. The duration is 5 days. Green rings denote the coherent eddy boundaries
detected by the VGED.
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Figure 4. Sequential maps of vorticity at different depths (0∼200 m) downstream of reefs and atolls
starting from 13 April. The duration is 5 days. Green rings denote the coherent eddy boundaries
detected by the VGED.

Interestingly, the wake eddies became decoupled in the vertical direction (see Figure 4
at different depths), i.e., rather than each eddy shedding in a vertically uniform manner,
each reef (atoll) elevation shed eddies independently and almost as a two-dimensional
plane. The eddy scale and shedding frequency varied with depth. For example, the eddy
distribution at 0 m was completely different from that at 200 m. Similar results were
obtained in a previous study [35] by using a three-dimensional computational model of
an idealized sloping seamount in a rotating, stratified flow. Their results showed that the
vertical coherence of the wake eddies was strongly dependent on the buoyancy frequency
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N and Coriolis parameter f , and the decoupled shedding regime was characterized by
strong density stratification and weak planetary rotation, as discussed in Section 4.

3.2. Cyclone–Anticyclone Asymmetry

Different features of the CWEs and AWEs were found in the decoupled shedding
regime. In the surface layer (0∼50 m), the CWEs were generally coherent, and they were
always detected by the VGED; however the AWEs could hardly be detected. Thus, the
lifetimes of AWEs were short, and they were strongly disturbed and became incoherent
after their generation. However, at the subsurface (∼150 m), the wake eddies with a longer
lifetime detected by the VGED were both CWEs and AWEs. In general, the current and
vorticity decreased with the depth. Due to the vertical distribution of the currents and
sloping reefs (atolls) (see Figure 1) in the XA area, the AWEs detected at the subsurface
were generally larger and weaker than the CWEs at the surface. According to our previous
studies [13], AWEs are more unstable than CWEs due to the ICI, and a moderate incoming
velocity and eddy radius are needed to maintain the stability of AWEs.

The statistical results for all the wake eddies formed in 2009 also showed the difference
between cyclones and anticyclones. The total number of CWEs and AWEs in the water layer
above 200 m generated throughout 2009 is shown in Table 1, and their initial locations are
indicated in Figure 5. The number of CWEs increased from 278 at 0 m to 570 at 200 m. By
contrast, the number of AWEs increased from 73 at 0 m to 471 at 150 m and then decreased
to 431 at 200 m. Due to the ICI, the number of AWEs was clearly less than that of CWEs in
the water layer above 50 m. These results also suggest that the AWEs were more stable at
150 m, where the maximum number of AWEs occurred. The initial positions of the eddies
were basically around the atolls and reefs, such as YA, HR, YR, XDA, and XEA. Furthermore,
the CWEs and AWEs that appeared in different water layers were mainly distributed on the
eastern and western sides of the atolls and reefs, respectively (see Figure 5), which indicates
that many eddies were formed by the northward incoming flow. Research on the maximum
size of the detected wake eddies in their lifetimes showed that, due to the limitations of
resolution, their distributions were similar to a mixture of Gaussians without an inferior
tail (see Figure 6). By contrast, the distribution of the lifetimes decreased exponentially
within 0.5∼16 days, and most of the eddies had lifetimes shorter than 4 days. According to
Figure 6, the cyclonic dominance was quite obvious for most of the eddy scales in the water
layer above 50 m. However, in the water layer from 100∼200 m, the CWEs and AWEs were
mostly symmetric.

Table 1. Numbers of coherent CWEs and AWEs detected from water depths of 0 m to 200 m based
on the VGED.

Eddy Type Water Depth
0 m 50 m 100 m 150 m 200 m

CWE 278 400 501 497 570
AWE 73 256 431 471 431
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Figure 5. Locations of eddies generated with lifetimes longer than 12 h at depths between 0 ∼ 200 m
in 2009. The size of the circle represents the maximal radius of the eddy.

Figure 5. Locations of eddies generated with lifetimes longer than 12 h at depths from 0∼200 m in
2009. The size of the circle represents the maximal radius of the eddy.
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Figure 6. Distributions of the maximal radii (left) and lifetimes (right) of CWEs versus AWEs detected
between 0 and 200 m in the XA in 2009.

