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Abstract: Precipitation measurement with high spatial and temporal resolution over highly elevated
and complex terrain in the eastern part of Turkey is an essential task to manage the water structures in
an optimum manner. The objective of this study is to evaluate the consistency and hydrologic utility
of 13 Gridded Precipitation Datasets (GPDs) (CPCv1, MSWEPv2.8, ERA5, CHIRPSv2.0, CHIRPv2.0,
IMERGHHFv06, IMERGHHEv06, IMERGHHLv06, TMPA-3B42v7, TMPA-3B42RTv7, PERSIANN-
CDR, PERSIANN-CCS, and PERSIANN) over a mountainous test basin (Karasu) at a daily time
step. The Kling-Gupta Efficiency (KGE), including its three components (correlation, bias, and
variability ratio), and the Nash-Sutcliffe Efficiency (NSE) are used for GPD evaluation. Moreover,
the Hanssen-Kuiper (HK) score is considered to evaluate the detectability strength of selected GPDs
for different precipitation events. Precipitation frequencies are evaluated considering the Probability
Density Function (PDF). Daily precipitation data from 23 meteorological stations are provided as
a reference for the period of 2015–2019. The TUW model is used for hydrological simulations
regarding observed discharge located at the outlet of the basin. The model is calibrated in two
ways, with observed precipitation only and by each GPD individually. Overall, CPCv1 shows
the highest performance (median KGE; 0.46) over time and space. MSWEPv2.8 and CHIRPSv2.0
deliver the best performance among multi-source merging datasets, followed by CHIRPv2.0, whereas
IMERGHHFv06, PERSIANN-CDR, and TMPA-3B42v7 show poor performance. IMERGHHLv06 is
able to present the best performance (median KGE; 0.17) compared to other satellite-based GPDs
(PERSIANN-CCS, PERSIANN, IMERGHHEv06, and TMPA-3B42RTv7). ERA5 performs well both in
spatial and temporal validation compared to satellite-based GPDs, though it shows low performance
in producing a streamflow simulation. Overall, all gridded precipitation datasets show better
performance in generating streamflow when the model is calibrated by each GPD separately.

Keywords: gridded precipitation datasets; validation; hydrological modeling; mountainous
basin; Turkey

1. Introduction

Precipitation data with high spatial and temporal resolution is one of the key com-
ponents for hydrological modeling [1,2]. Though the inconsistency of precipitation over
space and scarcity of ground-based gauge observation, especially over a basin with com-
plex topography, significantly affect the rainfall-runoff simulation process [3,4]. Various
methods have been used for precipitation estimates and each of them has its pros and cons.
Ground-based gauge networks measure precipitation directly, but the spatial variability
of precipitation over time is highly dependent on the density of the gauge network [5,6].
Moreover, technical issues in developing countries and problems such as information
exchange and data sharing for transboundary river basins have brought significant chal-
lenges to obtaining gauge precipitation data [7]. Ground weather radars are able to present
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precipitation estimates with high spatial and temporal resolution, however, the complexity
of the terrain, limited spatial range, and indirect measurement of precipitation present
several errors and uncertainties in radar-based precipitation estimates [8–10]. In recent
decades, remote sensing and data assimilation technology have developed rapidly. The
space-borne sensors and numerical weather prediction models are able to present a variety
of Gridded Precipitation Datasets (GPDs) in different spatial and temporal resolutions with
nearly global coverage [11,12]. Satellite-based and numerical weather prediction model
precipitation estimates can be considered as an alternative to fill the spatio-temporal gaps
of ground-based networks, especially over complex topography where gauge network is
scarce. However, the presence of high bias in some of these gridded precipitation datasets
is one of the factors which limit their application for hydrological modeling [13].

Hydrological models are used to simplify the real-world problems related to the water
cycle and water resources management or to consider only relevant information instead of
simulating every realistic scenario for a better understanding of basin characteristics [14,15].
Therefore, the number and complexity of hydrological models have increased to support
various decisions regarding management policies related to water resources management,
climate change, and land use. Simple models need fewer input data, are easy to calibrate
the model parameters, and are able to process quickly, while the complexity of the model
increases the level of information as input for the model and provides consideration
of diverse issues in water resources management [16,17]. River discharge is one of the
important hydrologic components and its estimation at a particular location could be
necessary for the design and management of different water resource structures [18,19].
Rainfall-runoff models provide the opportunity to simulate streamflow based on observed
precipitation or using Gridded Precipitation Datasets (GPDs) as meteorological forcing and
can be compared with observed discharge to evaluate their hydrologic utility [20]. In this
study, we performed both meteorological and hydrological evaluation of several GPDs and
assumed the observed streamflow data are the best available estimates.

Generally, two types of validation methodologies are used to quantify the performance
of GPDs: (1) direct comparison of precipitation datasets with a ground-based gauge network
or radar-based precipitation estimates (meteorological evaluation); and (2) validation of
Gridded Precipitation Datasets (GPDs) using hydrological models to evaluate their strength
in streamflow prediction (hydrological evaluation) [21].

Many authors have reported the validation of different gridded precipitation datasets
over various regions [1,22–30]. However, the validation and consistency of GPDs for a
certain area may not be applicable in others, so a separate assessment is necessary to
address their reliability over that particular region.

