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Abstract: In recent years, ozone (O3) concentration has shown a decreasing trend in the Beijing–
Tianjin–Hebei (BTH) region in China. However, O3 pollution remains a prominent problem. Accurate
estimation of O3 exposure levels can provide support for epidemiological studies. A total of 13 vari-
ables were combined to estimate short- and long-term O3 exposure levels using the geographically
weighted regression (GWR) model in the BTH region with a spatial resolution of 1 × 1 km from 2017
to 2020. Five variables were left in the GWR model. O3 concentration was positively correlated with
temperature, wind speed, and SO2, whereas is was negatively correlated with precipitation and NO2.
Results showed that the model performed well. Leave-one-out cross-validation (LOOCV) R2 for
short- and long-term simulation results were 0.91 and 0.71, and the values for RMSE were 11.14 and
3.49 µg/m3, respectively. The annual maximum 8 h average O3 concentration was the highest in 2018
and the lowest in 2020. Decreasing concentrations of major precursors of O3 due to the regional joint
prevention and control may be the reason. O3 concentration was high in the southeast of the BTH
region, including in Hengshui, Handan, Xingtai and Cangzhou.

Keywords: ozone; predictor variables; geographically weighted regression; BTH region

1. Introduction

Ground-level ozone (O3) is mainly produced by nitrogen oxides (NOx) and volatile
organic compounds (VOCs) through complex photochemical reactions [1]. O3 formation is
influenced by the emission of precursors, photochemical transformations and meteorologi-
cal conditions. O3 is a typical secondary pollutant, which not only damages the ecological
environment and affects the growth of plants and animals, but also poses a certain threat
to public health [2–6]. Epidemiological studies had indicated that short- and long-term
exposure to severe O3 pollution may cause many diseases, including asthma, lung function
decrements, respiratory infection, heart failure, impaired heart function, and so on [7–10].
Meanwhile, exposure to O3 pollution can lead to premature deaths [11,12]. It is estimated
that there were 156,173 (95% confidence interval (CI): 79,562–303,843), 104,051 (95% CI:
35,824–200,055), and 33,456 (95% CI: 0–70,548) cases of all-cause, cardiovascular as well as
respiratory death led by long-term exposure to O3 in 331 Chinese cities in 2020 [13].

According to air quality report released by Ministry of Environmental Protection for
the Beijing–Tianjin–Hebei (BTH) region and surrounding areas, the number of polluted
days with O3 as a dominating pollutant accounted for 41%, 46%, 48.2%, and 46.6% of
the total polluted days from 2017 to 2020, respectively. Meanwhile, the daily maximum
8 h average O3 concentrations were 193, 199, 196, and 180 µg/m3 during the four years,
respectively [14–17]. None of them meet Class II standard (160 µg/m3) in Ambient Air
Quality Standards (GB 3095-2012). Accurate estimation of O3 exposure level and reasonable
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analysis of the spatiotemporal distribution characteristics are significant for preventing and
controlling air pollution and assessing the impact on human health [18].

