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Abstract: We present the mapping at fine spatial scale of aerosol optical properties using a mobile
laboratory equipped with LIDAR (Light Detection And Ranging), sun photometer and in situ
instruments for performing on-road measurements. The mobile campaign was conducted from 9
May to 19 May 2017 and had the main objective of mapping the distribution of pollutants in the
Beijing and North China Plain (NCP) region. The highest AOD (Aerosol Optical Depth) at 440 nm
of 1.34 and 1.9 were recorded during two heavy pollution episodes on 18 May and 19 May 2017,
respectively. The lowest Planetary Boundary Layer (PBL) heights (0.5–1.5 km) were recorded during
the heavy pollution events, correlating with the highest AOD and southern winds. The transport
of desert dust from the Gobi Desert was captured during the mobile measurements, impacting
Beijing during 9–13 May 2017. Exploring the NCP outside Beijing provided datasets for regions with
scarce ground measurements and allowed the mapping of high aerosol concentrations when passing
polluted cities in the NCP (Baoding, Tianjin and Tangshan) and along the Binhai New Area. For
the first time, we provide mass concentration profiles from the synergy of LIDAR, sun photometer
and in situ measurements. The case study along the Binhai New Area revealed mean extinction
coefficients of 0.14 ± 0.10 km−1 at 532 nm and a mass concentration of 80 ± 62 µg/m3 in the PBL
(<2 km). The highest extinction (0.56 km−1) and mass concentrations (404 µg/m3) were found in the
industrial Binhai New Area. The PM10 and PM2.5 fractions of the total mass concentration profiles
were separated using the columnar size distribution, derived from the sun photometer measurements.
This study offers unique mobile datasets of the aerosol optical properties in the NCP for future
applications, such as satellite validation and air quality studies.

Keywords: mobile system; sun photometer; LIDAR; mass concentration; vertical profiles

1. Introduction

The North China Plain (NCP) in north-eastern China is one of the most populated
and polluted regions of China, where long-standing heavy aerosol pollution episodes
frequently occur [1,2]. The region has undergone a rapid development of urbanization and
industrialization, leading to a deterioration in the air quality [3] and it becoming one of
the regions with the most severe air pollution in China. Some of the most polluted cities
in China (Beijing, Baoding, Tianjin, Tangshan, Shijiazhuang) are located in the NCP and
air pollution has become an important concern in this region [4–6]. The major contributor
to air pollution is particulate matter (PM), mainly fine particulate matter (PM2.5) emitted
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from fossil fuels, biomass burning and urban construction [7]. The NCP is also impacted by
frequent dust storms in the spring [8], with studies showing an increase in dust presence in
the north-eastern and north-western regions [9]. Regional transport plays an important
role in urban air pollution. Both local and regional sources contribute to the air pollution in
the NCP region, depending on the synoptic conditions, with desert dust being advected
over the NCP when air flows are dominated by westerly winds [10] while fine particle
pollution events occur with southern wind flow [1]. The measures taken through air
pollution control policies show an improvement in air quality and a negative trend for
PM2.5 concentrations since 2013 [11,12]. Nonetheless, the pollution levels are still high in
the NCP, especially during haze episodes, and exceed the air quality limits locally. The air
quality guideline (AQG) levels for 24 h for PM2.5 and PM10, as defined by the World Health
Organization (WHO), are 15 µg/m3 and 45 µg/m3, respectively, which are lower than those
established by the Ministry of Ecology and Environment of the People’s Republic of China
of 35–75 µg/m3 for PM2.5 and 50–150 µg/m3 for PM10. A number of investigations on the
air pollution in the NCP have been conducted over the years using fixed observation sites,
aircraft measurements, mobile laboratories, satellite data and air quality models. A review
of these studies in the NCP is given in [6]. Nonetheless, the fixed observatories in the NCP
are generally located in or around large cities, mostly around Beijing, so measurements are
sparse in the region and cannot capture the spatial variability of the aerosol properties at a
fine scale or the regional impact of heavy pollution events. For this, a mobile instrumented
laboratory performing on-line measurements on roads is useful to rapidly identify the
pollution sources at short time and spatial scales, to characterize their optical properties
and to assess the regional impact of pollution events.

In this paper, we report the mobile measurements of aerosol optical properties, such
as aerosol optical depth (AOD), Angstrom Exponent (AE), particle volume size distribution
(VSD) and vertical profiles of aerosol extinction and mass concentration derived from a
sun photometer, LIDAR (Light Detection and Ranging) and in situ observations in the
Beijing and NCP area during the 9–19 May 2017 period, performed during movement with
an instrumented van. For the first time, such mobile LIDAR, sun photometer and in situ
observations are performed on-road in the North China Plain. The aerosol size distribution,
scattering and absorption properties at the surface level were measured by in situ optical
instruments. The columnar volume size distribution was derived from spectral AOD
measurements from the mobile sun photometer, and the extinction and mass concentration
profiles were derived from the mobile LIDAR measurements. The aerosol optical properties
are reported for different pollution levels in the NCP and for a case study along the Tianjin
coastal area.

2. Materials and Methods
2.1. MOABAI Campaign

The Mobile Observation of Atmosphere by Vehicle-borne Aerosol Measurement In-
struments (MOABAI) campaign was carried out from 9 to 19 May 2017 in the North China
Plain. The transects of the mobile measurements and the mobile laboratory from the Insti-
tute of Atmospheric Physics (IAP) are shown in Figure 1. The mobile measurements were
conducted on 10 days: 6 days in Beijing on the 4th, 5th and 6th ring roads by day and by
night; and 4 days outside of Beijing, on the Beijing–Baoding–Tianjin (1), Tianjin—Tangshan
(2), Tangshan—Beijing (3) and Beijing—Xiahuayuan (4) transects, as shown in Figure 1b.

2.2. Mobile Laboratory

The on-road mobile measurements were conducted with the IAP mobile laboratory
Mercedes Benz 416 CDI diesel van, shown in Figure 1a,c (length 6.72 m, width 2.01 m,
height 2.89 m, payload 5.6 tons). A power generator operated by the engine continuously
supplied power when the van was on. An uninterrupted power supply was employed to
regulate the voltage and frequency of electricity and supported all instruments for around
8 h when the engine was not switched on. A cooling system inside the van was used to
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maintain a constant temperature. The van was equipped with aerosol remote sensing and
in situ instruments as well as real-time monitoring trace gas analyzers. Table 1 lists all
instruments on board the mobile laboratory, the measured variables, temporal resolution
and uncertainties. Only the measurements of the aerosol optical properties by remote
sensing and in situ instruments are presented in this study. Gas phase parameters that
were measured are not discussed in this study.
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Table 1. Instruments set up in the IAP mobile laboratory during the MOABAI campaign. The aerosol
properties in italic were derived from measurements using inversion algorithms.

