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Abstract: The chemical and particle size composition of road dust in Surgut, which is a rapidly
developing city in Western Siberia, was studied for the first time. Contents of major and trace
elements were determined using ICP-MS and ICP-AES, respectively. It was found that the road dust
had an alkaline pH (from 7.54 to 9.38) and that the particle size composition was dominated by the
100–250-µm fraction. The contamination assessment based on calculations of the enrichment factor
(EF) showed that the road dust was significantly enriched in Sb and Cu and moderately enriched in
Zn, Pb, Mo, Ni and W. The sources of these elements are probably associated with the abrasion of
car tires and brake pads. Based on calculations of global pollution index (PIr) and total enrichment
factor (Ze), the road dust of Surgut was characterized by a generally low level of potential ecological
risk, except for stretches of road subject to regular traffic jams, where a moderate ecological risk level
was identified. In comparison to the other Russian cities (Moscow, Chelyabinsk, Tyumen, etc.) where
studies of road dust composition have been carried out, Surgut had similar contents of Cr and Cu
and relatively lower contents of Sb, Cd, As and Pb.

Keywords: Western Siberia; urban pollution; road dust; potentially toxic elements; traffic-related
contamination

1. Introduction

Road dust is currently one of the main materials used in assessments of the ecological
state of urban and industrial environments. Studies on road dust composition help to
assess the total accumulation of pollutants from the atmosphere, soils and technogenic
sources and to forecast the effects of those pollutants on human health. The advantages of
using road dust in such assessments include its ease of sampling, ubiquity and non-point
source nature, as well as its strong relationship with car exhaust emissions [1].

The road dust deposited within transport zones is regarded as a multicomponent mix-
ture of different fractions that are formed as a result of soil erosion, abrasion of road surfaces
and vehicle parts, incomplete combustion of fuel, application of de-icing agents, etc. [2–5].
Particles of road dust can accumulate many potentially toxic metals, metalloids and organic
compounds [6–9]. The deposition rates of road dust and its chemical composition depend
on factors such as vehicle emissions; abrasion of road tarmac, road markings, car tires
and brake pads; and the corrosion of metal parts of vehicles, as well as traffic densities,
speed and frequencies of car maneuvers such as braking and stopping [10–12]. At the same
time, resuspended particles can be one of the most important sources of microparticles in
the atmosphere [13]. The high concentration of harmful substances in the dust makes it
hazardous to human health. Microparticles can be lifted by air currents and inhaled by
humans and, therefore, increase the risks of respiratory, cardiovascular and oncological
diseases [14]. Globally, road dust is a major source of inhalable particulate matter in any
urban environment [15].
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According to the Russian Federal Service for State Statistics, 75% of the country’s
population live in cities [16]. Numerous studies have reported that transport-related air
pollution is one of the dominant sources of urban air pollution and is a continuously con-
tributing emission [17–19]. In many cities of Russia, numerous dangerous environmental
situations resulting from atmospheric air pollution have been repeatedly noted [20,21].
Therefore, ecological assessments of such cities are highly important for providing comfort-
able and safe conditions for their residents. However, the majority of such assessments are
conducted in large cities, with a lack of attention given to medium-sized and smaller cities.

There have been few studies on road dust within the territory of the former Soviet Union.
Determinations of road dust composition have been carried out in Moscow [13,22–26], cities
of the Perm Region [27], Chelyabinsk [20] and Alushta [28]. In Tyumen (West Siberia),
Konstantinova et al. [29] have analyzed 20 samples of road dust, which were found to have
high concentrations of Cr, Ni and Co.

Surgut has one of the highest concentrations of motorized vehicles in Russia, with
about 200,000 vehicles registered within this city. Busy highways running through Surgut
connect different cities and numerous oil fields of Western Siberia. There is also a railway
running across Surgut. The city streets and roads have a total length of 266.7 km, which
corresponds to about 10% of the total area of urban constructions [30]. Such a high intensity
of traffic has negative effects on the health of Surgut residents, in particular elevating the
risks of cancer [31]. Traffic densities within the city drastically increase during certain peak
hours of the mornings and evenings, when the traffic becomes very heavy and moves at an
average speed of less than 10 km per hour. Nevertheless, the impacts of such traffic on the
content of trace elements, including potentially toxic elements (PTEs), within the road dust
of Surgut have not been studied until the present time. The objectives of this study were as
follows: (i) to determine the total concentrations of major and trace elements, including
PTEs, in the road dust of Surgut city, (ii) to assess the degree of contamination using
contamination indices, (iii) to identify the potential sources of PTEs and (iv) to evaluate the
human health risks of road dust.

2. Materials and Methods
2.1. Study Area

Surgut is located in the center of the West Siberian Plain, within the taiga zone. The
climate is continental, with a mean annual temperature of −1.8 ◦C and a mean annual pre-
cipitation of 652 mm [32]. Southern and western winds prevail. The rapid development of
Surgut began in the 1960s, following the discovery of numerous oil fields in the vicinities of
the city. The population of Surgut grew from just over 6 thousand people in the early 1960s
to 200 thousand in the mid-1980s and has reached nearly 400 thousand at the present time.

Surgut is one of the fastest growing cities in Russia. It is characterized by well-
developed power engineering, food production, printing, building, publishing and sewing
industries. Surgut’s two largest gas-fired power stations, with a total output of 8.9 thousand
MW, provide most of the regional power supply.

The ecological conditions of Surgut have been insufficiently studied, with only very
few assessments within small areas. It has been found that the snowpack in Surgut is
contaminated by heavy metals [33] and that Pb concentration in road-side soils exceeds
its maximal permissible concentration [34]. Dumps of domestic and industrial waste also
negatively affect the surrounding soils, where heavy metal concentrations exceed their
maximal levels according to the ecological standards [35]. Moreover, there is a lack of data
on the composition of the native soils of the Surgut region. It is only known that sandy soils
with low contents of trace elements prevail within the Fedorovskoye Oil Field at distances
of 20–50 km to the north of Surgut [36,37].