At present, multiple data and methods were used to estimate the O3 concentra-
tion. Ground measurement can provide accurate O3 concentration values at monitoring
sites [1,19]. However, it cannot meet the large-scale analysis of spatio-temporal distribution
of O3, and the site maintenance requires a lot of human effort and material resources.
Remote sensing techniques are applied to simulate O3 concentration at large spatial scales.
Satellite remote sensing data can provide large-scale spatial and temporal distribution
information of O3, but it is limited by atmospheric climate conditions such as clouds [20].
Chemical transport models (CTMs) can also be used to predict O3 concentration, such
as Weather Research and Forecasting Community Multiscale Air Quality (WRF-CMAQ)
model. Such models provide complete spatio-temporal coverage by taking into account
emission patterns, meteorological conditions as well as atmospheric chemical reactions.
However, there are some drawbacks including high computational costs and incorrect
specification of physical processes and initial/boundary state [18,21,22]. In addition, many
statistical models have been applied to pollutant concentration estimation. Kriging interpo-
lation estimates pollutant concentrations based on Tobler’s First Law of Geography [23].
Ordinary kriging (OK) is one of the kriging interpolation techniques, which performs well
in predicting air quality levels in areas where only several monitoring sites are available [24].
OK assumes a stationary mean of the variable within the search window [25]. However,
the observations of O3 show high spatial heterogeneity in O3 concentrations [26]. The land
use regression (LUR) model uses pollutant monitoring data and spatial predictor variables
to estimate the pollutant concentration, which can reflect small-scale spatial distribution
of pollutant concentrations. Multiple linear regression (MLR) establishes the global re-
lationship between several independent variables and a dependent variable. However,
it neglects the spatial variability of air pollutants [27]. To cope with deficiencies of the
above model, geographically weighted regression (GWR) was proposed [28]. GWR is a
local spatial statistical method with spatial variability coefficients. It incorporates data
location information to predict air pollutant concentrations on a large scale. The model can
provide a quantitative spatially varying relationship between air pollutant concentrations
and multiple predictor variables. Moreover, the local parameter estimates obtained by the
model can show a high spatial variability, compensating for the weakness of the global
regression methods. The GWR model has been used in several recent studies to explore air
pollutant exposure levels. By the calibration of GWR, Stowell et al. [29] simulated daily
PM2.5 concentration in Southern California, and the results showed that the model per-
formed well (cross-validation coefficient of determination (R2) = 0.80). Based on the GWR
model, Shen et al. [30] simulated concentrations of NO2, O3, PM10, and PM2.5 across Europe
from 2000 to 2019, and the mean R2 values were 0.67, 0.57, 0.61, and 0.77, respectively.

This study attempts to estimate short- and long-term O3 exposure levels in the BTH
region, China, based on GWR model by fusing air pollutant data, meteorological data and
the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2)
data. In addition, we evaluated the accuracy of the prediction results.

2. Data and Methods
2.1. Study Domain

The BTH region (36◦05′–42◦40′ N, 113◦27′–119◦50′ E) is located on the eastern coast
of China and covers an area of 218,000 km2. The topography is dominated by plains
and plateaus, which is high in the northwest and low in the southeast. It comprises
Beijing, Tianjin and Hebei Province. The region is not only one of the most economically
developed area, but is also a densely populated region. Figure 1 displays the distributions
of monitoring sites, meteorological stations and topography in the BTH region.
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Figure 1. Distribution of O3 monitoring sites, meteorological stations and topography in the
BTH region.

2.2. Data Collection and Processing
2.2.1. Air Pollutant Datasets

Air pollutant datasets were obtained from the China National Environmental Moni-
toring Centre (CNEMC) (http://beijingair.sinaapp.com/, accessed on 24 September 2022),
including the hourly values of O3, PM2.5, PM10, CO, NO2, and SO2 from 2017 to 2020.
Calculated daily maximum 8 h average O3 concentration demands at least 20 maximum
8 h O3 concentrations during a day, and the calculation of the 24 h average for the other
air pollutants demands at least 20 hourly average values during a day. A monitoring site
used to calculate annual maximum 8 h average was retained when it was recording for
at least 324 daily maximum 8 h average values during a year. Otherwise, this monitoring
site was considered invalid. There were 90 O3 monitoring sites. Based on these criterions,
86 sites with valid daily values and 81 sites with valid annual values were reserved for the
O3 concentration estimation from 2017 to 2020, respectively. The 4-year average annual O3
concentration was regarded as the dependent variable for GWR model development. The
distribution of 90 monitoring sites is shown in Figure 1.