Instrument Make and
Model Wavelength (nm) Temporal

Resolution

Aerosol
Physical/Chemical/Optical

Properties
Uncertainty

Micro-pulse
LIDAR CE370, CIMEL 532 30 s

Vertical profile
(Attenuated backscatter)

(Extinction coefficient
Mass concentration)

15%
25%

35–45%

PLASMA
Sun

Photometer
#650, LOA

340, 380, 440, 500,
675, 870, 940,

1020, 1640
10 s

Column-integrated optical
properties

(AOD, Angstrom Exponent,
Precipitable Water)

(Volume Size Distribution)

2% (VIS/NIR)
3% (UV)
10–20%

Nephelometer
(3-λ)

Aurora 4000,
Ecotech 450, 525, 635 30 s Scattering coefficient -

Aethalometer
(7-λ)

AE33,
Maggee
Scientific

370, 470, 520, 590,
660, 880, 950 1 s Absorption coefficient

BC concentration -

Optical Particle
Counter

(0.25–32 µm)

Sky-OPC
model 1.129,

GRIMM
Aerosol
Technik

655 6 s

Number concentration
Number size distribution
PM1, PM2.5, PM10 mass

concentration

5%
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Table 1. Cont.

Instrument Make and
Model Wavelength (nm) Temporal

Resolution

Aerosol
Physical/Chemical/Optical

Properties
Uncertainty

NO–NO2–NOx
analyser

42i,
Thermo
Electron

n/a 10 s NO–NO2–NOx concentration 1%

SO2 analyser 43i, Thermo
Electron n/a 10 s SO2 concentration 1%

O3 analyser 49i, Thermo
Electron n/a 20 s O3 concentration 1%

Weather station Airmar n/a 1 s
Pressure, temperature,

relative humidity,
wind speed/direction

-

2.2.1. Micro-Pulse LIDAR

The CE370 CIMEL micro-pulse LIDAR and the Photomètre Léger Aéroporté pour la
Surveillance des Masses d’Air (PLASMA) mobile sun photometer from the Mobile Aerosol
Monitoring System (MAMS) payload [13] were transported and integrated on-site in the
existing IAP van, which was already equipped with the in situ optical instruments and gas
analyzers. The CE370 CIMEL micro-pulse LIDAR provided vertical profiles of the aerosols
and clouds in the troposphere, from 200 m to around 12 km in altitude with a vertical
resolution of 15 m. The LIDAR data quality was assured by following the Rayleigh fit
protocol, as defined by the European Aerosol Research LIDAR Network (EARLINET) [14].
The uncertainties of the LIDAR measurements and the derived parameters have been
presented previously [13] and are listed in Table 1.

2.2.2. Mobile Sun Photometer

The PLASMA sun photometer is the only existing mobile sun photometer that is able to
track the sun when a vehicle is in motion. It meets the Aerosol Robotic Network (AERONET)
standards and is included in the network, referenced as instrument #650. Compared to
the CIMEL CE318 sun photometers in AERONET, the current PLASMA model performs
only direct sun measurements. The instrument is calibrated by the Service National
d’Observation, SNO PHOTONS/AERONET-EARLINET, a component of the Aerosols,
Clouds and Trace Gases Research Infrastructure (ACTRIS) and the French component of
AERONET. The PLASMA follows the AERONET calibration protocol for the reference
master instrument and is also intercalibrated regularly against a master sun photometer
from the PHOTONS network at the Observatoire de Haute Provence (OHP) in France
before and after a field campaign. This allows for the checking of the instrument’s stability
over time.

2.2.3. In Situ Optical Instruments

The in situ instruments consisted of a polar 3-λ nephelometer (Aurora 4000, Ecotech,
Australia) [15], a 7-λ aethalometer (AE33, Maggee Scientific, Berkeley, CA, USA) [16], a
Sky-OPC (11S, GRIMM Aerosol Technik, Ainring, Germany) and trace gas analyzers for
NO2, SO2 and O3. The aerosol was sampled using an isokinetic inlet facing forward. The
sampled air was split into two flows. One flow was open and directly exposed to in-car
air in order to remove the excess air and reduce the pressure in the instrument inlets. The
tests showed that a van speed higher than 20 km/h could ensure that the open flow was
large enough to prevent in-car air being sampled by the instruments downstream. The
other flow passed through a Nafion dryer (MD-700, Perma Pure, Lakewood, NJ, USA) and
then entered the nephelometer and aethalometer. The Sky-OPC had a separate isokinetic
inlet, adapted for air velocities within a range of 16–25 m/s using a nozzle with a 1 mm
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opening (the speed of the van was approximately 60–90 km/h, when assuming the wind
speed was 0). The gas analyzers were calibrated using standard gases before the campaign.
The nephelometer was calibrated using air and R134 before the campaign. The flow of the
aethalometer was checked before and after the campaign, and the deviations were within
4% of the setpoint.

2.2.4. Weather Station

Finally, the van was equipped with a weather station that measured the meteorological
data (ambient pressure, temperature, relative humidity (RH) and wind speed/direction).
The driving speed was kept at around 90 km/h (25 m/s), in order to cover as much distance
as possible in the NCP region. For the in situ aerosol and gas measurements, the position
of the inlets, at 3.3 m above the ground at the front of the van, was intended to reduce
self-pollution from the van’s exhaust. The driving speed was also maintained at a constant
speed, when possible, in order to provide a constant sampling flow rate and to reduce
contamination from the van’s exhaust. The driving speed was higher than the normal
wind speed, thereby the particles from the exhaust could not reach the inlet at the front of
the vehicle during the measurements as a result of the wind from the back of the vehicle.
The effects of self-pollution could be neglected for the remote sensing instruments as
they measured either columnar variables or vertical profiles, starting from 200 m above
ground level.

2.3. Methods for Retrieving Aerosol Properties
2.3.1. Extinction Profiles

A Klett–Fernald-based [17,18] backward inversion algorithm called BASIC [19,20] was
used to invert the LIDAR data in synergy with the sun photometer data. The algorithm
used the LIDAR overlap, range corrected signals (RCS) and the measured AOD to constrain
the inversion. The optical aerosol properties derived were the extinction coefficient profiles,
height-independent LIDAR ratio (LR), cloud, aerosol layers and Planetary Boundary Layer
(PBL) heights. The algorithm’s description and applications to real data have been shown
previously [13,20–22]. The sources of the uncertainties have been discussed in [13] and
the uncertainty on the extinction profiles was 25%. In situ measurements were used to
constrain the extinction profiles in the LIDAR blind zone (0–200 m). The scattering and
absorption coefficients measured by the nephelometer and the aethalometer, respectively,
were used to compute the extinction coefficients at surface level and a linear interpolation
was applied between the LIDAR-derived extinction value at 200 m and the extinction
measured in situ at surface level. Care needed to be taken with in situ measurements, as
they provide the optical properties of dry particles and not those of ambient conditions
as provided by the LIDAR. Some aerosols take in water and the effect of the RH is rather
constant up to 70%, but a sharp increase in the scattering and extinction coefficients has
been shown for RH > 70% [23,24]. The scattering coefficients were corrected for the RH
effect following Equation (1) [25]:

σsca,wet= f(RH)σsca,dry (1)

where σsca,dry is the scattering coefficient of the dry particles measured by the nephelometer
and f(RH) is the aerosol hygroscopic growth factor, defined by the empirical Equation (2) [25]:

f(RH)= 1 + a(RH / 100)b (2)

where a and b are the fitting parameters for specific aerosol types, as found in the litera-
ture. The values used for this case study will be discussed in the dedicated section. For
measurements when the RH > 40%, a correction was applied using the RH measured by
the weather station on the roof of the mobile platform. The aerosol absorption coefficients
at 520 nm were obtained from the aethalometer measurements, using a multiple scattering
correction factor of 1.238 that was obtained in a comparison study in Beijing between



Atmosphere 2022, 13, 21 6 of 23

the aethalometer and a 3-wavelength Photoacoustic Soot Spectrometer (PASS-3, Droplet
Measurement Technologies, Boulder, CO, USA).