2.2. Sampling and Laboratory Analyses

Road dust sampling was undertaken in July 2021 during dry weather periods, i.e., no
less than 36 h after any low-intensity rainfall. Samples of 200–300 g each were collected from
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road surfaces within 1 × 1 quadrats using a plastic brush and a scoop, placed into plastic
bags and delivered to the laboratory. Sampling sites were located on roads with different
traffic densities within different land use areas of the city. High, moderate and low traffic
densities corresponded to >2, 1–2 and <1 thousand cars per hour. The traffic data were
sourced from the municipal program for the development of transport infrastructure in
Surgut [30]. The different types of land use were recorded at the sampling sites as follows:

(1) Industrial and warehouse area.
(2) High-rise residential area.
(3) Low-rise residential area.
(4) Power plant area.
(5) Public and business area.
(6) Transport hubs (railway station and airport).

A total of 25 samples were taken. It has been shown that a relatively low number of
samples (16–31) is sufficient for evaluating the level of pollution of road dust in cities with
a medium population, e.g., Thessaloniki, Greece [38], Ma’an City, Jordan [39] and Sakaka
city, Saudi Arabia [40]. Locations of the sampling sites are shown in Figure 1. A detailed
description of the sampling sites is presented in Supplementary Materials, Table S1.
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area, urban forests, green spaces.

In the laboratory, the samples were passed through a sieve with an aperture of 1 mm
in order to remove coarse inclusions (fragments of plants, rubbish, etc.). Although the
pollutant concentrations in fine fractions (PM1 and PM10) of road dust are known to be
higher than those in coarse fractions [13], we analyzed bulk samples in order to be able to
compare our results from Surgut with the data from other cities. Bulk samples have been
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used in the majority of studies on road dust composition, whereas fine fractions have been
separately analyzed in only a few studies [7,13,26,41].

The pH values were measured potentiometrically in continuously mixed 1:2.5 dust:water
suspensions using a Starter3100 conductivity meter (OHAUS, Baden-Wuerttemberg, Ger-
many). The particle size distribution was determined using a Mastersizer 3000 laser
diffraction particle size analyzer. Concentrations of 54 trace elements (Li, Be, Sc, V, Cr, Co,
Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi,
Th, U) and 8 major elements in weight percent oxide for the particulate fraction (Na2O,
MgO, Al2O3, P2O5, S, K2O, CaO, Fe2O3) were measured by inductively coupled plasma
mass spectrometry (ICP-MS) (Thermo Elemental—X7 spectrometer, Omaha, NE, USA) and
inductively coupled plasma atom emission spectrometry (ICP-AES) (Thermo Scientific
iCAP-6500 spectrometer, Thermo Fisher Scientific, Waltham, MA, USA), respectively. The
analyzed samples, 100 mg each, were prepared by acid digestion in an open beaker system.
The samples were placed in Teflon beakers (volume 50 mL); 0.1 mL of a solution containing
8 µg dm−3 145Nd, 61Dy and 174Yb was added (control of the chemical yield during the
sample decomposition procedure); and the mixture was moistened with several drops of
deionized water. Then, 0.5 mL of HClO4 (perchloric acid fuming 70% Supratur, Merck),
3 mL of HF (hydrofluoric acid 40% GR, ISO, Merck KGaA, Darmstadt, Germany) and
0.5 mL of HNO3 (nitric acid 65%, max. 0.0000005%% GR, ISO, Merck) were added and
evaporated until intense white vapors appeared. The beakers were cooled, their walls were
washed with water and the solution was again evaporated to wet salts. Then, 2 mL of HCl
(hydrochloric acid fuming 37% OR, ISO, Merck KGaA, Darmstadt, Germany) and 0.2 mL
of 0.1 M H3BO3 solution (analytical grade) were added and evaporated to a volume of
0.5–0.7 mL. The resulting solutions were transferred into polyethylene bottles, 0.1 mL of a
solution containing 10 mg L−1 In (internal standard) was added, diluted with deionized
water to 20 mL and analysis was performed.

In addition to the studied samples, measurements were also taken for the blank and
reference samples. We used the certified reference materials for soils—Gabbro Essexit
STD-2A (GSO 8670-2005) and Andesite AGV-2 (United States Geological Survey)—in order
to verify the accuracy of determinations. The comparison with the standard samples
showed a sufficient repeatability (85–115%) for the majority of the analyzed elements,
except for Sn (59%), Ba (70%), Ag (153%), Mo (78%) and W (63%), the measurements of
which were excluded from the calculations. The analysis was performed in the Institute of
Microelectronics Technology and High Purity Materials (Russian Academy of Sciences). The
methods, recoveries, detection limits (DLs) and analytical results of the certified reference
materials are given in the Supplementary Materials (Table S2).

2.3. Calculations and Data Processing

The processing of the statistical data was performed using Statistica 10.0 software
(TIBCO, Palo Alto, CA, USA). Statistical parameters of the road dust composition (mean,
standard deviation, maximum and minimum values) were determined. The significance of
differences between the mean values for roads with different traffic intensities was assessed
using the Mann–Whitney test.

Assessments carried out by two or more methods can improve the accuracy of the
assessment result [42]. Therefore, to improve the accuracy of the result and make the assess-
ment more comprehensive and systematic, additional methods were applied. Assessments
of road dust contamination levels were based on calculations of generally accepted indices,
including the global pollution index (PIr), enrichment factor (EF) and potential ecological
risk index (Ei

r), as well as the total potential ecological risk index (RI) and total enrichment
factor (Ze), the latter being commonly used in Russia.

The values of PIr were calculated using the following equation:

PIr = Cr/K, (1)
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where Cr is the concentration of an element in road dust and K is the concentration of the
same element in the upper continental crust [13].

The EF of an element, which is an important parameter for evaluating the contribution
of human impact to its enrichment, is the normalization of a measured element against a
reference element in a studied sample [43]. The EF was calculated according to the equation:

EF =
Cx

CAl
(sample) /

Cx
CAl

(crust), (2)

where Cx (sample) is the measured concentration of the element of interest, Cx (crust) is the
concentration of the same element in the Earth’s crust and CAl is the concentration of the
reference element (aluminum) in the same sample or the Earth’s crust. Aluminum is most
commonly used for calculations of EF [44–46]. The low mobility and crustal abundance
of Al makes it a suitable reference element. The composition of the upper continental
crust was used as a reference for normalization because of the lack of a background
analogue for road dust, which is a specific anthropogenic object [13]. The same method
of calculation was applied in the other Russian cities studied [13,20,24,26,28]. The use of
world average values in the continental crust is acceptable only within regions where there
are no geochemical anomalies associated with the features of the geological structure. In
this case, the element contents of soils, which are the source of particles in the atmosphere,
are close to continental crust values. According to the scientific research on the contents
of some heavy metals and metalloids in Western Siberia soils [47,48], they are not very
different from continental crust values. Indeed, the average contents of the elements in the
soils of Western Siberia are as follows (mg kg−1): Co—13, Cr—84, Cu—31, Ni—42, Pb—18,
Zn—73 and Zr—295 [47]. These values are quite close to continental crust values according
to Rudnick and Gao [49]. Therefore, comparisons with the distribution of elements in the
Earth’s crust are considered reasonable.