Figure 6. Distributions of the maximal radii (left) and lifetimes (right) of CWEs versus AWEs
detected between 0 and 200 m in the XA in 2009.
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The asymmetry was also examined using the probability density function (PDF) of
ζ/ f as a function of depth (Figure 7a). As shown in Figure 7a, the skewness of ζ/ f ,
represented by the black curve, indicated vortical asymmetry near the upper boundary
and the dominance of cyclonic structures in the first 35 m. The skewness became negative
between 35 and 160 m in the water layer where the kinetic energy was smaller. The
relative vorticity structures involved both coherent eddies and filaments with small-scale
elongated structures (see Figure 4). The classical Okubo–Weiss (OW) criterion, defined as

COW=(σ2 − ζ2)/ f 2 with σ =
√
(u2

x − v2
y)

2 + (v2
x + u2

y)
2, was used to partition the eddies

from filaments. We defined eddies as structures with COW < −0.05 at the upper boundary
and filaments as structures with COW > −0.05. Figure 7b,c show the PDFs of ζ/ f for
filaments and eddies. The filaments and eddies had asymmetric PDFs indicating cyclonic
dominance in the first 90 m and 40 m, respectively. The anticyclonic dominance was
between 90 and 150 m for filaments and between 40 and 160 m for eddies. The skewness of
the filaments was obviously greater than that for eddies. These results clearly confirmed
that, near the upper boundary, the asymmetry of filaments was stronger than that of eddies.
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Figure 7. (a) Isocontours of log10 p(ζ/ f , z) for: (a) time-averaged total vorticity and (b,c) time-
averaged relative vorticity related to the eddies (filaments), with p(ζ/ f , z) as the PDF of ζ/ f as a
function of depth. The two superimposed curves are the skewness (black) multiplied by five and the
kurtosis divided by six (red) for ζ/ f , respectively.

4. Discussion

Our numerical results indicated strong cyclonic dominance in the surface layer (above
∼35 m) and weak anticyclonic dominance in the subsurface layer (35∼160 m) for both
eddies and filaments in the XA. The intrinsic dynamical properties of the flow [6,13] and
terrain, such as reefs (atolls), may have significantly affected the asymmetry [35].

4.1. Intrinsic Dynamical Properties of the Flow

In order to study the complex phenomenon, an additional simulation was also per-
formed without reefs and atolls (flat bottom) in the XA. The PDFs of ζ/ f clearly showed
that cyclonic dominance was stronger for filaments than eddies in the upper layer from
0∼200 m, which is in accordance with a previous study by Roullet and Klein [11], where
their geophysical turbulent simulations with an active upper boundary (strong stratification
in the upper 1500 m) and interior dynamics (weak stratification below 1500 m) indicated
strong cyclonic dominance in the first 600 m, where the stratification was strongest. In the
XA, the larger vorticity amplitude in cyclonic filaments in the surface could have greatly en-
hanced the CWEs (see Figure 4 for an example) to some extent, thereby leading to cyclonic
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dominance. We refer to the cyclonic dominance without reefs (atolls) as the “background
cyclonic dominance”.

To provide deeper insights into this phenomenon, the vertical stratification of the XA

represented by the Brunt–Väisälä frequency N =
√
− g

ρ0

∂ρ
∂z is depicted in Figure 8a. This

figure shows that the extreme value of N was located about 75 m below the sea surface in
the winter (December to February) and about 50 m below in the summer (June to August).
The extreme annual mean value of N = 0.02 s−1 was located at 75 m. The Brunt–Väisälä
frequency was much larger in the summer than the winter, thereby suggesting strong
stratification in the summer. The simulated annual mean mixing layer depth (MLD) was
found from 5∼63 m (see Appendix A), with smaller values downstream of the reefs and
atolls [47]. In the XA areas, the MLD values were generally smaller than 35 m. Interestingly,
it appeared that the cyclonic dominance was stronger in the mixed layer (see Figure 7),
where the stratification was not as significant.
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Figure 8. Time sequences for: (a) vertical distribution of the regional mean Brunt–Väisälä frequency
N sampled in the XA area and (b) horizontal velocity magnitudes (in m/s) sampled at Point C (the
location is depicted in Figure 2d) during 2009.

