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Abstract: Atmospheric emission of heavy metals from different anthropogenic sources is a great
concern to human beings due to their toxicities. In order to disclose the emission levels and the
distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point
(~900 ◦C) comparing to the high-temperature (1450 ◦C) clinker production process, solid samples
representing the input and output flow of Zn during the entire production process in two preheater–
precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that
the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the
Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed
with different additives and retarder to make cement products. The high-temperature clinkerisation
process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment
of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%,
or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much
lower than most previous reports, implying the CPs were not a crucial Zn emission source. However,
the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn
content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore,
further investigation on the environmental stability of Zn in such Zn-laden cement and concrete
should be carried out.

Keywords: zinc; precalciner cement plants; input and output materials; atmospheric emission factors

1. Introduction

Trace elements in the Earth’s surface system are critical to livestock wellbeing due to
their biological functions or toxicities [1]. The abundance of trace elements in the ambient
environment is affected by both natural and anthropogenic sources [2,3]. In modern society,
human activities are more extensive than at any previous time in the Earth’s history and
have deeply influenced the biogeocycling of trace metals [4–6].

Zinc (Zn), which is an activator of enzymatic reactions, is one indispensable trace
element for plants and microorganisms [7]. However, when the environmental levels
of Zn exceed those required by the plant or microorganism, toxic effects can result [8].
Atmospheric emissions of Zn from anthropogenic sources are an important source of Zn,
which can then enter the human body by dispersion, deposition, assimilation by plants
and transferral through the food chain [9,10]. This can result in adverse human health
effects [11,12]. Additionally, excessive exposure to Zn from the ambient air can cause
chronic bronchitis, peritonitis, emphysema, asthma and even lung cancer [13]. Therefore,
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screening and assessing the emission levels and characteristics of various Zn sources is
required to regulate the potential risk of this element to public health.

Zn could be released into the environment from a variety of anthropogenic sources,
such as coal combustion [14], nonferrous metal smelting [11] and traffic emissions [15,16].
However, there has been little research on the atmospheric emissions and mass flow of Zn
within the cement plants (CPs) with respect to its low boiling point (907 ◦C) comparing
to the high-temperature calcination (1450 ◦C) process [17,18], which produces clinker
and is a key part of the whole cement production process. Of public concern is that this
calcination process may release Zn into the ambient atmosphere and form a major source
of atmospheric environmental pollution [19,20].

Using an emission factor method, Nriagu and Pacyna [19] estimated that the total
amount of Zn emitted from cement plants (CPs) globally in 1983 was 1200–6000 tonnes (t).
Hua et al. [21] speculated that there was a 5.3-fold increase in Zn emissions from Chinese
CPs during 1980–2012, from 132 to 703 t·a−1. Gołuchowska et al. [22] found high Zn
levels (1250 mg·kg−1) in the dustfall around a CP and the soil in the vicinity of the CP had
increased pH and heavy metal levels. One study indicated that Zn levels in the flue gas of
CPs could reach 100 µg·m−3 and were the highest of heavy metals Mn, Se, Te, Sb, As, Cr, Tl,
Pb, Ni, Sn, Cu, Hg, Cd, Co and V [20]. However, there has not a detailed mass flow analysis
for Zn in CPs, and the distribution pattern, or behavious of Zn inside CPs is not clear.

China has been the world’s largest cement producer and consumer during the past
three decades and its cement production yield increased 10-fold from 210 Mt in 1990
to 2390 Mt in 2020 [23,24]. In the past two decades, the cement production technique
has changed dramatically from using a shaft technology to a preheater–precalciner tech-
nique [21,25]. Guizhou Province in southwest China is a karst region with abundant
limestone and coal resources. Its increase in cement production has followed a similar trend
to that of the whole country but with a much higher per capita cement output (2.8 t·a−1)
than the national average (1.7 t·a−1) [24,26]. Based on this, this study was conducted
to provide information on the behaviour of Zn inside two preheater–precalciner CPs in
Guizhou, with all input and output solid materials being collected and examined. These
two studied CPs are a good representative for the Chinese cement industry, both for the
production technology (preheater–precalciner) employed, the popular production capacity
and air pollution control devices (APCDs) installed, as well as raw materials used for
clinker production, with both using a range of industrial solid waste as the alternative raw
materials under the circular economic policy in China. This study aimed to: (1) Explore
the distribution of Zn inside these CPs, (2) evaluate the levels of atmospheric release of Zn
from the cement industry and (3) determine the degree of Zn enrichment in precalciner CPs.
The results obtained from this study will help increase understanding of the behaviour of
Zn inside CPs and the possible impacts on the atmospheric environment.