The potential ecological risk index Ei
r, which characterizes the degree of the ecological

risk of a single element [50], was calculated by using the following equation:

Ei
r = PIr·Ti

r (3)

where PIr is the global pollution index and Ti
r is the toxicity response coefficient. This index

provides for the probability assessment of adverse ecological effects caused by exposure
by to one or more pollutants [44]. In this study, we used the response Ti

r values according
to [50] as follows: Zn, Mn, Fe, W, Sr = 1; Cr, Mo, Sn, Sb = 2; Pb, Cu, Co, Ni = 5; As = 10
and Cd = 30. For risk assessments, we adopted the following gradation: Ei

ri < 40 describes
low risk; 40 < Ei

r < 80 indicates moderate risk; 80 < Ei
r < 160 indicates considerable risk;

160 < Ei
r < 320 indicates high risk; and Ei

r > 320 indicates extreme risk [50,51].
The total rate of accumulation of PTEs and other chemical elements was estimated

using two indices, the total potential ecological risk index (RI) and the total enrichment
factor (Ze), because the use of different indices provides for the most accurate assessment
of the ecological situation. The RI index, which characterizes the overall degree of the
ecological risk of all metals under investigation [50], was calculated according to equation:

RI = ∑ Ei
r (4)

where Ei
r is a potential ecological risk index of a single element. Risk levels were graded as

follows: RI < 150, low; 150 < RI < 300, moderate; 300 < RI < 600, considerable and RI > 600,
high ecological risk.

The values Ze were calculated using the following equation:

Ze = ∑EF − (n − 1) (5)

where EF of n elements with EF > 1.5 were summed up [24].
Criteria for assessment of road dust contamination are presented in Table 1.
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Table 1. Grades of enrichment factor (EF), potential ecological risk index (Ei
r), total potential ecological

risk index (RI) and total enrichment factor (Ze).

Enrichment Factor Potential Ecological Risk Index Total Potential
Ecological Risk Index Total Enrichment Factor

EF values Enrichment
level [1] Ei

r grades [50]
RI

values RI levels [50] Ze values Environmental
hazards [13,25,26]

EF ≤ 2 Minimal Ei
r < 40 Low RI < 150 Low <32 Non-hazardous

2 < EF ≤ 5 Moderate 40 < Ei
r < 80 Moderate 150 ≤ RI < 300 Moderate 32–64 Moderately

dangerous
5 < EF ≤ 20 Significant 80 < Ei

r < 160 Considerable 200 ≤ RI < 600 High 64–128 Dangerous
20 < EF ≤ 40 Very High 160 < Ei

r < 320 High RI ≥ 600 Very High 128–256 Very dangerous

Varimax-rotated principal component analysis (PCA) was applied to investigate the
sources of PTEs. PCA is widely used to reduce data and to extract a small number of
latent factors (principal components, PCs) for analyzing relationships among the observed
variables [52].

The influence of road dust on the health of the Surgut population was evaluated using
the U.S. Environmental Protection Agency (EPA) human health evaluation method [53].
This method implies that dust can induce negative effects when it is assimilated by the
human body in three different pathways—ingestion, inhalation and dermal contact. Car-
cinogenic and non-carcinogenic risks can be calculated by summing up the risks from the
three exposure pathways.

The calculations of such risks were based on the average daily dose (ADD) of the total
assimilation of a certain element in three different ways. The equations and parameter
values used for the calculations are presented in Table S3. Following the ADD calculations,
we conducted determinations of non-carcinogenic hazard quotient (HQ) and carcinogenic
risk assessment (CRA) using the following equation:

HQ = ADD/RfD,

where reference dose RfD (mg kg−1 day−1) is an estimation of the maximum permissible
risks to the human population through daily exposure with consideration of sensitive
groups during their lifetime.

Hazard index (HI), the sum of HQ(Ing/Der/Inh), was used by us to estimate the
health risk of different exposure pathways. HI values of ≤1 indicate no adverse health
effects and HI values > 1 indicate possible adverse health effects [54].

For carcinogenic risk (CRA), the dose was multiplied by the corresponding slope factor
(SF) to produce an estimate of cancer risk [55] as follows:

CRA = ADD ing, dermal, inh × SF

Total cancer risk (CRAsum) was calculated as the sum of CRA for three exposure
pathways (ingestion, inhalation and dermal contact).

3. Results
3.1. The pH and Particle Size Distribution

The analyzed dust had an alkaline reaction, with a pH ranging from 7.54 to 9.38. The
roads with low, moderate and high traffic densities were characterized by mean pH values
of 8.04, 7.80 and 7.82, respectively. The data on road dust pH in other cities of the world
fall within generally the same range, between 7 and 9.5 [56–59]. The alkaline reaction of
city road dust is explained by the presence of microparticles of building materials as well
as different pollutants originating from vehicle exhaust emissions. Acidifying gaseous
compounds (mainly nitrogen oxides) of car exhausts are removed by air currents, whereas
alkaline particulate matter stays on the road surface. According to [34], the urban soils of
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Surgut have neutral and alkaline pH values, as opposed to acid background soils around
the city.

The particle size distribution of road dust was characterized by the predominance of
the 100–250-µm size fraction (fine sand), which ranged from 19.5 to 50.1% with a mean of
39%. The content of the 100–250-µm size fraction (very fine sand) was significantly lower,
with a mean of 14.4%. Sand-sized particles (>50 µm) composed between 45 and 95% of
the total mass (with a mean of 82.5%). The 2–10-µm size fraction and the 10–50-µm size
fraction had mean contents of 3.2 and 13.8%, respectively. The content of clay (<2 µm)
ranged from 0.1 to 2.5%.