2.3.2. Columnar Volume Size Distribution

We used the Generalized Retrieval of Atmosphere and Surface Properties
(GRASP) [26–28] (https://www.grasp-open.com/ (accessed on 30 November 2021)) algo-
rithm to retrieve the columnar aerosol volume size distribution (VSD) from the spectral
AOD measurements performed on-road with the PLASMA sun photometer. The GRASP
application for direct sun measurements only, called GRASP-AOD, has been described
previously [29,30]. The retrievals relied on a statistically optimized fitting of the sun
photometer observations and the aerosol was assumed to be a mixture of spherical and
non-spherical particles, with a defined sphere fraction and an assumed refractive index for
the dominant aerosol type. The retrievals provided the six parameters describing the log-
normal size distributions for the fine and coarse modes. The uncertainties of the retrieved
size distributions lay within 5–10% for the fine mode and 10–20% for the coarse mode [29].

2.3.3. Mass Concentration Profiles

A Mass Extinction Efficiency (MEE) approach [31,32] was used to convert the aerosol
extinction coefficient profiles, derived from the LIDAR–sun photometer–in situ synergy,
into mass concentration profiles. The MEE related the total column extinction coefficient to
the total mass concentration of the aerosols, computed for defined aerosol characteristics
and defined by Equation (3) [32]:

MEE =
π
∫ rmax

rmin
r2Qext(r, m, λ)n(r)dr

4
3πρ

∫ rmax
rmin

r3n(r)dr

[
1/m
g/m3

]
(3)

where r is the particle radius, rmin and rmax are the limits of the particle size distribution, n(r)
is the number size distribution, Qext is the Mie extinction efficiency computed for 532 nm,
m is the complex refractive index and ρ is the particle density.

The MEE was computed assuming the particles were spherical and the following
aerosol properties: columnar volume size distribution (VSD) retrieved with GRASP-AOD;
refractive indices defined for the different aerosol types as found in the literature; and
characteristic particle density for fine and coarse modes. The values used for the calculations
are discussed further in the case study section. The aerosol mass concentration profiles,
M(z), were derived using Equation (4):

M(z) =
σext(z)
MEE

[ µg
m3

]
(4)

where σext(z) is the aerosol extinction coefficient profile and MEE as previously defined.
This methodology has been applied previously for calculating volcanic ash mass

concentration [19] and for mobile observations in France [13]. The uncertainty on the mass
concentration profiles comes from the uncertainties on the extinction coefficient profiles,
the aerosol size distribution, the assumed refractive index and the particle density. The
overall uncertainty on the mass concentration profiles was estimated to be between 35%
and 45%. The parameters used for computing the MEE and their uncertainty for the case
study are presented in the results section.

3. Experimental Results
3.1. Overview of Aerosol Properties during MOABAI Campaign

The spatial variability of AOD at 440 nm and the Angstrom Exponent (AE) between 440
and 870 nm are shown in Figure 2. The maps show the variability of the aerosol optical prop-
erties at different scales: fine scale (5 × 3 km grid) of the city of Beijing (Figure 2a,g), medium
scale (50 × 30 km grid) around the 5th ring road of Beijing (Figure 2b–c and h–i) and re-

https://www.grasp-open.com/
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gional scale (200 × 250 km grid) in the Great Plain of North China (Figure 2e,k). The details
of each mobile transect, the AOD, AE and PBL height ranges are summarized in Table 2.
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Table 2. Summary of mobile transects and aerosol properties observed during MOABAI campaign:
AOD at 440 nm and Angstrom Exponent (AE) measured by the PLASMA sun photometer and PBL
height derived from LIDAR measurements.

Mobile Transects Date
AOD

(440 nm)
(Min–Max)

AE
(440–870)

(Min–Max)

PBL
Height
(km)

Beijing, 4th ring road 9 May 2017 0.62–0.84 0.67–0.93 1.7–2.2
Beijing, 5th ring road 11 May 2017 0.24–0.91 −0.03–1.12 1.5–3.6

Beijing, 5th and 6th ring road 13 May 2017 0.08–0.16 0.41–1.25 1.2–3.9
Beijing–Baoding–Tianjin (AB) 16 May 2017 0.2–0.7 0.38–2.32 0.3–1.7

Tianjin–Tangshan (BC) 17 May 2017 0.3–0.79 1–1.9 0.3–1.3
Tangshan–Beijing (CA) 18 May 2017 0.43–1.34 1.22–1.74 1–1.6
Beijing, 5th ring road 19 May 2017 1.47–1.9 1.21–1.51 0.5–1

Four mobile observations (9, 11, 13 and 19 May 2017) were conducted on Beijing’s
4th, 5th and 6th ring roads (Figure 2a–d,f–j,l) and three of the mobile observations were
carried out outside of Beijing, in the NCP, on 16, 17 and 18 May 2017 (Figure 2e; Table 2).
Five types of days were observed: (i) heavy pollution day (AOD of 0.72 ± 0.06) with desert
dust contribution (AE of 0.79 ± 0.05) in Beijing (9 May 2017); (ii) desert dust episode (AE of
0.06 ± 0.08) with moderate aerosol loading (AOD of 0.37 ± 0.08) in Beijing (11 May 2017);
(iii) clean day (AOD of 0.12 ± 0.02) but still with dust contribution (AE of 0.66 ± 0.05) in
Beijing (13 May 2017); (iv) two moderate pollution days (AOD of 0.33 ± 0.05 and 0.45 ± 0.06,
respectively) outside of Beijing (16 and 17 May 2017), consisting mainly of fine particles (AE
of 1.08 ± 0.12 and 1.23 ± 0.1, respectively) but also with desert dust contribution at altitude;
and (v) two heavy pollution days (AOD of 0.86 ± 0.2 and 1.69 ± 0.08, respectively), with a
predominance of fine particles (AE of 1.41 ± 0.05 and 1.32 ± 0.05, respectively) in Beijing
and the NCP (18 and 19 May 2017). Low AE values were recorded when north-westerly
winds prevailed, due to Beijing and the NCP being downwind of the Asian dust storms
from the Gobi Desert, while the highest AOD and AE measurements were recorded during
regional heavy pollution episodes when air masses from the south were transported. For
the moderate pollution and clean situations, there was a contribution of both fine and
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coarse particles, indicated by the AE values between those for the dust and fine particles
episodes. For indication, the average AOD and AE measurements in Beijing during the
spring are 0.8 and 1, respectively [8]. The lower AE measurements in the spring compared
to other seasons show the impact of the dust episodes, as also observed during our mobile
measurements during the MOABAI campaign.