Indeed, according to Lazar et al. [16], under stratification and rotation, the ICI may
have a selective effect on viscous eddies and lead to cyclone–anticyclone asymmetry. Three
dimensionless parameters were considered comprising the Rossby number Ro = Vmax

f rmax
,

Burger number Bu =
(

Rd
rmax

)2
, and Ekman number Ek = κz

f h2
c
, where Vmax, rmax are the

maximum velocity and corresponding radius of the eddy, κz is the vertical diffusivity, and
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hc is the thickness of the surface current. The following equation is used to judge the
linearly unstable anticyclonic Rankine eddies:

1
Ek
≥
(

8|a0|
3

)3

Bu
Ro2

(√
|2Ro + 1|

)7 = f (Ro, Bu), (1)

where the first zero of the Airy function |a0| = 2.3381. Ro has a significant effect on the
stability of an anticyclonic eddy. Stratification is quantified at the submesoscale by Bu.
A larger Bu (strong stratification) can help stabilize AWEs. The statistical results for the
parameters related to the AWEs detected from 0 to 200 m are shown in Table 2. Clearly,
decreasing trends were found in Ro and the core vorticity |ζ0/ f |, and the lifetimes tended
to increase with the water depth, thereby demonstrating that the AWEs achieved a more
stable state in the deeper layer. Interestingly, the Bu value in the layer below 50 m was
almost twice that in the layer above 50 m, thereby indicating weak stratification in the
upper 50 m.

Table 2. The statistical results for parameters related to coherent AWEs detected from water depths
of 0 m to 200 m based on the VGED.

Depth (m) Parameters
Ro Bu Core Vort. r (km) Lifetime (day)

0 Mean 0.8 52.5 −2.5 9.5 1.2
Range [0.2, 2.5] [2.8, 239.2] [−0.6, −6.3] [3.2, 29.7] [0.5, 3.6]

50 Mean 0.6 89.2 −1.4 7.8 1.0
Range [0.1, 3.3] [4.0, 625.7] [−0.2, −8.1] [2.0, 25.1] [0.5, 3.9]

100 Mean 0.5 95.1 −1.3 7.4 1.1
Range [0.1, 2.1] [4.7, 664.9] [−0.2, −4.6] [1.9, 23.1] [0.5, 7.4]

150 Mean 0.4 88.0 −1.0 7.8 1.3
Range [0.1, 1.5] [3.4, 1371.1] [−0.1, −2.6] [1.4, 27.0] [0.5, 13.8]

200 Mean 0.4 90.9 −1.0 7.4 1.4
Range [0.1, 1.8] [4.4, 613.4] [−0.2, −3.4] [2.0, 23.9] [0.5, 12.8]

It is well known that, when a weak oceanic current encounters a large island, both the
wake eddies and wake flow will satisfy the geostrophic equilibrium with the corresponding
Ro� 1. However, when an oceanic current encounters a small island with a characteristic
length smaller than the local Rd, then both Ro and Bu increase. The relationship between
Ro and ζ/ f is not well established, and it crucially depends on the dissipation. Thus, the
ICI may induce the selective destabilization of anticyclonic eddies in regions. These results
indicate that the stability of AWEs is affected mainly by the ICI, but the extent of this effect
varies with the depth. In particular, strong vertical stratification enhances the stability of
AWEs to some extent.

4.2. Effects of Reefs and Atolls

Compared with the simulations without reefs and atolls, we also found that, due to
the lack of reefs (atolls), the weak anticyclonic dominance in the subsurface layer depicted
in Figure 7 was rarely observed. We checked the time sequences for the skewness of the
vorticity PDFs with and without reefs (atolls) and found that the background cyclonic
dominance was present at 0∼200 m for most of the time when the reefs (atolls) did not
appear (Figure 9). Thus, wake eddies and turbulence occurred when the reefs (atolls) were
present, and the ICI induced selective destabilization of AWEs in different water layers.
When superimposing the background cyclonic dominance, it indicated strong cyclonic
dominance in the surface layer and weak anticyclonic dominance in the subsurface layer in
the XA.
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Figure 9. Time sequences for the vertical distribution of the skewness for vorticity PDF (a) with and
(b) without the reefs (atolls) obtained from XA-FVCOM during 2009.
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Figure 9. Time sequences for the vertical distribution of the skewness for vorticity PDF (a) with and
(b) without the reefs (atolls) obtained from XA-FVCOM during 2009.