Sand (mainly fine sand) is known to be the predominant particle size fraction of road
dust in many Russian cities. For example, in Chelyabinsk, which is not very far from Surgut,
road dust is characterized by the predominance of particles from 30 to 300 µm [21]. In
Moscow, road dust has the following mean contents of fractions: PM1—1.8%, PM10—12.8%,
10–50-µm size fraction—16.3% and >50 µm size fraction—69.1% [24]. The predominance of
coarse particles in road dust has been reported from many cities of the world. For example,
the urban sediments collected from Manchester were made up primarily of medium sand-
sized particles ranging in size from 200 to 300 µm [60]. The 125–500-µm fraction was
prevalent in the road dust of Thessaloniki, Greece [38].

It is generally believed that the predominance of particles of 180–240 µm in road
dust is indicative of deposition of soil particles together with particles produced by the
movement of vehicles, i.e., the abrasion of road surfaces, tires and metal parts of cars [61].
Smaller particles usually originate from industrial emissions [21]. It has been found that
dust from metallurgical enterprises has a median particle size ranging from 1.0 to 200 mm
and volumes of PM10 from 10 to 84% depending on the technological processes and the raw
materials used [62]. Therefore, the composition of road dust from Surgut mainly resulted
from the deposition of soil particles and particles produced by traffic, with only a low
contribution of particles originating from industrial plants.

The distribution of fractions of road dust depending on traffic densities is shown in
Table 2. The highest contents of PM10 particles, which are easily carried by winds and create
the highest risks for human health, were observed on roads with moderate and high traffic
densities. The lowest contents of fine particles combined with the predominance of sand
were found on small roads with low traffic densities. However, such differences between
the roads with different traffic intensities were only very small. The Mann–Whitney test
showed that the differences between the mean values of contents of those particle size
fractions were insignificant. The highest percentage (26.5%) of fine (<50 µm) particles was
found within the public and business area, which is located in the southern part of Surgut
(sampling sites 16–18, see Figure 1). Such a high content of fine particles can be explained
by the predominance of fine-textured alluvial soils within that area.

3.2. The Chemical Composition of Road Dust

Summary statistics for the studied chemical element contents in the road dust of
Surgut are presented in Table 3. The predominant major elements include Al2O3 (with a
mean of 4.2%), CaO (3.9%), MgO (2.8%) and Fe2O3 (2.4%), with the other major elements
having mean contents of <1%. The upper part of continental Earth’s crust has a different
descending order of major element concentrations: Al2O3 (15.4%), Fe2O3 (5.0%), CaO
(3.6%), Na2O (3.27%), K2O (2.8%) and MgO (2.48%), according to [49]. In comparison
with the latter, Surgut’s road dust has relatively low contents of aluminum and iron but a
relatively high content of magnesium.

The majority of trace elements in the road dust had lower contents as compared to
those in the upper part of the continental Earth’s crust, which was indicated by the PIr
values (see Table 3). For example, the contents of Li, Be, Ga, As, Rb, Zr, Nb, all rare earth
elements, Th and U were 3–10 times as low as their Clarke numbers. Most PTEs (Hg, As,
Ni, Cr, Co, V) do not accumulate in the road dust of Surgut. Such low contents of trace
elements can be explained by the predominance of sand fractions and low contents of fine
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fractions in the particle size composition of the studied samples. It has been repeatedly
shown that fine particles are most enriched in trace elements [63,64].

Relative enrichment as compared to the world average values in the Earth’s continental
crust was observed in Sb, Cu, Zn, Cd and Pb (Table 3). The elements accumulated in
Surgut’s road dust can be defined as typical urban pollutants, including Cd, Pb, Sb, Ti, Ba,
Zn and, to a lesser degree, Cu [65–68]. A similar assemblage of pollutants (Sb, Pb, Zn, Cd,
Cu and Sn) has been found in the road dust of Moscow [13].

Table 2. The percentage of particle size fractions (mm) in road dust depending on (a) traffic densities
and (b) land use within Surgut city.

Area <0.002 0.002–0.01 0.01–0.05 0.05–0.1 0.1–0.25 0.25–0.5 0.5–1.0

Traffic Densities:
Low (n = 8) 0.5 ± 0.1 1 2.6 ± 0.7 14.9 ± 5.1 14.6 ± 6.7 36.7 ± 5.4 26.1 ± 7.4 4.4 ± 0.4

Moderate (n = 14) 0.7 ± 0.7 3.8 ± 3.2 14.0 ± 8.5 14.5 ± 4.0 40.0 ± 6.9 24.2 ± 7.8 2.7 ± 1.9
High (n = 3) 0.4 ± 0.1 2.1 ± 0.7 12.0 ± 5.1 15.0 ± 6.7 42.0 ± 5.4 26.2 ± 7.6 2.4 ± 0.4

Land use Areas
Industrial and warehouse

area (n = 6) 0.25 ± 0.3 2.0 ± 1.1 8.9 ± 3.6 11.9 ± 2.8 44.4 ± 3.4 29.5 ± 4.6 3.1 ± 1.4

High-rise residential area
(n = 6) 0.5 ± 0.32 2.6 ± 0.8 13.2 ± 5.7 16.0 ± 6.0 39.0 ± 5.0 25.1 ± 7.5 3.5 ± 1.9

Low-rise residential area
(n = 5) 0.7 ± 1.0 4.4 ± 5.0 13.6 ± 13.8 12.2 ± 5.3 36.9 ± 9.4 27.1 ± 12.2 4.8 ± 3.9

Power plant area (n = 3) 0.9 ± 0.7 4.5 ± 2.6 14.5 ± 7.5 14.8 ± 2.4 39.3 ± 4,2 23.2 ± 7.3 3.1 ± 2.6
Public and business area

(n = 3) 0.9 ± 0.6 3.0 ± 0.9 26.5 ± 13.4 21.0 ± 2.9 31.0 ± 9.4 15.8 ± 7.4 1.9 ± 0.9

Transport hubs (n = 2) 0.7 ± 0.2 3.6 ± 1.0 10.8 ± 5.8 11.9 ± 4.4 43.8 ± 3.4 27.3 ± 7.5 2.0 ± 0.6
1 Mean ± SD.

Table 3. Summary statistics for the contents of PTEs and other chemical elements in Surgut’s road
dust, n = 25 (Na2O- Fe2O3 in %, Li-U in mg kg−1).