There are also a number of studies evaluating the performance of certain GPDs over
all or selected regions of Turkey [31–39]. However, in these investigations, either a limited
number or old versioned GPDs have been tested which mainly consider meteorological
performance in a coarse monthly time step instead of daily. Thus, we see the necessity of a
more comprehensive study to include both meteorological and hydrological performance
of GPDs with a finer time step (daily) and to consider seasonal effects.

This study aims to evaluate the spatio-temporal consistency of 13 GPDs by considering
the entire period and seasonal variability of precipitation as well as testing the hydrological
utility based on two different scenarios (Scheme-1 and Scheme-2) over a complex topog-
raphy used for different scientific research projects in Turkey. The structure of this paper
is as follows: Section 1 presents a comprehensive introduction to GPDs. Section 2 gives
information on materials and methods. Section 3 displays results and detailed discussions,
and conclusions are presented in Section 4.

2. Materials and Methods
2.1. Study Area

The Karasu basin (38◦58′ E to 41◦39′ E and 39◦23′ N to 40◦25′ N) is defined as the
study area controlled by Kemah (E21A019) hydrological station (Figure 1) located in the
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eastern part of Turkey. The basin has a drainage area of around 10,250 km2 and elevation
ranges from 1130 m to 3500 m. Considering the terrain complexity and mountainous
climate regime, most precipitation occurs in the form of snow and is retained on the ground
for almost half a year, contributing to streamflow when the temperatures increase. The
Karasu basin is one of the major tributaries of the Euphrates River, known as the longest
transboundary river in southwest Asia and being the largest river basin (127,300 km2) with
a 17% total water potential in Turkey that embraces large man-made reservoirs used for
irrigation, water supply, hydropower, and flood control purposes. Hence, evaluating the
hydrologic response of different GPDs over an important headwater catchment is crucial
for the optimal management of water resources.
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Figure 1. Geographical location, basin topography, and meteorological stations located around the
study area.

2.2. Hydro-Meteorological Data

In this study, daily observed precipitation and temperature data from 23 ground-based
stations (independent stations whose data are not shared and evaluated with worldwide
research centers for bias correction of gauge corrected GPDs) are used to validate 13
selected GPDs in and around the Karasu basin. Moreover, daily streamflow data collected
at the outlet of the basin is utilized to assess the hydrologic performance of GPDs. All
the above-mentioned data are evaluated for five recent water years from October 2014 to
September 2019.

In this context, the study uses daily based precipitation data obtained from 13 selected
GPDs whose detailed information is presented in Table 1: Climate Prediction Center uni-
fied V1 (CPCv1), Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.8, European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis fifth-generation (ERA5),
Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) V2.0, Climate Haz-
ards group InfraRed Precipitation (CHIRP) V2.0, Integrated Multi-satellitE Retrievals for
GPM (IMERG) final run V06, Integrated Multi-satellitE Retrievals for GPM (IMERG) Early
run V06, Integrated Multi-satellitE Retrievals for GPM (IMERG) late run V06, TRMM
Multi-satellite Precipitation Analysis (TMPA) 3B42 V7, TRMM Multi-satellite Precipitation
Analysis (TMPA) 3B42RT V7, Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) Climate Data Record (CDR), Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PER-
SIANN) Cloud Classification System (CCS), and Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN).
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Table 1. Properties of selected GPDs. Abbreviations in the data source represent; G, Gauge; S, Satellite;
and R, Reanalysis. Abbreviation in the temporal coverage represent; NRT, Near Real-Time.

Dataset Name Data
Source(s)

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage Latency References

CPCv1 G 0.50◦ Global Daily 1979–Present 1 day [40]
MSWEPv2.8 G, S, R 0.10◦ Global 3-hourly 1979–NRT Few months [41,42]

ERA5 R 0.25◦ 50◦ N/S Hourly 1979-Present 3 months [43]
CHIRPSv2.0 G, S, R 0.05◦ L-50◦ N/S Daily 1981–NRT 1 month [44]
CHIRPv2.0 S, R 0.05◦ L-50◦ N/S Daily 1981–NRT 2 days [44]

IMERGHHFv06 G, S 0.10◦ 60◦ N/S 30 min 2014–NRT ~3.5 months [45]
IMERGHHEv06 S 0.10◦ 60◦ N/S 30 min 2014–NRT 4 h [45]
IMERGHHLv06 S 0.10◦ 60◦ N/S 30 min 2014–NRT 14 h [45]
TMPA-3B42v7 G, S 0.25◦ 50◦ N/S 3-hourly 2000–Present 3 months [46]

TMPA-3B42RTv7 S 0.25◦ 50◦ N/S 3-hourly 1998–NRT 1 day [46]
PERSIANN-CDR G, S 0.25◦ 60◦ N/S Daily 1983–2016 3 months [47]
PERSIANN-CCS S 0.04◦ 60◦ N/S Hourly 2003–NRT 1 h [48]

PERSIANN S 0.25◦ 60◦ N/S Hourly 2000–NRT 2 days [49]