Figure 3 shows the vertical distribution of the aerosol layers and clouds observed
by the LIDAR during the MOABAI campaign. Most days had a clear sky, except for the
afternoons of 16 and 19 May when cirrus clouds were present, explaining the lack of AOD
measurements. The AOD at 440 nm and the PBL heights are also depicted in Figure 3,
showing the correlation between the low PBL height and the high AOD values during the
heavy pollution episodes.
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Figure 3. (Top panels (a–g)) Spatio-temporal and vertical variability of aerosol layers and clouds,
color-coded by LIDAR Range Corrected Signal (RCS) as measured along the mobile transects detailed
in Table 2 and depicted in Figure 2; (Middle panels (h–n)) AOD at 440 nm; (Bottom panels (o–u)) PBL
heights from mobile LIDAR measurements.

The mean sea level pressure, and the wind direction and mean wind speed charts were
analyzed and are presented in the Supplementary Material (Figures S1–S7). For 9 May 2017,
the investigated area (Beijing) had a low-pressure tendency, which was being influenced by
a well-developed depression situated over eastern Inner Mongolia (Figure S1). The wind
direction showed that the air masses originated from the south. On 11 May 2017, the study
area (Beijing) was at the junction between three high-pressure systems (Figure S2), one
over southern Mongolia and the Gobi Desert, one over the Tibetan Plateau and one over
the East China Sea. The pressure charts showed strong gradients from the W direction,
where the desert is located, explaining the dust event identified in the measurements. The
wind chart showed stronger winds over eastern Mongolia and a NW direction for the air
masses passing over Beijing. On 13 May 2017, the study area (Beijing) had a low-pressure
tendency (1008 hPa) under the influence of a low-pressure system located over North
Korea, which pushed air to the region from a N-NW direction (Figure S3). On 16 May 2017,
a high-pressure system could be observed over the Tibetan Plateau and the study area
(Beijing–Baoding–Tianjin) was located in a slightly low-pressure area (1010 hPa) (Figure S4).
A southern air flow with low wind speeds was observed over the region. On 17 May
2017, the area of interest (Tianjin–Tangshan) was located in a shallow low-pressure region
(1008 hPa), with a southern air flow and low wind speeds (Figure S5). On 18 May 2017,
the study area (Tangshan–Beijing) was located in a shallow low, at the junction between
a depression over eastern Inner Mongolia and an anticyclone over the East China Sea
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(Figure S6). The air masses were transported from the south with low wind speeds. On
19 May 2017, the investigated area (Beijing) was located in a shallow low (1004 hPa) at the
junction between two high-pressure systems, one over Irkutsk, Russia and one over the
East China Sea (Figure S7). The air masses originated from the SW with low wind speeds.

Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT; [33]) back trajecto-
ries were performed for 72 h for all days, and the results are presented in the Supplementary
Material (Figures S8 and S9). The air masses for the pollution day of 9 May 2017 originated
from a S direction for the layers up to 2 km above ground level (AGL), while the aerosol
layers at 3–4 km were transported from a NW direction, suggesting a desert dust contri-
bution (also indicated by the lower AE values). The back trajectories for the dust episode
(11 May 2017) showed that the air masses originated from a NW direction (Inner Mongolia),
transporting dust from the Gobi Desert. For the clean day (13 May 2017), the air masses
originated from the N, bringing clean air over Beijing with a small contribution of residual
dust up to 4 km. The dust event during the 11–14 May 2017 period has also been discussed
in [34]. Higher particle concentrations near the surface (increase in LIDAR backscatter
signal) and lower PBL height compared to the rest of the transect were observed when
passing polluted cities (Baoding, Tianjin, Tangshan) and industrial regions (Tianjin coastal
area). The clear difference between the PBL heights of 13 May 2017 (3.5 km) and 16 May
2017 (0.5 km) is explained by the change in the synoptic conditions, as explained above. The
lowest PBL heights (0.5–1.7 km) were recorded on the days with moderate and heavy fine
particle pollution (16–19 May 2017), when air masses flowed from S and SW directions and
passed over polluted cities in the NCP (Baoding, Shijiazhuang, Tianjin). The lofted aerosol
layers observed at around 2 km AGL on 16 May 2017 and around 3 km on 17 May 2017
originated from N and NW directions, suggesting a desert dust contribution. For the heavy
pollution days (18 and 19 May 2017), there was a clear correlation between the high AOD
(0.86 and 1.69) and the low PBL heights (0.5–1.6 km). Our mobile measurements showed
how the heavy pollution episodes impact the NCP region.

3.2. Case Study: Tianjin Coastal Area, 17 May 2017
3.2.1. Study Area and Meteorological Conditions

The mobile transect and the local time of the measurements are presented in Figure 4a.
The mobile observations started at 08:30 local time (UTC +08:00) from the city of Tianjin,
headed south and then continued along the Bohai sea coast, passing through the industrial-
ized Binhai New Area during the 12:00–13:30 time interval, and then headed northeast to
Tangshan and stopped at Guye around 16:00 local time. The weather was fair with clear sky
along the whole transect, ambient temperatures (T) of 24–30 ◦C and an RH in the 30–65%
range, with a noticeable increase in RH along the coast (Figure 5c).
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Figure 5. Spatio-temporal variability of: (a) particle volume size distribution as measured by Grimm
Sky-OPC; (b) scattering coefficient measured by nephelometer (black), scattering coefficient corrected
for RH effect (green), absorption coefficient derived from aethalometer (cyan) and extinction coef-
ficient computed from nephelometer and aethalometer measurements (magenta); and (c) T (black)
and RH (blue) measured by the weather station along the mobile transect from Tianjin to Tangshan
on 17 May 2017.

The Binhai New Area, about 60 km east of Tianjin city, is an important economic
coastal area with considerable industrial activities, including the Tianjin port, the largest
port in northern China and one of the largest ports in the world. The industry sectors vary
from machinery factories, petrochemical manufacturing plants, automotive fitting factories
and electronics facilities to sea salt production, shipbuilding and port activity and logistics.
The area accounted for 271 industrial enterprises in 2012, resulting in heavy pollution in the
region [35,36]. Both natural and anthropogenic sources, such as wind and soil erosion, sea
salt, fossil-fuel combustion, vehicles emissions, construction activities, industrial processes
and photochemical reactions, contribute to the particulate matter, resulting in a complex
chemical composition of particles in this region [37]. It is an interesting study area, where
the microphysical and optical properties of aerosols are not well-characterized, much less
at a fine scale. The situation is even more complex in the spring because mineral dust
transports occur frequently, adding to the anthropogenic pollution. One previous study
presenting mobile LIDAR measurements has been conducted in Tianjin, during the different
seasons of 2016 [38]. For their measurements in the spring, they found the maximum PM2.5
concentrations near the port (200 µg/m3) and that the fine particles mainly concentrated
below 0.5 km. Another study by [36] presents the variability of the microphysical and
optical properties of aerosols as measured by sun photometers set up at three sites: urban,
industrial and coastal areas of Tianjin. They found relatively high AOD values (0.71 ± 0.55)
and moderately high AE values (1.09 ± 0.29) in the Tanggu region (near the coast of the
Bohai Sea) in the spring. Nevertheless, this is the first time on-road mobile LIDAR, sun
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photometer and in situ measurements have been conducted in the Tianjin coastal area to
map the variability of particle properties at a fine scale.