Element DL Mean Sd Min Max V, % WA PIr

Al2O3 0.009 4.2 0.97 2.6 6.68 23 15.4 0.3 (0.2–0.4)
CaO 0.005 3.9 1.42 2.0 7.81 36 3.59 1.1 (0.5–2.2)

Fe2O3 0.01 2.4 0.60 1.2 3.86 25 5.04 0.5 (0.2–0.8)
K2O 0.002 0.80 0.16 0.55 1.26 20 2.8 0.3 (0.2–0.5)
MgO 0.005 2.8 1.06 1.4 5.48 37 2.48 1.1(0.5–2.2)
MnO 0.0004 0.043 0.013 0.024 0.071 29 0.1 0.4 (0.2–0.7)
Na2O 0.001 0.91 0.22 0.65 1.48 24 3.27 0.3 (0.2–0.5)
P2O5 0.005 0.06 0.03 0.025 0.15 58 0.15 0.4 (0.2–1.0)

S 0.002 0.064 0.021 0.028 0.12 33 0.062 1.0 (0.4–2.0)
TiO2 0.0005 0.27 0.09 0.12 0.55 35 0.64 0.4 (0.2–0.9)
As 0.1 1.29 0.65 0.4 3.3 51 4.8 0.3 (0.1–0.7)
Be 0.03 0.42 0.12 0.3 0.72 28 2.1 0.2(0.1–0.3)
Bi 0.01 0.067 0.046 0.02 0.22 69 0.16 0.4 (0.1–1.4)
Cd 0.04 0.11 0.15 0.04 0.66 136 0.09 1.2 (0.4–7.4)
Ce 0.008 15.5 8.1 8.4 45.4 52 63 0.2 (0.13–0.7)
Co 0.08 6.9 1.7 3.8 11.2 25 17.3 0.4 (0.2–0.7)
Cr 0.7 46.4 15.4 18.4 83.9 33 92 0.5 (0.2–0.9)
Cs 0.01 0.43 0.17 0.24 1.0 39 4.9 0.1 (0.05–0.2)
Cu 0.8 42.8 27.3 9.3 144.9 64 28 1.5 (0.3–5.2)
Dy 0.007 1.12 0.44 0.74 2.59 39 3.9 0.3 (0.2–0.7)
Er 0.003 0.60 0.24 0.40 1.34 39 2.3 0.3 (0.2–0.6)
Eu 0.006 0.40 0.19 0.26 1.17 47 1 0.4 (0.3–1.2)
Ga 0.1 3.74 0.84 2.6 6.1 23 17.5 0.2 (0.1–0.3)
Gd 0.007 1.20 0.53 0.77 3.13 44 4 0.3 (0.2–0.8)
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Table 3. Cont.

Element DL Mean Sd Min Max V, % WA PIr

Hf 0.02 0.72 0.24 0.5 1.7 33 5.3 0.14 (0.1–0.3)
Ho 0.005 0.21 0.08 0.13 0.48 40 0.83 0.2 (0.2–0.6)
La 0.009 7.05 3.03 4.0 17.7 43 31 0.2 (0.13–0.6)
Li 0.03 5.16 1.04 3.7 7.57 20 24 0.2(0.2–0.3)
Lu 0.005 0.091 0.035 0.06 0.20 39 0.31 0.3 (0.2–0.6)
Nb 0.02 2.85 1.55 1.5 8.9 55 12 0.2 (0.1–0.7)
Nd 0.009 6.78 3.83 3.86 22.5 56 27 0.3 (0.14–0.8)
Ni 0.7 41.1 17.0 12.1 90.1 41 47 0.9 (0.3–1.9)
Pb 0.06 19.0 25.5 5.6 126.1 134 17 1.1 (0.3–7.4)
Pr 0.005 1.77 0.96 0.95 5.50 54 7.1 0.2 (0.13–0.8)
Rb 0.1 19.8 4.21 13.0 33.3 21 84 0.2 (0.2–0.4)
Sb 0.06 0.89 0.57 0.38 3.13 64 0.4 2.2 (1.0–7.8)
Sc 0.09 5.62 1.30 3.7 8.5 23 14 0.4(0.3–0.6)
Sm 0.004 1.42 0.73 0.85 4.26 51 4.7 0.3 (0.2–0.9)
Sr 0.07 119.6 27.8 91.0 210.6 23 320 0.4 (0.3–0.7)
Ta 0.01 0.19 0.13 0.1 0.7 69 0.88 0.2 (0.1–0.8)
Tb 0.004 0.18 0.08 0.12 0.48 44 0.7 0.3 (0.2–0.7)
Th 0.01 1.45 0.65 0.7 3.2 45 10.5 0.1 (0.07–0.3)
Tl 0.005 0.08 0.02 0.05 0.15 23 0.9 0.1 (0.06–0.16)

Tm 0.004 0.086 0.034 0.06 0.20 40 0.3 0.3 (0.2–0.7)
U 0.01 0.61 0.27 0.4 1.6 44 2.7 0.2 (0.1–0.6)
V 0.8 42.1 11.9 20.6 67.6 28 97 0.4 (0.2–0.7)
Y 0.02 6.03 2.29 4.1 13.2 38 21 0.3(0.2–0.6)

Yb 0.003 0.66 0.27 0.45 1.54 41 2 0.3 (0.2–0.8)
Zn 0.5 89.9 50.6 35.6 262.7 56 67 1.3 (0.5–3.9)
Zr 0.04 28.6 10.1 18.2 68.8 35 193 0.1 (0.1–0.4)

Note: WA—world average [49]; Se, Rh, Pd, Te, Re, Ir, Pt, Hg and Au contents were below their detection limits in
50% samples, and hence, they were excluded from calculations.

The Pb, Cu and Zn contents in the soils of Western Siberia are similar to world average
values and occasionally even lower [47]. It has also been shown that the Sb content in
soils in the north of Western Siberia is below its world average value [69]. Therefore,
enrichment in those trace elements in the road dust of Surgut is connected with the impact
of anthropogenic sources, which is indirectly confirmed by significant variations in Cd (CV
of 136%), Pb (134%) and Sb (64%). Elements originating predominantly from natural sources
are expected to have a relatively lower variability, while those from anthropogenic sources
should display a greater variability [70,71]. Significant variations in PTE concentrations
indicate significant contributions from anthropogenic sources and a spatial heterogeneity
of human impacts on the roads [13]. In addition, such variations reflect differences in the
rates of pollution depending on road traffic, industrial emissions and street cleaning.