2.2.2. Meteorological Data

The meteorological data were derived from China Meteorological Administration
(http://data.cma.cn/, accessed on 24 September 2022), containing daily air pressure, wind
speed, temperature, relative humidity as well as precipitation of 6887 meteorological
stations from 2017 to 2020. Figure 1 also shows the distribution of meteorological stations.

http://beijingair.sinaapp.com/
http://data.cma.cn/
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2.2.3. MERRA-2 Reanalysis Data

MERRA-2 is released by NASA’s Global Modeling and Assimilation Office (GMAO)
and provides data beginning in 1980. The spatial resolution is 0.5× 0.625◦, and the temporal
resolutions are 1 h, 3 h, and 1 month. It provides data for a total of 72 vertical layers from
the ground to 80 km altitude. Aerosol optical depth (AOD), planetary boundary layer
height (PBLH), and atmospheric temperature data at 10 m, 1000 hPa, and 975 hPa in the
BTH region from 1 January 2017 to 31 December 2020 were used in the study. In this paper,
atmospheric temperature data at 10 m from the ground, 1000 hPa, and 975 hPa were used
to calculate the strength of the temperature inversion. The air pressure was converted to
altitude according to Equation (1).

H = 44300× (1−
(

P
P0

) 1
5.256

) (1)

where H represents altitude, P represents air pressure and P0 is standard atmospheric
pressure (0 ◦C, 101.325 kPa). Then, 1000 and 975 hPa were converted to altitudes of 110
and 323 m, respectively. When the upper layer temperature is higher than the lower, the
inversion temperature occurs. The strength of the temperature inversion refers to the
ratio of the temperature difference to thickness of the inverse temperature layer, which is
calculated by Equation (2).

TI = 100× T2 − T1

H2 − H1
(2)

where TI refers to the temperature inversion in units of ◦C/100 m. H1 < H2. T1 and T2 refer
to the temperatures at the height of H1 and H2, respectively. TI is calculated when T1 < T2.

Since the predictor variables included in this paper have different sources and resolu-
tions, all variables were interpolated to the grids with spatial resolutions of 1 km based on
ArcGIS 10.2 using kriging, and then, the interpolated variables were matched with the O3
monitoring data. Meanwhile, to assess the importance of these predictor variables, data
were standardized by z-score before performing GWR according to the following formula:

z =
x− µ

σ
(3)

where z represents the standardized variable value, x is the actual value of the sample
data, and µ and σ represent the average value and standard deviation of the sample data,
respectively.

2.3. GWR Model Building

By establishing a local point-by-point regression model using ArcGIS 10.2, GWR
reveals the relationship between independent and dependent variables. It allows regression
coefficients to change in space, which can effectively explore the spatial non-stationary of
variables. The calculation equation is as follows, where (ui,vi) refers to location information
of the ith monitoring site, and ak(ui,vi) represents the realization of the continuous function
ak(ui,vi) at the ith monitoring site.

yi = a0(ui, vi) + ∑
k

ak(ui, vi)xik + εi (4)

In the GWR model, for each sample, the other samples are given different weights
according to their different spatial relationships with that sample, so that the regression
coefficients are no longer constant but vary with the samples. The calculation formula is
as follows:

â(ui, vi) =
[

XTW(ui, vi)X
]−1

XTW(ui, vi)y (5)



Atmosphere 2022, 13, 1706 5 of 16

where W(ui,vi) refers to an N × N weight matrix at sample point i. The weighting functions
are mainly divided into adaptive kernel function and fixed kernel function. Adaptive
kernel function was chosen due to the uneven distribution of O3 monitoring sites.

Spatial weighting function is core of the GWR model. There are numerous methods
for selecting the spatial weighting function, among which the distance threshold method
is simple. However, this method suffers from the problem of discontinuity. As a sample
for which parameters are estimated varies in space, the weights could change suddenly
as other samples move into or out of the circular buffer around the sample. One obvious
way to combat this is the Gaussian method, which uses a continuous monotone decreasing
function to represent the relationship between the weight wij and the distance dij. The
Gaussian function is shown in Equation (6).

wij = exp(−
d2

ij

β2 ) (6)

where β denotes the bandwidth, which refers to the non-negative decay parameter of the
function between weight and distance.