Considering input and methodology, selected GPDs can be categorized into four
different groups: (1) taking advantage of spatial information from ground-based gauge
precipitation data (CPCv1); (2) utilizing reanalysis data from numerical weather predic-
tion model outputs (ERA5); (3) using satellite Passive Microwave (PMW) and Infrared
(IR) sensor data (IMERGHHEv06, IMERGHHLv06, TMPA-3B42RTv7, PERSIANN, and
PERSIANN-CCS); and (4) multi-source merging precipitation datasets with gauge uncor-
rected (CHIRPv2.8) as well as gauge corrected products (MSWEPv2.8 and CHIRPSv2.0,
IMERGHHFv06, TMPA-3B42v7, and PERSIANN-CDR). Furthermore, gauge corrected
multi-source merging precipitation datasets use gauge-based precipitation measurements
from various sources having different spatial and temporal resolutions. For example,
TMPA-3B42v7 and IMERGHHFv06 use monthly Global Precipitation Climatology Centre
(GPCC) with 1◦ spatial resolution [45,46] and PERSIANN-CDR utilizes monthly Global
Precipitation Climatology Project (GPCP) datasets with a 2.5◦ spatial resolution [47]. More-
over, CHIRPSv2.0 includes pentadal precipitation estimates from the Climate Hazards
group Precipitation climatology (CHPclim) datasets and daily precipitation data from other
national meteorological agencies and private streams [44]. MSWEPv2.8 includes World-
Clim 2 datasets with 1 km spatial resolution and use monthly GPCC, Global Historical
Climatology Network-Daily (GHCN-D), Summary of the Day (GSOD), and other gauge
observations [42]. GPDs can also be differentiated by their spatial and temporal resolu-
tion/coverage. For example, PERSIANN-CCS has the highest spatial resolution (0.04◦)
with hourly precipitation data existing from 2003 to near real-time while covering an area
of 60◦ N/S. On the other hand, CPCv1 has a coarser spatial resolution (0.50◦) with global
coverage exhibiting daily precipitation from 1997 to the present. Moreover, the time in
which the dataset is released for public use is an important factor for hydro-climatological
studies such as flood forecasting and early warnings. For example, IMERGHHEv06 is
released after 4 h of real-time while its final research product (IMERGHHFv06) is released
for public use after 3.5 months.

2.3. Methodology

The Kling-Gupta Efficiency [50,51] objective function is used to assess the performance
of GPDs. Kling-Gupta Efficiency (KGE) has three components, the Pearson correlation
coefficient (r) presents the temporal dynamics of precipitation, bias (β), and the variability
ratio (γ), determine the volume distribution of precipitation. The Nash-Sutcliffe Efficiency
(NSE) and KGE are utilized to evaluate the strength of 13 GPDs for reproducing streamflow
time series. Moreover, the Hanssen-Kuiper (HK) Score is used to show the strength of GPD
distinguishing between occurrences and non-occurrences of a certain event. Finally, the
probability density function (PDF) is exploited to classify the rainfall intensity occurrences
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of GPDs and observed gauge precipitation [52,53]. Table 2 shows the properties of selected
evaluation metrics whereby the optimal value is unity for each of them.

Table 2. Properties of performance indices for evaluation of GPDs.

Performance
Indicator Mathematical Statement Explanation

Kling-Gupta
Efficiency and its

components

KGE = 1− [(r− 1)2 + (β− 1)2 + (γ− 1)2
]0.5

r = 1
n

n
∑
1
(on − u0)(sn − us)/(δ o×δs),

β = us
uo

, γ = (δ s×uo)/(u s×δo

)
r (Pearson correlation coefficient), β (Bias) is the ratio of estimated and

observed mean, γ (Variability Ratio) is the ratio of estimated and observed
coefficients of variation, µ and δ are the distribution mean and standard

deviation where s and o indicate estimated and observed.
M (Miss); when the observed precipitation is not detected. F (False); when
the precipitation is detected but not observed, H (Hit); when the observed
precipitation is correctly detected, CN (Correct Negative); a no precipitation

event is detected.
n is the sample size of the observed or calculated streamflow. Qo

i and
Qs

i present the observed and simulated streamflow, Qo
i present the mean

observed streamflow.

Hanssen-Kuiper HK = (H × CN)−(F×M)
(H+M) (F+CN)

Nash-Sutcliffe
Efficiency NSE = 1− ∑n

i=1 (Q s
i−Qo

i )
2

∑n
i=1 (Q o

i −Qo
i )

2

The daily-based precipitation events from gauge and GPDs are discretized into
five thresholds considering World Meteorological Organization [54] standard for rain-
fall intensity classification later modified by Zambrano-Bigiarini [55]. The five precipita-
tion thresholds considered are no-precipitation (less than 1 mm/day), light precipitation
(1–5 mm/day), moderate precipitation (5–20 mm/day), heavy precipitation (20–40 mm/day),
and violent precipitation (more than 40 mm/day). This categorization is important for
hydrological studies whereby different intensity classes may present a distinct hydrologic
response over the basin. A point to grid approach is selected for comparison of GPDs with
gauge precipitation data where the value of each grid box at the station location is extracted
by linear interpolation [56]. Finally, based on the temporal availability of observed and
GPDs, the evaluation period is selected from October 2014 to September 2019.

The conceptual TUW hydrological model successfully tested in several studies [57–62]
is utilized in this work. The TUW model is developed based on the similar structure of the
widely recognized Hydrologiska Byråns Vattenbalansavdelning (HBV) [63,64] model and
operates on a daily time step. TUW model inputs are total precipitation (mm), mean air
temperature (◦C), and potential evapotranspiration (mm) and include 15 model parameters
(Table 3) to calibrate snow, soil moisture, and runoff routines. The hydroPSO R package,
which includes the particle swarm global optimization algorithm [65,66], is used to calibrate
the TUW model parameters.