It should be mentioned that dust particles separated from the snowpack within West-
ern Siberia, including remote background areas, are enriched in Sb, Zn, Cd and As [72].
Therefore, the assemblage of air pollutants within Surgut city is similar to the region-scale
assemblage of air pollutants, which is indicative of their broad distribution. It is likely
that the composition of atmospheric particulate matter within Western Siberia is generally
predetermined by emissions from different cities and other point sources, the specific
contributions of which can only be assessed when a larger database on such sources is
available, but at the present time it is impossible to provide such an assessment with
sufficient reliability.

The mean EF values of Sb (8.3) indicated significant enrichment. A very high level
of enrichment (20 < EF < 40) in both Sb and Pb was observed in only one sample, which
was collected from a stretch of road with a high traffic intensity within the industrial and
warehouse area. Such a combined Sb and Pb contamination of road dust can be explained
by emissions of those elements from worn car batteries that were made with the use of
Sb–Pb alloys up until very recently [73].
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Of the studied samples, 48% were significantly enriched in Cu, 32% in Zn, 20% in
Ni, 12% in Pb and 4% in Cd. The mean EF values of Pb (4.3), Ni (3.3) and 36% EF of
Cr were between 2 and 5, indicating moderate enrichment. Other trace elements were
characterized by mean EF values of <2, i.e., belonging to the category of “deficiency to
minimal enrichment” according to [1].

The data obtained on the distribution of EF, Ze and RI values over the city territory
depending on the land use areas and road traffic intensities are shown in Table 4. The
highest total contamination levels were observed in the industrial area and the roads with
high traffic intensities (with the Ze values of 43 and 44, respectively). There was a clear
relationship between the contamination level and the traffic density.

Table 4. The values of enrichment factor (EF), total potential ecological risk index (RI) and total
enrichment factor (Ze) in the road dust of Surgut.

Area
Contamination Levels and EF Values

Ze RISignificant (EF = 5–20) Moderate (EF = 2–5)

Land Use Areas
Industrial and warehouse area (n = 6) Sb 12 Pb 9 Cu7 Ni3 43 55

High-rise residential area (n = 6) Cu 5 Zn 5 Ni3 Pb2 31 79
Low-rise residential area (n = 5) Sb 6 Ni4 Cu4 Zn4 Cr2 27 47

Power plant area (n = 3) Sb 9 Cu5 Zn5 Ni4 Cr2 Pb2 32 39
Public and business area (n = 3) Zn 7 Cu 6 Sb 6 Pb2 29 87

Transport hubs (n = 2) Sb 8 Cu4 Ni3 Zn3 Fe2 30 30
Traffic Density

Low (n = 8) Sb 5 Cu4 Zn3 Ni3 Pb2 28 39
Moderate (n = 14) Sb10 Cu 6 Pb 6 Zn5 Ni3 40 53

High(n = 3) Zn9 Sb8 Cu8 Ni4 Pb3 Cd2 44 144
Total for Surgut Sb 8.1 Cu 5.5 Zn 4.9 Pb 4 Ni 4 37 59

Note: the numbers after the elements correspond to their mean EF values. Elements with EF < 2 are not shown.

The dust samples from roads with low traffic densities only had a significant enrich-
ment in Sb. Roads with heavier traffic were characterized by dust enrichment in practically
all pollutants, including Sb, Zn, Cu and Pb. In particular, the roads with moderate and high
traffic intensities as compared to the roads with low traffic intensities were characterized by
the following increases in pollutant concentrations: Zn by multiples of 1.4–2.8, Cu—1.3–1.7,
Pb—1.1–2.5, Cd—1.3–2.8, Sb—1.5–1.9 and Bi by multiples of 1.7–2.0. Verification using the
Mann–Whitney test showed that small roads significantly differ from medium and large
ones in the enrichment of road dust with Zn, Sb and Pb (p = 0.01). The dust samples from
roads with low, moderate and high traffic densities were characterized the total enrichment
factor Ze values of 28, 40 and 44, respectively, with an overall mean of 37. As compared to
Moscow, where the mean for Ze is 54 [13], Surgut has a lower level of road dust contami-
nation, which can be easily explained by Moscow’s much higher intensities of traffic and
industrial emissions, both being sources of PTEs. However, it should be taken into account
that concentrations of some elements (Mo, W and Sn) were excluded from the calculations,
and therefore, the index values could be slightly underestimated.

The spatial distribution of Ze values is shown in Figure 2. The highest values are found
within the road stretches where traffic jams regularly occur, which causes the increase in
emissions of fine particles and soot.

The total potential ecological risk index (RI) had values between 150 and 300 in only
two samples, which corresponded to the category of “moderate risk” according to [50].
Those abnormal values resulted from a sporadic occurrence of high Cd concentrations
in the road dust. The samples from business areas had high Cd concentrations (0.33 and
0.66 mg kg−1) as well as a high concentration of Zn. Solid waste incinerators are known to
be an important source of both Cd and Zn [74]. It is likely that solid waste incineration was
practiced near our sampling sites. In addition, car tire wear is also a source of Cd [75]. All
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other studied samples belonged to the category of low risk, with the maximal values of
total potential ecological risk index RI found on roads with high traffic densities.
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3.3. Source Identification

The most significant contributors to PTE pollution from vehicles are considered to
be brake wear, tire erosion, exhaust emissions and oil losses [76]. The other source of
PTEs, which include V, Cr, Co, Ni, Cu, Zn and Pb, is the abrasion of road tarmac [77,78].
Calculations of EF values showed that Sb, Zn, Mo, Cu and Pb were the main pollutants
of Surgut’s road dust (See Table 3). The main source of Sb in road dust is brake wear [79].
Antimony pentasulfide is used as a pigment in the production of car tires [80]. On the
road stretches where traffic regularly slows and stops (traffic lights, cross-roads, etc.), Sb
concentrations are generally eight times as high as those in the background [81]. Antimony
is also used for the production of car batteries.

Tire erosion is also a source of Zn, because zinc oxide is used as a vulcanization agent
in tire production [78,82]. The concentration of Zn in car tires is about 1% [77]. Research on
the variability in the chemical composition of road dust in Spain by Amato et al. [7] has
shown that contents of Sb, Zn and Mo are increased within stretches of roads where traffic
slows and stops, which confirms their relationship with tire wear.