Akaike information criterion (AIC) method was used to determine the bandwidth.
The method uses two parameters to estimate the model and is a standard to measure the
goodness of fit of the statistical model. The AIC value is expressed as:

AIC = 2nln(σ̂) + nln(2π) + n
[

n + tr(S)
n− 2− tr(S)

]
(7)

where σ̂ is the maximum likelihood estimate of standard deviation of the random error,
and S represents the hat matrix of O3.

The stepwise regression approach was used to select the variables to be included in the
GWR model. First, the regression equations of each predictor variable on O3 concentration
were established in turn. The variable that has the largest adjusted R2 was selected as the
first factor to be included in the model. The rest of the variables were then entered. Those
with the potential to further improve the model performance (adjusted R2 increased by at
least 1%) were contained in the model in turn. The pattern lasted until no more variables
satisfied the requirements.

Variance inflation factor (VIF) is an important indicator of multicollinearity among
multiple variables in regression analysis. It is considered that there is no multicollinearity
among the variables included in the model when VIF ≤ 3. Therefore, variables with
p value > 0.1 or VIF > 3 were removed in the final step, and the model accuracy was
reassessed [18].

2.4. Cross-Validation

The accuracy of the GWR model was assessed by the leave-one-out cross-validation
(LOOCV) method. O3 monitoring data were divided into n portions according to the
number of the monitoring sites. O3 monitoring data from one monitoring site was chosen
as a validation set. Then, the model was trained using data from the remaining n − 1
monitoring sites, and the model accuracy was verified using the data from the validation
set. The above steps were repeated n times until the O3 monitoring data from all monitoring
sites, which were used as a validation set. The predictive performance of the model was
evaluated by the R2 and the root mean square error (RMSE). The calculation formulas are
as follows:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − yi)
2 (8)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(9)
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where yi represents O3 monitoring value, yi is average value of O3 concentration, ŷi refers
to simulated value of O3, and n is the sample number.

3. Result
3.1. Exploratory Data Analysis

The variables in the dataset included O3, PM2.5, PM10, CO, NO2, SO2, precipitation, air
pressure, relative humidity, temperature, wind speed, AOD, PBLH, and TI. The statistics of
daily maximum 8 h average O3 concentration are shown in Tables 1 and 2. The mean values
of daily maximum 8 h average O3 concentrations in the BTH area from 2017 to 2020 were
93.64, 95.98, 92.25, and 90.49 µg/m3, respectively, which increased first, and then decreased.
The maximum values were 476.63, 314.33, 319.5, and 366.58 µg/m3, which occurred on 6
July 2017, 6 June 2018, 1 August 2019, and 25 June 2020, respectively. The statistics of daily
values for the predictor variables from 2017 to 2020 are shown in Table 2, including the
mean, minimum, maximum values and standard deviation for all variables.

Table 1. Statistics of daily maximum 8 h average O3 concentration.

Year Point Valid
Value

Min
(µg/m3)

Max
(µg/m3)

Mean
(µg/m3)

Median
(µg/m3)

2017 83 28,175 1.46 476.63 93.64 83.38
2018 80 27,927 2.50 314.33 95.98 84.90
2019 80 27,820 1.50 319.5 92.25 82.65
2020 82 28,832 3.08 366.58 90.49 81.63

Table 2. Descriptive statistics of daily values for the predictor variables from 2017 to 2020.