Table 3. TUW model parameter properties.

No ID Description Units Process Range

1 SCF Snow correction factor - Snow 0.9–1.5
2 DDF Degree-day factor mm/◦C/day Snow 0.0–5.0
3 Tr Temperature threshold above which precip. is rain ◦C Snow 1.0–3.0
4 Ts Temperature threshold below which precip. is snow ◦C Snow −3.0–1.0
5 Tm Temperature threshold above which melt starts ◦C Snow −2.0–2.0
6 LPrat Parameter related to the limit for potential evaporation - Soil Moisture 0.0–1.0
7 FC Field capacity mm Soil Moisture 0.0–600
8 BETA Non-linear parameter for runoff production - Soil Moisture 0.0–20
9 cperc Constant percolation rate mm/day Runoff 0.0–8.0

10 k0 Storage coefficient for very fast response day Runoff 0.0–2.0
11 k1 Storage coefficient for fast response day Runoff 2.0–30
12 k2 Storage coefficient for slow response day Runoff 30–250
13 lsuz Threshold storage state mm Runoff 1.0–100
14 bmax Maximum base at low flows day Runoff 0.0–30
15 croute Free scaling parameter day2/mm Runoff 0.0–50
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Generally, two types of hydrologic simulation scenarios are widely used for the
hydrologic utility of GPDs depending on the level of information provided: (a) model
parameters are fitted according to simulated and observed streamflow time series using
observed precipitation data as input and afterward the observed precipitation is replaced
by GPDs for validation. This method is more efficient for gauged basins. In the second type,
(b) model parameters are calibrated/validated with streamflow data using each GPD as a
model input independently. This method is recommended for ungauged basins where only
observed streamflow and GPDs are available [4,67]. Hence, in this study, both schemes are
considered for the hydrologic response of the basin based on observed and GPDs input.

3. Result and Discussion
3.1. Spatial and Temporal Evaluation of Daily Precipitation

Figure 2 shows the spatial distribution of the mean daily precipitation derived from
observed gauges and 13 GPDs, including their bias, at the corresponding ground station
location for the selected period (2015–2019). Considering the observed data, the mean
daily precipitation increases from the north (1–1.5 mm) to the south (2.5–3 mm) of the
basin. CPCv1, the only selected GPD which is developed based on information collected
from ground station networks, is able to reproduce mean daily precipitation of around
1–2 mm/day inside the basin. However, this dataset overestimates precipitation in the
northeast and underestimates in the southwest part of the basin with a varying mean daily
precipitation bias from −0.5 to 0.5 mm. ERA5 presents higher mean daily precipitation
(1.5–2.5 mm) compared to the observed precipitation with overestimating bias in and
around the area of study. Among the GPDs that provide information by combining
different sources, both CHIRPSv2.0 and CHIRPv2.0 reproduce the mean daily precipitation
quite well (1–1.5 mm), especially within the basin, and their bias varies from 0 to 0.5 mm,
while MSWEPv2.8 estimates higher precipitation (1.5–2 mm) and a slightly larger bias.

Overall, GPDs that combine only ground and satellite data (G, S), seem to map mean
daily precipitation poorly compared to other multi-source products. IMERGHHFv06 is able
to represent slightly better mean daily precipitation (1.5–2 mm) compared to TMPA3B42v7
(1.5–2.5 mm) while PERSIANN-CDR presents higher daily precipitation (2–3 mm) and
shows precipitation bias of 1–2 mm comparatively. Among GPDs which only use satellite
data, IMERGHHEv06 and IMERGHHLv06 are able to reproduce mean daily precipitation
(1–2 mm) well compared to adjusted (IMERGHHFv06) and other satellite-based GPDs such
as TMPA-3B42RTv7 (1.5 to 2.5 mm). In the same way, PERSIANN-CCS is one of the GPDs
which presents higher mean daily precipitation (2–3 mm) and a precipitation bias close
to PERSIANN-CDR (1–2 mm), while PERSIANN always shows mean daily precipitation
less than 1 mm and its bias increasing from the north (−0.5–0 mm) to the south (−1 mm to
−2 mm).