Principal sources of Cu in the atmosphere include fossil fuel burning, traffic emissions,
fuel combustion and industrial combustion [83]. The erosion of brake pads is an important
source of Cu in road dust. It is known that up to 47% of Cu in urban sewage is also sourced
from brake pad wear [84]. The degradation of brake pads over time contributes Fe, Cu, Pb,
Cr, Zn and Sb to road dust [85].
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It should be noted that Cu and Zn are the main PTE components within high-rise
residential areas that have the highest number of traffic lights (see Figure 2). Traffic
jams where vehicles move at a speed of 20 km/h result in a 30% increase in car exhaust
emissions [86]. Therefore, we believe that the high content of Cu in the road dust of Surgut
mainly resulted from brake pad erosion.

To verify the sources of pollution, we conducted a PCA analysis of the obtained data
set on the contents of PTEs, pH values and the content of fine particles (<2 and 2–10 µm).
Elements of geogenic origin with concentrations similar to their world crust average were
excluded from the analysis, which therefore included only the ecologically hazardous
elements (Cr, Co, V, etc.). Our choice of the fine fraction was based on the fact that fine
fractions have the highest PTE contents, e.g., the PM10 fraction of Moscow’s road dust is
1.2–6.4 times more polluted by PTEs than bulk samples of the dust [13].

The essence of PCA analysis is to restrict a multicomponent data set to a limited,
user-selected number of factors that determine the sample variance. The results obtained
made it possible to identify four main factors which predetermine the chemical composition
of road dust (Table 5).

Table 5. Varimax principal component loadings for PTE concentrations, pH and PM10 in the studied
samples of road dust.

Elements and Parameters PC1 PC2 PC3 PC4

V 0.61 0.04 −0.04 0.52
Cr 0.78 0.06 0.23 0.15
Co 0.86 0.14 −0.01 0.16
Ni 0.85 −0.03 −0.02 −0.28
Cu 0.16 0.57 0.28 0.41
Zn 0.16 0.92 0.10 0.17
As 0.55 0.01 −0.18 0.17
Cd 0.09 0.87 −0.06 0.05
Sb 0.18 0.16 0.90 −0.01
Pb −0.10 0.05 0.94 −0.01
pH −0.10 −0.0 0.01 −0.69

PM10 0.70 0.073 0.13 0.12
Expl. Var 3.39 2.62 1.97 1.33
Prp. Totl 0.26 0.20 0.15 0.10

The four PCs together account for 71% of the variance. The first PC explains 26% of
the total variance and has a strong loading of Cr, Co, Ni and PM10. The concentrations
of Cr, Co and Ni in Surgut’s road dust were generally low as compared to their world
crust average values (PIr = 0.4–0.5). However, some sampling sites, in particular within the
low-rise residential area and the power plant area, were characterized by Ni enrichment.
Relatively higher concentrations of metals such as Ni and Co are caused by the adsorption
of these metals by Fe–Mn colloids [87]. Both Ni and Co originate from geogenic sources.
The abrasion of road surfaces is an additional source of Ni, which is a component of asphalt
bitumen and gabbro rock material [88]. High Ni contents have also been noted in gabbro
rocks of the Ural Mountains [89], which are not far from Surgut.

The PC2 is dominated by Zn and Cd. Our observations showed that Zn and Cd
probably originated from the same anthropogenic source. Previous studies [90–92] have
reported that vehicle emissions and diesel and fossil fuel combustion are known as the
primary anthropogenic sources of Cd and Zn atmospheric pollution. PC 3 is dominated
by Sb and Pb, accounting for 15% of the total variance. This group of elements, as shown
above, is associated with traffic. PC4, dominated by pH, explains 10% of the total variance.
The soil acidity to a large extent predetermines the mobility of metals [65] and, therefore,
their concentrations in soils.
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3.4. Comparisons with Other Cities

Table 6 compares the concentrations of PTEs in this study with some other world
cities. Our selection of cities for such a comparison was based on the presence of compa-
rable assemblages of the analyzed elements. A comparison allowed us to determine the
geochemical properties of the road dust of Surgut as follows: low contents of As, Cd, Sb
and Zn but a 1.6–2 times higher content of Ni in comparison with those in Moscow and
Chelyabinsk. The high content of Ni has been previously identified in the road dust of
Tyumen, which is a large city in Western Siberia [29]. The latter is explained by the fact
that the road construction there involved the use of fine gravel of ultramafic and mafic
rocks imported from the Urals. High concentrations of Ni and Cr are often mentioned in
descriptions of Uralian ultramafic rocks such as gabbro [89]. Regarding the levels of Cu,
Co and Cr in road dust, Surgut occupies an intermediate position among other cities.

Table 6. Literature data on published metal median concentrations (mg kg−1) in street dust from
cities around the world.

City Cr Co Ni Cu Zn As Cd Pb Sb Reference

Surgut, this study 46 6.9 41.1 42.8 89.9 1.3 0.11 19.0 0.89 This
study

Chelyabinsk 48.5 6.3 21.9 55.9 154 3.8 0.4 14.4 1.3 [20]
Moscow 50 8.0 26 93 252 2.8 0.61 53 4.6 [23]
Alushta 31 7.4 33 44 127 8.0 0.3 37 1.5 [28]
Tyumen 415 25.6 324 51.3 105 8.8 0.19 20.1 1.83 [29]

Ahvaz, Iran 51.5 9.2 59.7 74.4 309 - 0.5 85.4 2.1 [93]
Hangzhou, China 51 20 26 116 321 - 1.59 202 - [94]
Houston, TX, USA 67 4.8 119 183 557 - - 40 - [95]
Kabul, Afganistan 38.4 8.52 66.4 43.6 122.5 - 1.16 28.7 - [96]

Kuala Lumpur, Malaysia 74.1 3.36 11.3 87.0 314 68.8 0.71 98.8 - [19]
Katowice, Poland 211 - 43.7 239 2030 - 0.35 430 - [97]
Luanda, Angola 26 2.9 10 42 317 5.0 1.1 351 3.4 [98]

Nicosia, North Cyprus 321 - 65 52 136 17.5 - 35.6 - [99]
Ottawa, Canada 43.3 8.3 15.2 65.8 112 1.3 0.6 39 0.89 [100]

Seul, Korea 151 - - 396 795 - - 144 [101]
Shanghai, China 159 - 84 197 734 - 1.23 295 - [102]

Thessaloniki, Greece 105 - 89 662 452 - 1.76 209 - [17]
Tongchuan, China 106.5 31.7 25.3 32.4 142 6.7 - 75.2 - [103]
Toronto, Canada 198 - 58.8 162 233 - 0.51 183 - [12]

Xi’an, China 145 30.9 30.8 54.7 268.6 - - 125 - [104]

Note: the values in bold font correspond to the highest concentration in the areas compared.