O3
(µg/m3)

PM2.5
(µg/m3)

PM10
(µg/m3)

CO
(µg/m3)

NO2
(µg/m3)

SO2
(µg/m3)

Precipitation
(mm)

Mean 93.07 53.01 95.63 1.02 40.43 15.66 1.30
Min 1.46 2.62 5.19 0.10 1.54 1.00 0
Max 476.63 644.14 1767.46 10.00 188.29 261.45 158.25

Standard
deviation 52.23 44.68 68.73 0.70 21.13 14.78 6.03

Pressure
(hPa)

Relative
Humidity

(%)

Temperature
(◦C)

Wind Speed
(m/s) AOD PBLH

(m)
TI

(◦C/100 m)

Mean 1004.24 55.76 13.76 1.66 0.47 815.48 0.45
Min 869.63 7.24 −21.12 0.05 0.02 63.90 0
Max 1043.97 99.56 34.84 7.35 4.37 3651.20 4.95

Standard
deviation 26.21 19.25 11.36 0.77 0.37 464.45 0.60

Figure 2 shows the variation characteristics of the O3 monitoring data from 2017 to
2020. Hourly O3 concentration was kept at a high level from 12:00 to 20:00 and reached its
maximum at 16:00 p.m. (110.09 µg/m3). Seasonal maximum 8 h average O3 concentration
peaked in summer, followed by spring, autumn, and winter. Annual maximum 8 h
average O3 concentrations were 92.82, 95.98, 92.11, and 89.06 µg/m3, respectively, and the
corresponding standard deviations were 9.78, 6.22, 6.11, and 10.89 µg/m3 in 2017, 2018,
2019, and 2020, respectively. The 4-year average O3 concentration was 92.42 µg/m3.
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3.2. Model Fitting and Cross Validation

Table 3 presents the predicted variables for the 4-year average GWR model. The
five variables were included in the GWR model, which were precipitation, temperature,
NO2, wind speed, and SO2. The VIF of all five variables was less than 3 and ensured that
there were no redundant independent variables in the model. The regression coefficients
of predictors in the GWR model for the simulation of 4-year average O3 concentration
indicated that temperature, wind speed, and SO2 were positively correlated with the
O3 concentrations, whereas precipitation and NO2 were negatively correlated with O3
concentrations.

Table 3. Four-year average GWR model of O3 concentration based on 81 monitoring sites.

Variables β p VIF

Intercept 93.036 <0.001 NA
Precipitation −1.385 0.002 1.572
Temperature 4.235 <0.001 1.812

NO2 −3.951 <0.001 2.574
Wind speed 1.304 <0.001 1.043

SO2 0.986 0.041 1.993

The daily and 4-year average annual maximum 8 h average values of 81 monitoring
sites across the BTH region were matched with the GWR model simulations at the corre-
sponding sites. Figure 3 shows the fitting scatter plots of the GWR model for the short-
and long-term cross validation results, respectively. The LOOCV R2 for the short- and
long-term simulation results were 0.91 and 0.71, and the values for RMSE were 11.14 and
3.49 µg/m3, respectively.

3.3. Spatio-Temporal Distribution of O3 Concentration

The short-term O3 exposure levels were estimated from 2017 to 2020. Figure 4 showed
the spatio-temporal distribution of the short-term O3 exposure levels based on the GWR
model with a spatial resolution of 1 × 1 km in the BTH region for the first day of each
month in 2020. The maximum value of daily maximum 8 h average O3 concentration was
224.84 µg/m3 on 7 June 2020, and the lowest value was 18.85 µg/m3 on 5 January 2020.
Short-term O3 exposure level was high in southern Hebei, such as Hengshui, Cangzhou
and Handan, and low in Chengde and Qinhuangdao.
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Figure 4. Short-term O3 exposure levels based on GWR model for the first day of every month in the
BTH region in 2020. (a) 1 January, (b) 1 February, (c) 1 March, (d) 1 April, (e) 1 May, (f) 1 June, (g) 1
July, (h) 1 August, (i) 1 September, (j) 1 October, (k) 1 November, and (l) 1 December, respectively.