Figure 3 shows the mean daily precipitation and its estimated bias for the selected
GPDs at the regional scale considering the entire period and four seasons (Spring, Summer,
Autumn, and Winter). According to observed mean daily precipitation, the region receives
more precipitation during the spring (2.24 mm) followed by winter (1.78 mm), while the
summer (0.74 mm) and autumn (1.2 mm) seasons show less precipitation with a 1.5 mm
mean daily precipitation estimated over the Karasu basin for the entire period. CPCv1
presents mean precipitation that is close to the observed for the entire period and all
seasons where the estimated mean daily precipitation bias does not exceed ±0.3 mm.
Among multi-source merging GPDs, both CHIRPv2.0 and CHIRPSv2.0 reproduce mean
daily precipitation well and only underestimate precipitation during the winter season
(bias; −0.22 mm for CHIRPSv2.0 and −0.43 mm for CHIRPv2.0). MSWEPv2.8 gives
values close to the observed during winter and overestimates precipitation for the rest of
the seasons and the entire period, indicating high overestimation for the spring season
(0.5 mm). ERA5 estimates more precipitation compared to observed during the spring
season (3.3 mm, bias; 1.1 mm) and is able to reproduce autumn precipitation (1.5 mm,
bias; 0.3 mm) well enough. Among GPDs which combine only ground and satellite data
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(G, S), IMERGHHFv06 produces good results on mean daily precipitation for the entire
period (1.8 mm), spring (2 mm), and autumn (1.5 mm) compared to TMPA-3B42v7 which
performs better during the summer (0.8 mm) and winter (2.1 mm) seasons. PERSIANN-
CDR always overestimates mean daily precipitation and it shows a higher bias during
winter (bias; 1.8 mm), comparatively. Among satellite-based GPDs, both IMERGHHEv06
and IMERGHHLv06 reproduce mean daily precipitation close to observed while TMPA-
3B42RTv7 and PERSIANN-CCS overestimate and PERSIANN significantly underestimates
considering the entire period and four seasons.
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Figure 2. Spatial distribution of mean daily precipitation and its bias over the Karasu river basin
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followed by ERA5 (0.39). Among GPDs which combine only ground and satellite data, 
IMERGHHFv06 presents a high correlation (0.21) compared to PERSIANN-CDR (0.19) 
and TMPA3b42v07 (0.14). IMERGHHEv06 shows a better correlation (0.18) while the 
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PERSIANN) correlations to the observed precipitation are not higher than 0.17. The 
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Figure 3. Mean daily precipitation and estimated bias for the entire period and four seasons. The
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Figure 4 displays the daily precipitation scatter plots of 13 GPDs against observed data
and mean daily precipitation over the Karasu basin for each year of the study period. Daily
precipitation events from observed and 13 GPDs mostly concentrate between 0–50 mm.
However, CPCv1 shows the highest correlation (0.52) to the observed precipitation com-
pared to other GPDs and TMPA-3B42RTv7 presents the lowest correlation (0.10) for daily
precipitation values. MSWEPv2.8 presents the second-best overall correlation (0.44) hav-
ing the better of the other multi-sources merging GPDs (CHIPRv2.0 and CHIRPSv2.0)
followed by ERA5 (0.39). Among GPDs which combine only ground and satellite data,
IMERGHHFv06 presents a high correlation (0.21) compared to PERSIANN-CDR (0.19)
and TMPA3b42v07 (0.14). IMERGHHEv06 shows a better correlation (0.18) while the
other satellite-based GPD (IMERGHHLv07, TMPA-3B42RTv7, PERSIANN-CCS, and PER-
SIANN) correlations to the observed precipitation are not higher than 0.17. The Karasu
basin received different amounts of daily mean precipitation from 2015 to 2019 water years,
2017 having the least amount. CPCv1 presents a close precipitation estimate to observed
whereby PERSIANN-CCS and PERSIANN-CDR indicate significant overestimates along
with PERSIANN displaying noteworthy undervalues.
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3.2. Consistency of GPDs over Time and Space

Figure 5 maps the spatial distribution of the Kling-Gupta Efficiency (KGE), along with
its correlation (r), bias (β), and variability ratio (γ) components of daily precipitation at
23 station locations for the entire period. As expected, the best performance (KGE; 0.5–0.7,
r; 0.55–0.70) is obtained by CPCv1 which is the only dataset with temporal variation entirely
depending on ground data. Some discrepancies are detected over the northeast regions
resulting in low correlation (0.25–0.4) and variability ratio (0.4–0.8) with a high bias (2–3).
Among multi-source merging GPDs, MSWEPv2.8 shows close performance (KGE; 0.25–0.7,
r; 0.25–0.7) to CPCv1 followed by CHIRPSv2.0 (KGE; 0.1–0.5, r; 0.1–0.25), indicating the
importance of aggregating daily gauge data [41,42,44]. However, CHIRPSv2.0 overesti-
mates bias (bias; 1–1.5) and its variability ratio varies from 0.8 to 1.2 while CHIRPv2.0
shows poor performance compared to MSWEPv2.8 and CHIPRSv2.0. ERA5 performs
better in the southern areas (KGE; 02.5–0.50) while within the basin and in the northern
areas its performance is much dispersed. All GPDs with satellite and gauge combination



Atmosphere 2022, 13, 143 10 of 21

have a low performance inside the basin and in the northern part (KGE; <0) but perform
better in the southern areas (KGE; 0.1–0.25). IMERGHHLv06 and IMERGHHEv06 show a
higher performance compared to its gauge corrected (IMERGHHFv06) dataset and other
satellite-based GPDs, although these two datasets show a close performance to CHIRPSv2.0
and CHIRPv2.0. PERSIANN, being another satellite-based GPD, performs better than
PERSIANN-CCS and PERSIANN-CDR. Unlike other GPDs, PERSIANN shows high per-
formance in the northern area yet performs poorly in the southern part. TMPA-3B42RTv7
performs poorly compared to other satellite-based GPDs but presents a close relation to its
gauge corrected (TMPA-3B42v7) dataset.
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sults. While IMERGHHFv06 performs slightly better during spring and autumn, TMPA-
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(TMPA-3B42v7) which is consistent with previous evaluations over Turkey [32] and may 
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Figure 5. Spatial distribution of KGE and its correlation, bias, and variability ratio components at
a daily time step over the Karasu river basin for 13 GPDs. The title color presents the source (s) of
GPDs: satellite-based (blue), gauge and satellite (red), reanalysis and satellite (sky blue), reanalysis
(green), reanalysis, ground, and satellite (steel blue), and ground (yellow).