The presence of reefs and atolls not only leads to the appearance of turbulent wakes,
but also greatly intensifies the vertical mixing. As a result, the vertical stratification was
greatly weakened and the value of N was reduced (see Figure 8a). The sloping reefs
(atolls) (see Figure 1) coupled with stratification also led to vertically decoupled shedding,
which intensified the cyclone–anticyclone asymmetry. According to Perfect et al. [35], this
decoupling exists in weak rotation (high Ro) and strong stratification. Thus, the Burger
number written in another form as Bu = (Ro

Fr )
2 was used to predict vertically decoupled

eddies. In the XA, the mean Bu numbers of AWEs detected by the VGED were between
52.5 and 95.1 in different upper water layers. In general, the AWEs of the XA belonged to
submesoscale eddies, and they had large Bu numbers, which are associated with barotropic
flow (stronger stratification impedes the perturbation of isopycnals). Figure 4 shows
the strong vertically decoupled shedding process coupled with a strong northeastward
incoming flow during April 13 and 17 in our simulation. This type of incoming flow is very
common in the XA area (see Figures 2b and 8b), which suggests that vertical decoupling is
also very common.

The above analyses clearly show a significant impact on the local ocean dynamics,
especially the cyclone–anticyclone asymmetry, due to the presence of reefs and atolls in the
XA. Interestingly, the latest research of Qin et al. [36] demonstrated that oceanographic cur-
rents have a control on the carbonate growth. As the XA is a reef–beach system developed
on the isolated carbonate platforms, their study showed that differences in hydrodynamic
energy related to currents and waves driven by East Asian monsoon winds were responsi-
ble for asymmetrical backstepping at the Xuande platform margins in the latest Miocene
to the Early Pliocene [36]. According to our study, the cyclone–anticyclone asymmetry
in different seasons deeply changed the local hydrodynamic environment (such as the
uplift and downwelling of the isopycnal caused by CWEs and AWEs, respectively [13]). It
may further control the carbonate growth in the XA. There seems to be some interaction
between the formation of coral reefs (atolls) and the incoming currents, as well as their
current wakes. In some extreme cases, the nutrient-rich waters caused by the upwelling can
kill off isolated platforms on continental margins [48,49]. All these studies demonstrate the
far-reaching effect of local hydrodynamics on the formation of reef and atoll topography, to
a certain extent. Among them, the cyclone–anticyclone asymmetry may help interpret the
asymmetry of carbonate growth. However, a carefully study is needed.
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5. Conclusions

In this study, we demonstrated the cyclone–anticyclone asymmetry of the reef and
atoll wakes in the XA using the high-resolution XA-FVCOM, which was validated by
in situ, AVISO, AVHRR, and Argo data. Strong cyclonic dominance in the surface layer
(above ∼35 m) and weak anticyclonic dominance in the subsurface layer (35∼160 m) for
both eddies and filaments were observed in the XA. In the rotation and stratification
processes, without considering the existence of reefs and atolls, the background cyclonic
dominance was stronger for filaments than eddies in the upper layer from 0∼200 m. In
addition, the larger vorticity amplitude in the cyclonic filaments greatly enhanced the
CWEs. Furthermore, the ICI induced selective destabilization of the AWEs in different
water layers. Considering the stratification and special reef and atoll topography in the XA,
vertical decoupled shedding could also have intensified the asymmetry. All of these effects
led to the strong cyclonic dominance in the surface layer and weak anticyclonic dominance
in the subsurface layer. However, further studies such as in situ observations are needed
to confirm these phenomena. Some interesting topics such as the interaction between the
formation of coral reefs (atolls) and the current wakes, the different effects of AWEs and
CWEs on nutrient or pollutant transport, and the biological effects of the reef (atoll) wakes
are worth studying in the future.
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Appendix A

In the SCS, the following criterion is widely used to compute the MLD [37,50]:

MLD = z(T10 + ∆T), (A1)

where ∆T = −0.8 ◦C and T10 is the temperature at a depth of 10 m.
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