Figure 5 displayed the seasonal average O3 concentrations and the percentages of
O3 exceedance days. The variation of O3 concentrations showed an obvious seasonal
characteristic in the BTH region. O3 concentration was the highest in summer with an
average value of 140.36 µg/m3, followed by spring (109.48 µg/m3), autumn (70.24 µg/m3)
and winter (51.73 µg/m3). In both spring and summer, O3 concentrations did not meet
the Class I standard of Ambient Air Quality Standards of China (100 µg/m3). From the
exceedance rate of each season, it can be revealed that the percentage of O3 exceedance
days ranged from 0% to 90.22%. The percentage of O3 exceedance days in summer was the
highest, which were 87.78%, 87.36%, 85.23%, and 90.22% from 2017 to 2020, respectively,
while the lowest was in winter, meeting the standard in all four years.
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The estimation results of annual and 4-year average annual O3 exposure levels from
2017 to 2020 are shown in Figures 6 and 7. The annual maximum 8 h average values in
the BTH region from 2017 to 2020 were 93.58, 96.60, 92.66, and 91.21 µg/m3, respectively,
which showed a clear trend of increasing from 2017 to 2018 and subsequently decreasing
from 2018 to 2020. High O3 concentration areas were gathered in the southern BTH region
in 2018, including Hengshui, Cangzhou, Handan, and Xingtai. The O3 concentrations in
these cities all failed to meet the Class I standard (100 µg/m3). In terms of the variation
of pollution areas, the O3 pollution area gradually expanded from the west and southeast
to the entire southern region from 2017 to 2018. However, the pollution area has shrunk
to Shijiazhuang and Hengshui in the southern part of the BTH from 2018 to 2020. The
4-year average O3 concentration estimation results presenting the O3 concentration in the
southeast and western regions of BTH were high, and the concentration in the northeast
region was relatively low. The center of high O3 concentrations appeared in Hengshui
(97.62 µg/m3), followed by Handan and Xingtai, while lower O3 concentrations were
shown in Chengde and Qinhuangdao.
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4. Discussion

The GWR model constructed in this study has achieved higher model performance
than those of other comparable studies. Ma et al. [31] built a high-performance random
forest (RF) model in the BTH region and estimated daily maximum 8 h average O3 concen-
trations, and the R2 value was 0.84. Lyu et al. [32] not only analyzed spatial and temporal
variations of air pollutions but also predicted O3 concentrations based on machine learning
(ML) algorithms across the BTH region, and ML algorithms including RF and decision tree
regression showed the R2 values as 0.83 and 0.73, respectively. The GWR model constructed
in this study has better prediction accuracy, with LOOCV R2 of 0.91 and 0.71 for the short-
and long-term O3 exposure levels, respectively. In addition, O3 exposure levels estimated in
our study have a relatively high spatial and temporal resolution compared to other similar
studies. Hu et al. [33] combined the Weather Research and Forecasting with Chemistry
(WRF-Chem) model and extreme gradient boosting (XGBoost) algorithm to predict the near-
surface O3 concentrations with a resolution of 0.1 × 0.1◦ in the BTH region. Wei et al. [34]
integrated multi-source datasets and used space-time extremely randomized trees (STET)
to estimate surface O3 concentrations at the resolution of 10 × 10 km across the BTH region.
Xue et al. [35] combined the WRF-Chem and RF models to simulate O3 concentrations with
a horizontal resolution of 9 km across the BTH region. Compared with the above research
studies, we attempted to predict O3 concentrations at the spatial resolution of 1 × 1 km.
Masri et al. [36] built an LUR model to simulate O3 concentration spatial distributions in
summer and winter in Tianjin, China, while we predicted O3 exposure levels at temporal
resolutions of 1 day, 1 year and 4 years.