2. Materials and Methods
2.1. Cement Plants and Sample Collection

The two CPs are located in central (#1) and western (#2) Guizhou Province. These two
CPs each had two production lines but only one line in each plant was investigated as
both used the same raw materials, production technology and air pollution control devices
(APCDs). The raw or alternative raw materials used in these plants included limestone
(mainly CaCO3), shale (mainly to provide Al and Si for cement production), beneficiation
waste (waste rocks that provide a variety of trace elements), yellow phosphorus slag (mainly
CaO and SiO2), carbide slag (mainly Ca(OH)2), coal slag (providing Si, Ca, Al, Fe and Mn)
and nonferrous smelting slag (providing Fe). The coal used by these two CPs was locally
produced bituminous or anthracitic coal that formed in the Late Permian. CP#1 had been
operating for 0.5 years and CP#2 for about five years at the time of sampling.

The capacity of the investigated production lines was 4500–5000 t clinker·d−1 (Table 1).
The APCDs used in these CPs consisted of an electrostatic precipitator (ESP) or fabric filter
(FF) at the kiln head and an FF or ESP-FF with selective non-catalytic reduction (SNCR) at
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the kiln tail (Table 1, Figure A1). The FF/ESP was used to capture particulate matter and
the SNCR was designed to control NOx emissions by injecting ammonium hydroxide into
the high-temperature zones (800–900 ◦C).

Table 1. Information about the studied CPs.

Cement Plants Process Types
Production Capacity

(t Clinker·Day−1 Line−1) Raw Materials
Air Pollution Control Devices a

Kiln Tail Kiln Head

CP#1 Preheater–Precalciner 5000 Limestone/Shale/Iron-rich materials
(nonferrous smelting slag) SNCR + ESP − FF ESP

CP#2 Preheater–Precalciner 4500
Limestone/Shale/Beneficiation

waste/Yellow phosphorus slag/Carbide
slag/Coal slag

SNCR + FF FF

a ESP: Electrostatic precipitator; FF: fabric filter; SNCR: selective non-catalytic reduction.

A schematic map for the whole cement production process is shown in Figure A1,
where a range of different raw materials that provide calcium (Ca), silicon (Si), aluminium
(Al) and iron (Fe) is broken, homogenized, and calcined in a rotary kiln to produce clinker,
then the clinker was mixed with additives and retarder to produce cement products, which
contain four major compounds: Tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium
aluminate (C3A) and tetracalcium aluminoferrite (C4AF) [27]. The sample collection points
in the CPs are indicated in Figure A1. All input and output solid samples were gathered
simultaneously, with ~1 kg samples collected three to six times over a 2–3-day period for
each CP. The samples included different raw materials (limestone, clay, etc.), intermediate
products (raw meal and dust from APCDs), coal, clinker, additives (such as coal fly ash
from the coal-fired power plants (CFPPs)), retarder (desulphurisation gypsum) and cement
products. The Zn concentration in the stack flue gas was not directly measured in this
study due to technical reasons but this parameter was estimated from the particulate matter
content in the stack flue gas and the Zn concentration in this particulate matter (or kiln
dust). Since the temperature of the stack flue gas was low (70–100 ◦C), it was believed
that all Zn compounds existed in particulate form [17]. Additionally, information about
the mass of particulate matter in the stack flue gas and the material inputs and outputs
during the whole production process was provided by the CPs. As a result, a total of 36
and 45 solid samples were collected from CP#1 and #2, respectively.

2.2. Sample Preparation and Determination

Solid samples were air-dried and ground to pass a 150 µm nylon sieve. The con-
centration of Zn in the samples was determined using the method developed by Qi and
Grégoire [28], which employed digestion with HF and HNO3 at 190 ◦C for 24 h in Teflon
bombs followed by inductively coupled plasma mass spectrometry (ICP-MS, Analytik Jena,
Germany) to determine the Zn concentration.