3.2.2. Particle Size Distribution at Surface Level

The mean volume size distributions measured by the Sky-OPC on 30 min road seg-
ments are presented in Figure 4b. In the fine mode, a peak centered below the 0.3 µm
diameter was observed. In the supermicron range, a broad coarse mode was observed
between 1 and 5 µm, with a distinct peak at 3.5 µm, all along the mobile transect, and
the coarse mode centered at 7.5 µm. Super-coarse particles (>10 µm) are most probably
re-suspended dust. The highest concentrations were observed at around 0.3 µm, showing
that fine particle pollution is predominant at surface level. The sampled aerosols were
a mixture of regional scale background aerosol and direct emissions from vehicles and
industry. Both soot and secondary aerosol could contribute significantly to the submicron
ambient aerosol. The study in [39] showed that the mass size distributions of both gasoline
and diesel car emissions present a single mode with a peak at 0.2 µm. Studies on ship
emissions have shown that particles with Dp < 0.3 µm dominate [40,41], which could
also explain the increase in the fine mode centered at 0.3 µm when passing the Tianjin
port. The explanation for the high increase in particle concentrations in the Binhai New
Area is twofold. On the one hand, we passed a region with significantly higher pollution
(industry emissions, intense traffic emissions), therefore higher particle concentrations. On
the other hand, the increase in concentration could be an effect of particle growth in the
presence of a higher RH. A clear correlation between the increase in RH and the increase in
particle concentrations is seen in Figure 5. It has been shown that ship exhaust particles are
highly hygroscopic in humid marine environments [42]. In our case, if particles smaller
than 0.25 µm (the minimum diameter detectable by the Sky-OPC) increase in size due to
water intake, they would be counted in the upper size bins, resulting in an increase in the
number of particles in the upper size bins. An increase in concentration was observed for
particles in the 0.25 < Dp < 0.8 µm range, meaning that, according to our hypotheses, these
particles could be more hygroscopic and affected by water intake. Another interesting
event depicted in Figure 5 is a clear episode of sea breeze, between 12:10 and 13:40, marked
by a sudden increase in RH correlating with a drop in temperature. The sea breeze event
suggests that sea salt was transported inland. Sea salt has a diameter of higher than 0.3 µm
and is highly hygroscopic [43].

3.2.3. Aerosol Scattering and Absorption at Surface Level

The scattering (at 525 nm), absorption (at 520 nm) and extinction coefficients derived
from the nephelometer and aethalometer measurements at surface level, as well as the T
and RH monitored by the mobile weather station are presented in Figure 5. The aethalome-
ter data was averaged on 30 s, and the RH correction to scattering coefficients (Equation (1)
in Section 2.2) was applied to the nephelometer data in order to compute the ambient
(wet) extinction coefficients at surface level. The a and b parameters in Equation (2) that
were used for the RH correction were as follows: (i) a = 2.3 and b = 6.27 for the pol-
luted aerosol type, according to [25], on the pollution segments of the mobile transect
(08:40–12:00 and 13:30–16:00 local time); (ii) a = 3.26 and b = 3.27, following [44] for mixed
urban–marine aerosols for the transects with sea salt intrusion (12:00–13:30 local time). The
mean absorption, scattering (wet) and extinction at surface level were 0.05 ± 0.03 km−1,
0.24 ± 0.11 km−1 and 0.29 ± 0.12 km−1, respectively, where the standard deviations rep-
resent the spatio-temporal variability along the route. An increase in both scattering and
absorption coefficients was observed during the 12:00–13:30 time interval, when the scat-
tering rose as high as 0.83 km−1 and absorption as high as 0.22 km−1. The mean SSA
(Single Scattering Albedo) of the nephelometer (525 nm) and of the aethalometer (520 nm),
computed using the measurements at two close wavelengths, for the whole transect was
0.84 ± 0.07.
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Figure 6 shows the comparison between the in situ extinction coefficients at surface
level and the LIDAR-derived extinction at a 210 m altitude (retrieved using a constant
extrapolation in the inversion). Both dry and ambient (wet) extinction coefficients from in
situ data are depicted in order to show the impact of the f(RH) correction on the segments
where the RH > 50%. The LIDAR-derived extinction coefficients at a 210 m altitude
demonstrated a very strong agreement with the in situ extinction at surface level. This good
agreement between the LIDAR and in situ measurements validates the overlap correction
used for the LIDAR data and shows that the assumption of homogeneity from the surface
up to ~200 m of altitude (constant extrapolation) is reasonable for most of the mobile
measurements. Significant differences were observed during the 12:00–13:30 time interval,
probably due to the inhomogeneity of the aerosol distribution from the ground to a 200 m
altitude. The extinction in this time interval measured by in situ instruments and corrected
for RH effects was on average two times higher than the LIDAR-derived extinction. The
differences could be explained by the significant increase in particle concentration and/or
the change in aerosol type at surface level and not being “seen” by the LIDAR at a 200 m
altitude. Secondly, the aerosol mixture assumption and the f(RH) correction applied to
the nephelometer data could be not appropriate, resulting in an overestimation of the
scattering coefficients. The LIDAR-derived extinction coefficients were highly correlated
with the extinction measured by the in situ instruments, with an R2 of 0.98, slope of 0.91
and RMSE (Root Mean Square Error) of 0.03 all along the transect, excluding the values in
the 12:00–13:30 time interval. The correlation decreases when including the values in this
time interval (R2 of 0.9, slope of 0.53, RMSE of 0.08).
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Figure 6. Spatio-temporal variability of aerosol extinction coefficients at 525 nm derived from in situ
measurements (nephelometer and aethalometer) with no correction for RH (black) and with f(RH)
correction (magenta), and LIDAR-derived extinction coefficients at 532 nm at a 210 m altitude (green).
The green shaded area represents the uncertainty on the derived extinction coefficients.