Figure 6 shows the median Kling-Gupta Efficiency (KGE) and its three components
(correlation, bias, and variability ratio) for the entire period, all four seasons (spring,
summer, autumn, and winter), and considers daily precipitation. CPCv1 shows the best
performance for the entire period and four seasons, compared to other GPDs, with a
higher spring (median KGE; 0.46) and a lower summer (median KGE; 0.16) result. Among
multi-source merging GPDs, MSWEPv2.8 performs better (median KGE; 0.34) followed by
CHIRPSv2.0 (0.15) and CHIRPv2.0 (0.09) for the entire period.

The best performance for ERA5 comes within the autumn season (median KGE; 0.27)
while showing lower results (median KGE;−0.09) during winter. This diverse performance
of ERA5 over time and space may be attributed to the limited numerical weather prediction
model utilized to demonstrate small-scale convective cells, in line with previous stud-
ies [68,69]. All GPDs which combine only gauge and satellite data, give poor results. While
IMERGHHFv06 performs slightly better during spring and autumn, TMPA-3B42v7 can
only present a positive KGE in summer. This indicates that the successor (IMERGHHFv06)
shows a slightly higher performance compared to its predecessors (TMPA-3B42v7) which
is consistent with previous evaluations over Turkey [32] and may be related to product
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algorithm improvements [45]. PERSIANN-CDR performs poorly in all four seasons. This
low performance of satellite-gauge combination GPDs could firstly be attributed to the
satellite-based algorithm and subsequently to the gauge correction procedure. As men-
tioned before in Section 2.2, gauge correction is applied from different sources using a
different number of gauges, hence it is more important to know how much information
from gauge data is delivered by each gauge corrected GPD within the complex topographic
region. IMERGHHEv06 and IMERGHHLv06 show a better outcome compared to other
satellite-based GPDs for the entire period and four seasons. PERSIANN performs better
than its gauge corrected dataset (PERSIANN-CDR) and PERSIANN-CCS overall. Among
all GPDs, PERSIANN-CCS shows the overall highest bias and PERSIANN giving the
lowest. The highest observed overestimate is given by PERSIANN-CCS in winter (3.34)
while the highest underestimate is detected by PERSIANN in summer (0.57). Hence, GPDs
exclusively based on satellite (PMW or IR) show low performance over complex topog-
raphy and snow dominant regions, consistent with earlier studies concerned with GPD
validations [70–72].
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3.3. GPD Precipitation Intensity Comparison

Figure 7 shows the result of precipitation frequencies of various intensities derived
from gauge precipitation and 13 GPDs during the entire period and four seasons. Based on
the observed data, 77% of precipitation events occur in the range of 0–1 mm/day for the
entire period while this amount decreases for spring and winter precipitation and shows
more frequency during summer and autumn. Furthermore, as expected, the frequency
of precipitation events decreases as the intensity of precipitation increases. GPDs show
varying frequencies of precipitation intensities that are especially noticeable during the
spring season. PERSIANN shows more precipitation intensities for 0–1 mm/day compared
to the observed and presents less frequency for light precipitation (1–5 mm/day) events
during the entire period and all seasons. Among multi-source merging GPDs, CHIRPSv2.0
presents precipitation frequencies close to the observed intensity of 0–1 mm/day while
CHIRPv2.0 and MSWEPv2.8 overestimate light precipitation. In the same way, PERSIANN-
CDR significantly overestimates light precipitation (1–5 mm/day) and underestimates
0–1 mm/day intensities compared to IMERGHHFv06 and TMPA-3B42v7 for the entire
period and four seasons. PERSIANN is the only satellite-based GPD that overestimates
precipitation 0–1 mm/day and underestimates other precipitation events (light, moderate,
heavy, and violent precipitation). IMERGHHEv06 and IMERGHHLv06 show close fre-
quencies to the observed for different intensities during the entire period and four seasons.
TMPA-3B42RTv7 shows similar results as its gauge corrected (TMPA-3B42v7) dataset.
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problematic when the occurrence probability of a certain event is seen much more rarely 
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From the results, CPCv1 shows the highest detectability for intensity less than 1 
mm/day and light precipitation (1–5 mm/day), followed by MSWEPv2.8 and ERA5. 
CHIRPv2.0 shows better detectability for precipitation less than 1 mm/day, light and mod-
erate precipitation compared to CHIRPSv2.0 while CHIRPSv2.0 presents slightly better 
results for heavy and violent precipitation. IMERGHH datasets show similar detectability 
values to each other considering different precipitation groups while TMPA datasets por-
tray lower detectability values compared to IMERGHH products. PERSIANN-CDR per-
forms better when evaluated against PERSIANN-CCS and PERSIANN. 
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3.4. Evaluation of GPD Detectability