Solar radiation is an essential condition for O3 generation. Strong solar radiation
increases temperature, and high temperature can make the photochemical reactions of O3
formation active, which increases O3 concentration. In addition, summer temperature is
higher than winter temperature, which contributes to the high O3 concentration in sum-
mer [37]. Wind speed was positively correlated with O3 in the BTH region in this study,
which is in line with the result of Wang et al. [38]. In general, high wind speed favors
the diffusion of pollutants when there are only local sources of pollution, resulting in the
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reduction of O3 concentration. The higher the wind speed, the higher the O3 concentra-
tion, indicating that the influence of external pollution sources cannot be ignored [39].
Wang et al. [40] built the regional transport matrix of O3 in the BTH region. The result
suggested that the transport source was the major contributor for O3, which provided the
supporting evidence. Rainfall had a negative correlation with O3 concentration. It can
accelerate wet deposition by scavenging O3 and its soluble precursors, e.g., NO2, resulting
in the reduction of O3 concentration [41,42]. In addition, there may be a negative correlation
between NO2 and O3 at fine scales, because NO emitted from motor vehicles near the road
reacts rapidly to generate NO2. At the same time, O3 is reduced and other compounds are
formed. This process is referred to as NOx titration.

During these four years, annual O3 concentrations in the BTH region peaked in 2018
and then began to decrease. Regional joint prevention and control and the decreasing
concentrations of major precursors of O3 may be the reasons. Although a series of stringent
air pollution control strategies has been issued over the past few years, for example, Air
Pollution Prevention and Control Action Plan, O3 concentrations were able to decrease until
the integrated management of the O3 precursor (VOCs) was first proposed in the important
policy of governance for controlling O3 in the winter of 2018. The policy had achieved initial
improvements in 2019 [43]. O3 concentration in the BTH region had a seasonal variation.
The concentrations were highest in summer, followed by spring, autumn, and winter.
In general, high temperature and strong solar radiation levels in summer can stimulate
active photochemical reactions, which lead to high O3 concentrations [44]. Although the
temperature in spring was lower than summer, dry and rainless meteorological conditions
also contribute to O3 production [45]. In autumn and winter, O3 concentrations decreased
due to weakened solar radiation and lower temperatures. In terms of spatial variation, O3
concentrations were higher in the southeastern region, including in Hengshui, Handan,
Xingtai and Cangzhou, and were lower in Chengde. The southeastern part of BTH region
was dominated by heavy industries, and these polluting industries have high precursors
emissions, which are more conducive to O3 generation [46]. In addition, the number of
civil vehicles in Beijing, Tianjin, and Hebei province is gradually rising, which increases
emissions from vehicle exhaust and thus worsens O3 pollution [47–49].

There are some limitations in our study. The variables used in the GWR model includ-
ing air pollutants and meteorology, as well as more variables such as traffic, population,
and pollutant emission, should be considered in future studies to make more accurate
estimations. In addition, there may not be enough samples for the regions lacking moni-
toring sites to accurately capture O3 exposure levels. With the continuous development
of the national air quality monitoring network, the performance of our model will be
continuously improved.

5. Conclusions

Short- and long-term O3 exposure levels were estimated based on the GWR model at
the spatial resolution of 1 × 1 km in the BTH region from 2017 to 2020. The cross-validation
results indicated that simulated concentrations were well consistent with observed O3
concentrations. By estimating the parameters of each location, the GWR model constructed
in this study showed a high ability to simulate O3 concentration at different spatial and
temporal scales. The temperature, wind speed, and SO2 were positively related with
O3 concentrations, whereas precipitation and NO2 were negatively correlated with O3
concentrations. We found that O3 concentration increased with wind speed, and the
possible reason was that the contribution of the transport source was greater than the
contribution of the local source. Compared with long-term O3 exposure level, short-term
O3 exposure level obtained a better simulated performance. The estimations based on
the GWR model showed spatio-temporal variation of O3 concentrations across the BTH
region. In summary, the model could accurately estimate O3 exposure levels, which could
be helpful for epidemiological studies and health risk assessment in the future.
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