3.2.4. Columnar Volume Size Distribution

The total column aerosol volume size distributions (VSD) retrieved with the GRASP-
AOD from the PLASMA photometer measurements are presented in Figure 7c,d. The
spectral AOD (Figure 7b) and AE (Figure 7a) from the PLASMA measurements averaged on
30 min transects, as in Figure 4a, are also presented. The inversion requires the assumption
of the refractive index and sphere fraction. Assumptions on the chemical composition of the
aerosols were made based on the modes identified in the in situ-derived size distributions
at surface level. An important contribution of elemental carbon (EC), organic carbon
(OC) and sulphates was considered, indicated by the narrow fine mode peak at 0.3 µm,
followed by a nitrate component (suggested by the coarse mode centered at 3.5 µm), a
small contribution of dust at altitude (from the LIDAR data and backward trajectories
analysis) and the sea salt contribution during the sea breeze event. According to a study
conducted in Tianjin in the spring of 2009 [45], an average refractive index of 1.52–0.018i
was found for an aerosol mixture that was similar to our case. For the retrievals, the
assumption of spherical particles and a complex refractive index of 1.52–0.008i were used
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for most of the transects. A lower absorption (imaginary part) was considered, taking into
account that desert dust was present in the free troposphere. For the part along the coast
(12:00–13:30), a complex refractive index of 1.46–0.008i was used, considering the RH effect
on the aerosols and the sea breeze event, following the results from [46] for the aerosol
types in our case (fine particles that are predominantly sulphates) and for the maximum
relative humidity (60–65%). The columnar size distributions present two modes, fine and
coarse, centered at 0.3 µm and 3.4 µm diameters, respectively. The size distributions did not
change significantly over the transects, except for an increase in both fine and coarse mode
concentrations when reaching the polluted coastal region. The increase in the fine mode
could be explained by the emissions from industry as well as the port, which could provide
more primary aerosols in addition to the precursor gases for secondary aerosols. The
increase in coarse mode along the coast could be explained by the sea salt intrusion during
the sea breeze and the increase in nitrates in the high density industry region. A higher
humidity could also result in hygroscopic growth and enhance the multi-phase chemistry.
The change in particle size is shown by both the AE (Figure 7a) and VSD (Figure 7c). The
highest AE values and slightly higher fine mode were observed in Tianjin. The decrease in
the AE between 10:00 and 12:00 is explained by a lower contribution of fine particles than at
Tianjin and an increase in the coarse mode in the VSD. Having fewer fine particles allowed
us to better see the contribution of the desert dust layer to the AE in the free troposphere,
followed by a decrease in the AE and an increase in coarse mode in the VSD between 10:00
and 11:30. In the coastal industrial region, the concentrations of both fine and coarse modes
increased significantly and the AE increased, but was still lower than at Tianjin due to an
important contribution of coarse mode. The columnar aerosol fine mode concentrations
increased twofold during the 12:00–13:30 time interval, which was consistent with what
was seen at surface level. Both in situ and columnar VSD measurements presented the
same positions of the fine and coarse modes with diameters of 0.3 and 3.5 µm, respectively,
which showed that the two major aerosol contributions were sulphates and black carbon
(BC) in the fine mode and nitrates in the coarse mode.
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Figure 7. Spatio-temporal variability of (a) Angstrom Exponent (AE), (b) spectral AOD, (c) total
column VSD retrieved with GRASP-AOD for every transect segment and (d) columnar VSD for some
time intervals along the mobile transect. All size distributions were averaged on 30 min time intervals
and can be localized on the mobile transect using the map color-coded by local time in Figure 4a.
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3.2.5. Extinction Coefficient Profiles

The spatial variability of the extinction coefficient profiles at 532 nm derived from the
synergy of LIDAR, sun photometer and in situ measurements is presented in Figure 8a.
The LIDAR Klett inversion, constrained by the AOD, was used to obtain the extinction
profiles and the in situ instruments were constrained between surface level and a 200 m
altitude. The mean extinction coefficient in the PBL, from surface level to about 2 km, was
0.14 ± 0.10 km−1 along the whole transect from Tianjin to Tangshan, and the extinction
reached a maximum of 0.56 km−1 when passing the industrial coastal region. Table 3
presents a summary of the derived properties, the mean extinction coefficients, LIDAR
ratios and mass concentrations up to a 2 km altitude for each transect in Figure 4a. The
standard deviations depict the spatio-temporal variability for each segment. The highest
extinction coefficients were found near Tianjin city and along the industrial Binhai New
Area. Some examples of extinction coefficients and mass concentration profiles along the
route are depicted in Figure 9: at Tianjin (08:55); between Tianjin and the Binhai New
Area (10:50); when crossing a salt pan (12:30); when crossing Tianjin port (13:00); and near
Tangshan (15:20).
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Figure 9. Aerosol total mass concentration profiles derived using the MEE approach on 17 May
2017 along the transect from Tianjin to Tangshan (BJT = Beijing time). The calculations were done
considering a dust aerosol model for the layer in the 2–3.5 km range and an urban-industrial aerosol
model for the rest of the profile.
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Table 3. Mean aerosol extinction coefficients, LIDAR ratios (LRs) at 532 nm and mass concentrations in
the PBL (0–2 km) for each time interval corresponding to the transect segments depicted in Figure 4a.
The standard deviations correspond to the spatio-temporal variability within each transect segment.

Time Interval σext (km−1) LR (sr) Mass Concentration (µg m−3)

08:40–09:00 0.14 ± 0.15 66 ± 10 80 ± 85
09:00–09:30 0.15 ± 0.15 59 ± 17 85 ± 82
09:30–10:00 0.13 ± 0.10 56 ± 10 75 ± 57
10:00–10:30 0.14 ± 0.07 52 ± 12 80 ± 41
10:30–11:00 0.13 ± 0.06 50 ± 11 74 ± 34
11:00–11:30 0.14 ± 0.06 43 ± 14 78 ± 33
11:30–12:00 0.1 ± 0.06 46 ± 14 57 ± 34
12:00–12:30 0.18 ± 0.09 40 ± 13 100 ± 50
12:30–13:00 0.16 ± 0.13 35 ± 12 88 ± 72
13:00–13:30 0.15 ± 0.13 39 ± 11 83 ± 71
13:30–14:00 0.15 ± 0.13 45 ± 11 87 ± 74
14:00–14:30 0.13 ± 0.11 42 ± 8 73 ± 60
14:30–15:00 0.13 ± 0.12 52 ± 12 71 ± 65
15:00–15:30 0.13 ± 0.12 47 ± 11 75 ± 66
15:30–16:00 0.13 ± 0.11 57 ± 14 71 ± 59

In the free troposphere, an elevated aerosol layer at 2.2–3.5 km was observed all along
the mobile transect. The HYSPLIT back trajectories at 0 km, 0.5 km and 3 km, starting at
13:00 local time (05:00 UTC), illustrated in Figure 8b, show that the layer at about 3 km
was transported from Inner Mongolia while the aerosols in the PBL had a local origin
from the S-SE direction. The separation of the elevated dust layer (Figure 10) was done
using the first derivative of the extinction profiles and by applying a threshold to separate
the aerosol contributions above the PBL. The mean extinction coefficient of the dust layer
was 0.05 ± 0.03 km−1, with a maximum of 0.15 km−1 at around 3 km at 10:30. The mean
AOD at 532 nm of the dust layer was 0.06 ± 0.01, which represents 18–20% of the total
measured AOD.