Figure 8 shows the detectability strength of 13 GPDs for five different daily precipita-
tion groups considering the entire period and four seasons expressed in the form of the
Hanssen-Kuiper (HK) score. Overall, GPDs show higher detectability during autumn and
lower during summer; additionally, the detection strength of GPDs decreases as the precip-
itation intensity increases which is generally the case in literature. This can be attributed to
the classification of several intensity classes which makes it hard to differentiate among
them instead of a simple rain/no rain scenario. This division gets even more problematic
when the occurrence probability of a certain event is seen much more rarely compared
to other classes (heavy and violent intensities) as can be followed from Figure 7. Hence,
detecting a rarely occurring very intense precipitation event has a weaker performance
when assessed against a more frequently occurring light storm.
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From the results, CPCv1 shows the highest detectability for intensity less than 1 mm/day
and light precipitation (1–5 mm/day), followed by MSWEPv2.8 and ERA5. CHIRPv2.0
shows better detectability for precipitation less than 1 mm/day, light and moderate pre-
cipitation compared to CHIRPSv2.0 while CHIRPSv2.0 presents slightly better results for
heavy and violent precipitation. IMERGHH datasets show similar detectability values to
each other considering different precipitation groups while TMPA datasets portray lower
detectability values compared to IMERGHH products. PERSIANN-CDR performs better
when evaluated against PERSIANN-CCS and PERSIANN.
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3.5. Hydrologic Evaluation of GPDs

The TUW model is utilized to simulate streamflow at the Karasu basin outlet from 2015
to 2019 using observed precipitation and 13 GPDs in two steps. Firstly, model parameters
are calibrated by observed data and then replaced by each GPD (Scheme-1). Afterward,
model parameters are calibrated based on observed data and each GPD individually
(Scheme-2). Figure 9 displays the hydrographs at the basin outlet for different precipitation
input products considering the two schemes. In all cases, the model is calibrated for two
waters years (October 2014–September 2016) and validated for three water years (October
2016–September 2019).
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Figure 10 depicts the scatter plot of simulated daily streamflow against the observed
discharge obtained from in situ precipitation and selected GPDs at the basin outlet consid-
ering the two schemes. Generally, GPDs show a higher streamflow amount in Scheme-1
compared to Scheme-2. However, CHIRPSv2.0 displays quite comparable discharge values
when the model parameters are calibrated either by observed precipitation (Scheme-1)
or GPD itself (Scheme-2). For high flows, PERSIANN underestimates streamflow more
in Scheme-1 than Scheme-2. ERA5 shows distinct streamflow differences for the two
schemes and its reproducibility improves when the model parameters are calibrated by
ERA5 (Scheme-2). MSWEPv2.8 exhibits close streamflow amounts for both schemes, but
shows slightly more discharge in Scheme-1. Both IMERGHHEv06 and IMERGHHLv06
demonstrate less variation of streamflow compared to IMERGHHFv06. The rest of the
GPDs indicate better streamflow reproducibility for Scheme-2 than Scheme-1.
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The nonlinearity of simulated streamflow can be related to the high bias which is
noted in the direct comparison of GPDs with observed precipitation (Section 3.2 and
Figures 5 and 6). Moreover, in Scheme-1, model parameters are calibrated by observed
precipitation only, which is not an optimal parameter set for GPDs. This may be the
reason for high degradation (overestimates) in GPD streamflow prediction during the
calibration/validation period (especially for ERA5, IMERGHH datasets, TMPA datasets,
PERSIANN-CDR, and PERSIANN-CCS). Furthermore, it should be kept in mind that for
Scheme-2 modeling, precipitation values are taken from GPDs while PET and temperature
values are still a part of observed meteorological forcing in the model.

Figure 11 shows the Kling-Gupta Efficiency (KGE) with its three components (correla-
tion, bias, and variability ratio) and Nash–Sutcliffe Efficiency (NSE) streamflow modeling
results for the two schemes considering calibration, validation, and entire periods. When
the model is forced to simulate streamflow with observed gauge data, it reproduces quite
high KGE (0.92) and NSE (0.84) with almost no bias and variability ratio during the cali-
bration period. The model is able to keep the good performance for the validation period
with KGE (0.83) and NSE (0.75) scores. In Scheme-1, CPCv1 performs close to the observed
results for daily streamflow simulation with a slight overestimation in bias and under-
estimation in variability ratio for all phases. Among multi-sources merging GPDs, both
CHIRPv2.0 and CHIRPSv2.0 display a good performance for the calibration and validation
periods as compared to MSWEPv2.8 which, interestingly, presents better results for its vali-
dation stage than calibration. Moreover, IMERGHHFv06, TMPA-3B42v7, PERSIANN-CDR,
and ERA5 perform poorly in simulating the streamflow for Scheme-1. Among satellite-
based GPDs, both IMERGHHEv06 and IMERGHHLv06 show positive performance for the
calibration period with their performance decreasing (with negative NSE) for validation
and the entire period. TMPA-3b42RTv7 and PERSIANN-CCS perform poorly in simulating
the streamflow for all periods and show negative KGE and NSE. The PERSIANN dataset
shows varying performance compared to other GPDs and underestimates bias and over-
estimates the variability ratio. When the model parameters are calibrated based on each
GPD individually (Scheme-2), all GPDs simulate streamflow with high performance for
the calibration period. MSWEPv2.8 shows close reproducibility of streamflow to CPCv1
and observed discharge for calibration, validation, and the entire period. Comparatively,
PERSIANN-CCS shows high KGE (0.82) and NSE (0.65) during the calibration period but
its reproducibility for streamflow generation is poor for validation and the entire period.
Among all GPDs, CHIRPv2.0 and PERSIANN behave differently in Scheme-2. Both simu-
late streamflow well for the calibration phase while their performance decreases during
validation and the entire period as compared to Scheme-1. PERSIANN-CCS significantly
overestimates bias in both schemes. Overall, the TUW model shows good performance
over snow dominant catchments as noted in the literature, and the relatively shorter time
span for model calibration is one of the reasons for higher KGE.