4. Exposure and Risk Assessment

The results of calculations of non-carcinogenic and carcinogenic risk indices through all
exposure pathways (ingestion, inhalation and dermal contact) are presented in Tables 7 and 8.

Table 7. Non-carcinogenic hazard quotient (HQ) and hazard index (HI) values of trace elements
through all exposure pathways in Surgut city.

Element
HQ Ing HQ Derm HQ Inh HI

Childr Adults Childr Adults Childr Adults Childr Adults

Pb 3.4 × 10−2 3.8 × 10−3 2.5 × 10−4 2.8 × 10−5 1.6 × 10−4 2.7 × 10−4 3.4 × 10−2 3.8 × 10−3

Ni 2.4 × 10−2 2.7 × 10−3 4.4 × 10−4 4.9 × 10−5 4.9 × 10−2 8.1 × 10−2 7.3 × 10−2 8.4 × 10−2

Cu 2.7 × 10−2 3.1 × 10−3 3.5 × 10−5 4.0 × 10−6 3.2 × 10−5 5.4 × 10−5 2.7 × 10−2 3.1 × 10−3

Zn 1.9 × 10−3 2.2 × 10−4 1.4 × 10−5 1.6 × 10−6 4.5 × 10−5 7.6 × 10−5 1.9 × 10−3 2.2 × 10−4

As 2.7 × 10−2 3.1 × 10−3 2.1 × 10−5 2.4 × 10−6 9.1 × 10−5 1.5 × 10−4 2.8 × 10−2 3.2 × 10−3

Cd 6.9 × 10−4 7.7 × 10−5 2.0 × 10−5 2.3 × 10−6 1.1 × 10−3 1.9 × 10−3 1.8 × 10−3 2.0 × 10−3

Sb 1.4 × 10−2 1.6 × 10−3 7.0 × 10−5 7.9 × 10−6 3.2 × 10−4 5.3 × 10−4 1.5 × 10−2 2.1 × 10−3
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Table 8. Carcinogenic risk (CRA) values of Pb and As through all exposure pathways in Surgut city.

Element
CRA Ing CRA Derm CRA Inh CRA Sum

Childr Adults Childr Adults Childr Adults Childr Adults

Pb 1.0 × 10−6 1.2 × 10−6 7.6 × 10−9 8.5 × 10−10 2.4 × 10−8 4.0 × 10−8 1.1 × 10−6 1.6 × 10−7

As 1.2 × 10−5 1.4 × 10−6 9.5 × 10−9 1.1 × 10−9 5.9 × 10−7 9.8 × 10−7 1.3 × 10−5 2.4 × 10−6

The non-carcinogenic risk assessment was based on metal concentrations, which were
above their Clarke (world crust average) values (PIr > 1). The results showed that non-
carcinogenic risk in Surgut was mainly associated with the ingestion of dust particles. Data
from other cities confirm that ingestion is the most hazardous pathway [21,40,96,98,105].
Children tend to be at higher risk than adults, because their relatively lower body weight
implies that the impact of road dust contaminated with heavy metals can be relatively
higher. The obtained HI values show that Sb, Ni, Cu and As are generally the most harmful
elements within Surgut, with additional health risks associated with Cd and Pb within
some areas of the city. It should be noted that despite the low Ni enrichment of road dust,
its health risk is high due to the high toxicity of this element.

The carcinogenic risks of As and Pb were also mainly associated with the ingestion
pathway, whereas the risks from dermal contact are very low. The total carcinogenic risk
values (CRA sum, see Table 8) ranged from 10−5 to 10−7. According to the U.S. EPA,
any value of cancer risk within the range of 10−6 to 10−4 is an acceptable or tolerable
risk, and any value below 10−6 can be ignored. Therefore, the present study showed that
carcinogenic risks from the PTEs in the road dust of Surgut were insignificant due to their
low concentrations.

5. Conclusions

The road dust of Surgut, as in the majority of cities of the world, has an alkaline reaction
due to the presence of carbonate microparticles. The 100–250 µm fraction, which was
predominant in the particle size distribution of the studied dust samples, originates from
geogenic sources and abrasion processes caused by road traffic. Fine particles (<50 µm),
which mainly originate from industrial emissions, had a mean content of 17.5% in the
studied samples. Therefore, the composition of road dust was mainly predetermined by
contributions from sources associated with road traffic and soil erosion. The texture of
Surgut’s road dust is relatively homogeneous. Fluctuations in the particle size distribution
for roads of different categories and different land use areas are small.

It was found that Surgut’s road dust was rich in Sb, Cu, Zn, Cd and Pb as compared
to their mean contents in the upper part of the Earth’s crust. These elements are regarded
as typical urban pollutants that accumulate in the road dust of many cities. Those element
concentrations in the road dust of Surgut increased by multiples of 1.4–2.8 on average with
increasing traffic densities. The highest concentrations were found within stretches of roads,
where traffic jams regularly occur. The main source of these elements is from the abrasion
of car tires and brake pads. In addition to traffic densities, the road dust composition was
influenced by solid waste incineration, which led to the Cd and Zn contamination of the
studied samples.

Based on the values of the total potential eco-logical risk index (PI) and the total
enrichment factor (Ze), levels of the total contamination of Surgut’s road dust were mostly
low. The moderate contamination levels were only detected in samples from high-traffic
roads. The generally low contamination can be explained by the predominance of coarse
particles in the road dust. Taking into account that the PTE concentrations in fine fractions
(PM10) is significantly higher than in the coarse fraction, further research should focus on
the analysis of the fine fraction.

The present study on PTEs showed that their greatest potential risks to human
health were associated with the ingestion pathway; however, both carcinogenic and non-
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carcinogenic risks of such PTEs were generally acceptable or tolerable due to their low
concentrations in the road dust of Surgut.

The results obtained in this study can be used in the planning and further development
of the transport network of Surgut city and also help improve the efficiency of the street
cleaning practices by the municipal services.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos13010030/s1, Table S1: Description of sampling sites, Table S2: Methods of analysis,
analytical results and recovery of certified reference material, Table S3: Exposure parameters used for
the health risk assessment.
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