The variability of the height-independent extinction-to-backscatter ratio or LIDAR
ratios (LRs) at 532 nm derived from the LIDAR–sun photometer inversions for each segment
of the mobile transect is presented in Table 3. The standard deviations correspond to the
spatio-temporal variability of each segment. The LR values decreased from 66 ± 10 sr
at Tianjin to 35 ± 12 sr when crossing the Binhai New Area and then increased again to
57 ± 14 sr near Tangshan. The decrease in the LR indicates a change in the aerosol type.
The LR around 60 sr, found at Tianjin and Tangshan, is characteristic of the urban-industrial
aerosol type [47,48] while the LR around 40 sr corresponds to a marine aerosol type [48–50].
In our case, it was most probably a mixture of continental polluted and marine polluted
aerosols (considering the sources along the coast), with a contribution of desert dust at
altitude. The values found at Tianjin and Tangshan were consistent with a study conducted
in Shangdianzi, located in the northern part of the North China Plain, where a mean LR of
60 sr was found [51]. The LRs found along the coast were similar to the values of 33 ± 14 sr,
which were found at a site on the French coast [52], and of 40 sr, which was found on
the Portuguese coast [53]. Both studies evidenced the presence of a sharp peak in the
backscatter signal in the marine boundary layer, ranging between 200 and 650 m, where
the air masses were coming from the direction of the sea, which is similar to what was
observed in our case: a strong increase in the scattering coefficients below 200 m when
reaching the coast. The sea salt presence in this region was clear, as salt pans are located in
the places where the peaks were observed. The Tianjin municipality has a long history of
sea salt exploitation and there were still two salt pans being exploited at that time according
to [54], illustrating the coastal landscape map of Tianjin–Binhai New Area in 2013. The
significant increase in the extinction coefficients seen below 200 m and the decrease in the
columnar LR correspond to the time intervals when the mobile system was crossing the
salt pans, and could be linked to a strong presence of sea salt.
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3.2.6. Mass Concentration Profiles

The vertical profiles of the aerosol total mass concentrations derived from the LIDAR
measurements using the MEE approach described in Section 2.2 are presented in Figure 9.
For this method we used complementary information on the aerosol volume size distribu-
tions (VSD), particle density (ρ) and complex refractive index (CRI). The mean columnar
VSD derived from the sun photometer measurements showed an almost equal contribution
of fine and coarse mode particles all along the mobile transect. For the calculations of the
mass concentration, the parameters of the mean VSD were used (Table 4).

Table 4. Parameters used for the calculations of mass concentration profiles: modal radius for fine
rmf and coarse rmc modes, in µm; the geometric standard deviation for fine σf and coarse σc modes;
the ratio of volume concentration of coarse to fine modes Cc/Cf; the particle density ρ in g/cm3; the
real part of the refractive index mr; and the imaginary part of the refractive index mi.

rmf rmc σf σc Cc/Cf ρ mr mi

mean 0.13 1.66 0.43 0.68 0.8 1.75 1.5 0.01
std 0.01 0.03 0.01 0.03 0.1 0.34 0.05 0.005

impact on mass (PBL) 7% 0.5% 0.7% 0.6% 4% 20% 13% 1%
impact on mass (dust) - 2% - 3% - 20% 1% 0.1%

Using the aerosol properties observed, we defined an urban-industrial aerosol model
for the particles inside the PBL, up to 2 km, and a desert dust model for the dust layer
at 2.2–3.5 km. The parameters for the urban-industrial aerosol model are summarized in
Table 4. As shown is Section 3.2.5, the dust layer in the free troposphere was found to be
around 20% of the total AOD from the total column coarse particles. This contribution
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was subtracted from the total coarse mode VSD and the rest of the VSD was considered as
characteristic for the aerosols in the PBL (< 2 km). A bi-modal VSD and a ratio of coarse-to-
fine mode particle concentrations (Cc/Cf) of 0.8 was used for the mass calculations below
2 km. The average particle density was calculated based on the chemical composition
(sulphate, nitrate, EC, OC, residue) and corresponding particle densities (1.76, 1.73, 2, 1.4,
2.3 g/cm3) following [45], and using the sea salt density (1.3 g/cm3) as in [55]. A value
of 1.75 g/cm3 was obtained for the particles inside the PBL. The CRI used for the mass
calculations was 1.52–0.008i. For the dust aerosol model, we used a mono-modal coarse
mode VSD, a CRI of 1.5–0.005i and a particle density of 2.6 g/cm3, which was characteristic
of desert dust [56]. The standard deviations of the parameters in Table 4 correspond to
the variability of the retrieved VSD presented in Figure 7d and were propagated to the
calculations to show the impact of the different parameters on the mass concentration
calculations (Table 4). A MEE of 1.79 m2/g was found for the fine-dominant aerosol
model in the PBL and a MEE of 0.54 m2/g was found for the dust layer. Other studies
found MEE values of 0.5–1.09 m2/g for Saharan dust [57]. For the fine particles, a higher
MEE (2.87–6.64 m2/g) was found for PM2.5 in cities in China [58], but in our case, the size
distribution showed an important contribution of both coarse and fine particles.

Some examples of mass concentration profiles are presented in Figure 10. The mean
mass concentration in the desert dust layer was 95 ± 52 µg/m3, with a maximum of
284 µg/m3. The mean mass concentration in the PBL for different segments along the
mobile transect is presented in Table 4, and was around 80 ± 62 µg/m3 for the whole
transect. The highest particle mass concentrations were recorded near Tianjin city, from
08:30 to 09:30, and when crossing the industrial coastal region, from 12:00 to 14:00.

The PM10 and PM2.5 fractions of the total particle mass concentrations were calculated
as a percentage of the particles with Dp < 10 µm and Dp < 2.5 µm, respectively, from the
total volume concentration of the VSD that was defined for aerosols in the PBL. Using this
method, it was found that the PM10 and PM2.5 represented 95% and 56% of the total mass,
respectively. The LIDAR-derived PM10 and PM2.5 mass concentrations at surface level and
the hourly PM10 and PM2.5 recorded at air quality (AQ) stations along the mobile transect
are presented in Figure 11. The PM10 and PM2.5 measured at the AQ stations closest to
the mobile transect were considered. No data were available at the AQ stations at 13:00
BJT. Despite all the limits for a direct comparison with AQ measurements and given the
uncertainties and assumptions used for the calculations, there is a rather good agreement
between the LIDAR-derived aerosol mass concentrations and the AQ measurements.
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Figure 11. Spatio-temporal variability of (a) PM10 (green) and (b) PM2.5 (red) at surface level, derived
from LIDAR profiles, and the mean hourly PM10 (magenta) and PM2.5 (cyan), measured at the closest
air quality (AQ) stations to the route (BJT = Beijing time). The shaded area on each curve represents
the uncertainty of 32% on the LIDAR-derived mass concentrations.