Figure 12 presents the TUW model calibrated parameter values based on the ob-
served data and 13 GPDs. PERSIANN-CCS shows quite a different DDF compared to
other datasets. In the same way, ERA5 shows a high Beta, and PERSIANN displays a
high K2 value. Additionally, TMPA and PERSIANN datasets show high FC compared
to the rest of the GPDs. Further uncertainties arising from meteorological forcing and
hydrological models may surely have an effect on streamflow simulations, but a detailed
sensitivity/uncertainty analysis is not considered within the scope of this study.
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4. Conclusions

In this study, the spatio-temporal consistency and hydrologic utility of 13 GPDs
are evaluated over the mountainous Karasu basin from the 2015 to 2019 water years
considering the observed daily precipitation from 23 meteorological stations in a daily time
scale. The Kling-Gupta Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE) are considered
to evaluate the spatial, temporal, and hydrologic response of the basin for different GPDs.
Moreover, the Hanssen-Kuiper (HK) score is used to quantify the detectability strength of
GPDs while the precipitation frequency for different precipitation intensities is assessed by
the Probability Density Function (PDF). Finally, the rainfall-runoff modeling is conducted
using the TUW model within two schemes. The major conclusions are itemized as follows:

• CPCv1 gathers information from ground station networks and displays a high per-
formance for the rainfall distribution over time and space. This dataset also presents
better detectability in terms of precipitation intensity and demonstrates valuable
results when used in streamflow simulations.

• Among multi-source merging datasets, MSWEPv2.8 shows close performance to
CPCv1 followed by CHIRPSv2.0 and CHIRPv2.0 for direct gauge comparison.
CHIRPSv2.0 and CHIRPv2.0 outperform MSWEPv2.8 in accurately simulating stream-
flow especially in Scheme-1, but not in Scheme-2. GPDs which only use gauge and
satellite data such as IMERGHHFv06, TMPA-3B42v7, and PERSIANN-CDR perform
poorly in capturing precipitation intensities and show low reproducibility for stream-
flow generation in Scheme-1.

• Within satellite-based GPDs, IMERGHHEv06 and IMERGHHLv06 are able to per-
form better compared to other satellite-based products. While TMPA-3B42RTv7 and
PERSIANN-CCS show low performance at all stages, PERSIANN generally under-
estimates precipitation. ERA5 shows slightly good performance both in spatial and
temporal validation when compared to satellite-based GPDs and displays similar
results for streamflow prediction in Scheme-2.

• Some satellite-based GPDs are becoming available with high spatial resolution and
short time lag (latency) which is very important for real-time operation, but the
existing bias limits their reliability for hydro-meteorological studies. As an exam-
ple, PERSIANN-CCS is available after a one-hour time lag with 0.04◦ spatial reso-
lution while its performance is not very high. On the other hand, IMERGHHLv06
presents precipitation after 14 h with a coarser spatial resolution (0.1◦) compared
to PERSIANN-CCS and is more reliable among selected satellite-based GPDs. Fur-
thermore, when satellite-based GPDs are merged with other sources such as reanal-
ysis and/or ground observation data, they become more accurate. For example,
MSWEPv2.8 and CHIRPSv2.0 are the most reliable GPDs over the Karasu basin, but
they have longer time lags varying from one month to a few months. It can be con-
cluded that there are GPDs available for a near-real-time study and as product merging
from different sources is implemented, increasing latency, the reliability of the new
product seems to increase.

• Overall, most of the selected 13 GPDs have a low performance over time and space
in detecting daily precipitation, but some of them can simulate streamflow quite
accurately (Scheme-1). Furthermore, it is detected that GPDs demonstrate better
reproducibility of streamflow when the model parameters are calibrated individually
for each dataset (Scheme-2).

This study confirms the outperformance of CPCv1, MSWEPv2.8, and CHIRP(S)v2.0
products over other selected GPDs in the Karasu river basin located in the mountainous
eastern part of Turkey. The results also indicate that GPDs making use of ground informa-
tion in their retrospective algorithms may not always be able to attain reliable precipitation
estimates. The information source, correction time window, and the number of gauges uti-
lized are the important factors that considerably affect the final product’s reliability. Some
near-real-time products (such as IMERGHHL(E)v06) show promising performance for
short time lag availability. However, they still seem to be far off from being used in reliable
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streamflow simulations for early warning systems. Therefore, a pre/post-biased adjustment
of satellite-based GPDs is recommended with possible high spatial and temporal resolution
ground information. In addition, Scheme-2 hydrological modeling is recommended for
ungauged basins where the calibration procedure uses GPD, ground temperature, and PET
values. Since all model forcings will have their influence on optimal model parameters, it
would be more reliable if model calibration may be implemented from the same climate
data. Finally, it is worth mentioning that this study is based on a recent five-year time
window utilizing 23 ground stations. The consistency of GPDs may be tested for longer
time periods with more stations in highly elevated areas for more concrete conclusions.
Nonetheless, these findings add a valuable contribution to the existing literature for regions
with complex topography such as Turkey and other similar regions of the world.
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