The calculation of aerosol mass concentration profiles is a complex issue involving
numerous assumptions, namely the particles size distribution, particles shape, chemical
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composition, mixing state and the homogeneity and stationarity of all these parameters
with height. Thus, the associated uncertainties are also difficult to evaluate. In this study,
the standard deviation of each parameter given in Table 4 was used as a measure of the
uncertainty. To this, we added the uncertainty on the extinction profiles, considered to
be 25%. The highest uncertainty was introduced by the assumed particle density, with
an impact of 20%, followed by the complex refractive index, with an impact of 13% on
the mass concentration. Considering the errors as statistically independent, an overall
uncertainty of 32% was evaluated for mass concentration profiles. The levels recorded
at AQ stations were within the uncertainty of the estimated mass concentrations. In
order to give an order of magnitude for the difference between the air quality and the
LIDAR-derived mass concentrations, a mean difference was calculated considering the
hourly means from the AQ stations and the closest value in time from the LIDAR data.
A mean difference of 10% and 42% was obtained for PM10 and PM2.5, respectively. This
comparison was only indicative, since the hourly mean concentrations recorded at the air
quality stations were not directly comparable with the 1 min mass concentration values
from the mobile measurements. Despite all the assumptions and uncertainties involved
in the mass concentration calculations, we believe that the advantages of this method for
LIDAR community and for aerosol data modelling outweigh its limitations.

4. Summary and Applications
4.1. Summary

The MOABAI campaign allowed the mapping of the distribution of aerosol pollutants
in the Beijing and North China Plain (NCP) region in the spring of 2017, giving access
to horizontal and vertical aerosol concentrations. Various atmospheric situations (clean,
heavy pollution, dust transport) were observed and analyzed in relation to the synoptic
conditions and the vertical aerosol layer height. The highest AOD and lowest PBL heights
(0.5–1.5 km) were observed during anticyclonic conditions with low winds originating
from the south, while the dust transport up to a 2–3 km altitude was observed when a
depression located over Inner Mongolia was pushing strong winds from the direction of
the desert, west of the NCP. The lowest AOD were observed when a low-pressure system
was located over eastern Inner Mongolia, bringing clean air over Beijing from the north.
A comprehensive analysis focused on a case study in a heavily polluted industrial area
between the Tianjin and Tangshan cities and the Tianjin port (Binhai New Area), where
high extinction coefficients (0.56 km−1) and mass concentrations (~400 µg/m3) were found.

The novelty of this study consisted of deriving the profiles of aerosol mass concen-
trations from a LIDAR–sun photometer–in situ synergy. Using the columnar volume size
distribution retrieved from the spectral AOD sun photometer measurements (using the
GRASP algorithm), we evaluated the PM10 and PM2.5 fractions of the total mass concen-
trations at ground level. The mass concentration values found in our study compare very
well to the air quality measurements at surface level, which validates our method.

4.2. Applications

Numerous studies on air pollution have already been performed in the North China
Plain region, although, there are none that have conducted measurements in motion with
mobile LIDAR, sun photometer and in situ optical instruments. The novelty of this study
consisted of the observations from a mobile vehicle equipped with LIDAR, sun photometer
and in situ instruments (nephelometer, aethalometer, particle counter), which was deployed
to capture the aerosol spatial distribution in Beijing and the NCP. Constraining the LIDAR
inversion with an AOD measured by the sun photometer is much closer to reality than
an inversion with an assumed a priori LR for all profiles, which may not be at all relevant
for the study of aerosol spatial variability along a transect. Most LIDARs do not see well
close to the surface, and therefore miss an important part of the aerosol boundary layer.
Photometers measure aerosol properties on the atmospheric column, including the layer
never seen, or not accurately seen, by LIDAR close to the surface. In situ data at surface level
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complement the missing information from the LIDAR in its blind zone. The combination of
LIDAR–sun photometer–in situ, which is a good way to profile the entire aerosol column,
was presented in this study. In addition, there was a European effort made in the frame
of the Aerosol Cloud and Trace Gas Infrastructure (ACTRIS) research infrastructure to
put these three distinct communities (LIDAR, sun photometer and in situ instruments)
working together, since synergies such as this have been predicted to open the way for new
applications in the future. For example, this method is applicable to fixed sites that have
in situ, LIDAR and sun photometer instruments. Furthermore, there is a need to develop
the use of mobile embedded systems in the frame of atmospheric research infrastructure
(RI) and in their operations. These will provide added-value information with respect to
fixed systems to extend the observation capacities and associated services. Our work with
mobile observation platforms definitely comes under these RI perspective requirements.

The results presented show the potential capabilities of LIDAR measurements for air
quality applications, such as spatially mapping the PM10 and PM2.5 concentrations both at
surface level and vertically using a light mobile system with LIDAR. Mass concentration
profiles of dust, volcanic ash and smoke plumes and their spatial distribution are key
parameters for different authorities. These measurements are valuable for aviation alerts in
case of disruptive events (such as volcanic ash intrusions) and tracking aerosol dynamics,
and for regional transport, they are useful for air quality modelling. The results of this work
demonstrate that a mobile instrumented vehicle would be an excellent tool for the real-time
characterization of aerosol variability and pollution levels, both spatially and vertically.

The application domains of such mobile systems having LIDAR and sun photometer
instruments are vast. Mapping AOD with a mobile sun photometer allows for the validation
of satellite measurements at different scales; no other instrument at ground level can
perform that spatially in so many points and in such a short time. Studies showing the
profiles of aerosol mass concentration are scarce in the literature. Different aerosol plumes
(smoke, dust, volcanic) and their variability can be spatially tracked to the source and their
contribution (AOD, mass concentration) to the vertical profile can be evaluated. We have
shown the added value of such a mobile system throughout the MOABAI campaign.

As a perspective to further improve the mass concentration profiles, depolarization
and spectral elastic backscatter LIDAR measurements can be used to better characterize
the aerosol types on the vertical profile. This can be achieved with the dual-wavelength,
depolarization micro-pulse CIMEL CE376 LIDAR, which was deployed for the same
amount of time and in the same year, 2019, for: (i) mobile on-road measurements of smoke
in the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ)
campaign in the north-western US in the summer of 2019; (ii) for stationary measurements
during the Campagne d’Observation Intensive des Aérosols et Précurseurs à Caillouël-
Crépigny (COBIACC) campaign in France in the summer of 2019, which focused on the
monitoring of background and transported aerosols at a rural site. The mobility of sun–
sky photometers is also advancing. On the one side, the CIMEL CE318-T sun–sky–lunar
photometer has already been successfully involved in shipborne campaigns [59] and was
also deployed during the FIREX-AQ campaign for mobile car measurements. On the other
side, the development of an Advanced PLASMA instrument that performs sun and sky
measurements is in progress. Recently, in France, the Marion Dufresne ship that is in
operation in the Indian Ocean has been equipped with such a CIMEL CE318-T mobile
photometer to measure, on a permanent basis, that which AERONET usually measures at
a fixed location. In a second step, a LIDAR will also be set up on this mobile exploratory
platform. This is opening a new era for joint mobile automatic LIDAR and photometer
observations and is really needed to upgrade the Maritime Aerosol Network (MAN), the
maritime branch of AERONET, which is still relying on manual measurements. These
additional examples show that the number of applications is increasing, to which the
ACTRIS European effort will contribute with the development of such platforms and
LIDAR–photometer retrievals.
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