2.3. Quality Assurance and Quality Control

Quality assurance and quality control methods included the use of low metal reagents,
procedure blanks, duplicate samples and certified reference materials during the sample
determination process. HF and HNO3 used in the digestion were double distilled to remove
possible impurities; deionized water are supplied with a Milli-Q system; the procedure
blank of Zn was 0.24 ± 0.26 mg·kg−1 (n = 4). Certified reference materials of limestone
(JLS-1), dolomite (JDO-1), soil (GSS-5), basalt (GSR-3), coal (NIST SRM 1632d) and fly ash
(NIST SRM 1633c) were digested and analysed along with solid samples. The recovery of
Zn ranged from 89.7–110.1% and the difference between duplicates was within 5%.

2.4. Enrichment Factor and Atmospheric Emission Factor Calculations
2.4.1. Enrichment Factor

To explain the cycling and the possibility of enrichment of Zn in the raw mill, pre-
calcining-preheating cyclones and rotary kiln systems, an enrichment factor was calculated
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via Equation (1) to depict the degree of accumulation of a single element during the clinker
production process [29]:

Enrichment factor =
Total Zn inside the kiln system

Input of Zn per day
=

Total Zn in the raw meal fed to the kiln
Daily input of Zn from raw materials and coal

(1)

When the enrichment factor is close to unity, no Zn enrichment occurs in the system.
Factors > 1 indicate that Zn was enriched or retained during the process, with higher values
indicating greater Zn enrichment.

2.4.2. Atmospheric Emission Factor

The atmospheric emission factor (EMF) provides an index of Zn emissions from the
kiln tail and kiln head in precalciner CPs. The EMF was calculated according to clinker
production (mg Zn/t clinker) via Equation (2):

EMF =
MZn × 1000

Mclinker
(2)

Here, MZn is the amount of Zn emitted into the atmosphere per day (g·d−1) and
Mclinker is the daily output of clinker (t·d−1).

3. Results and Discussion

In a precalciner CP, the cement production process has two parts: Clinker production
and clinker-to-cement production. The former involves high-temperature processes, while
the latter is a low-temperature mixing process. The fate of Zn during the whole production
process inside these two CPs was analyzed according to the research framework shown in
Figure A2, and will be discussed in turn in the following subsections.

3.1. Concentration of Zn in Different Solid Materials

The concentration of Zn in different solid materials during the whole production
process of the two CPs is shown in Figure 1 and Tables A1 and A2. According to the
production directions, they will be discussed in three subsections: Different raw materials
and coal, intermediate products (raw meal and kiln dust) and materials in the clinker-
to-cement production process. Additionally, the daily material inputs and outputs are
provided in Tables A3 and A4.

3.1.1. Raw Materials and Coal

For most raw/alternative materials (limestone, yellow phosphorus slag, carbide slag)
and coal, the concentration of Zn was relatively low (<50 mg·kg−1), while raw materials
like shale, beneficiation waste and coal slag contained slightly higher concentrations of
90–110 mg·kg−1 (Figure 1 and Table A1). Astonishingly, iron-rich materials from the nonfer-
rous smelting slags had the highest Zn concentration of 19,383 mg·kg−1 or 1.9 wt%, which
was 2–3 orders magnitude higher than for the other raw materials. The weighted Zn con-
centration in different CP#1 and CP#2 raw materials was 365 and 27 mg·kg−1, respectively.

3.1.2. Intermediate Products

Zn concentrations in intermediate products, including raw meal and dust captured
from the kiln tail APCDs, are shown in Figure 1 and Table A1. For CP#1, the concentration
of Zn in raw meal (343 ± 32 mg·kg−1) was roughly equal to that in raw mix materials
(weighted mean of 365 mg·kg−1) and kiln tail dust (320 ± 27 mg·kg−1), and slighter lower
than that in clinker (428 ± 25 mg·kg−1). A similar trend was found for CP#2 for the
concentration of Zn in raw meal (27 ± 1 mg·kg−1), raw mix materials (weighted mean of
27 mg·kg−1), kiln tail dust (33 ± 3 mg·kg−1) and clinker (49 ± 1 mg·kg−1). The higher zinc
concentration in clinker than in raw meal may be due to the 1.5–1.7-fold mass reduction
during clinker production [30]. It should be noted that the concentration of Zn in raw meal
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for CP#1 was very close to the reference limit of Zn in raw meal in China (361 mg·kg−1,
GB 30760–2014) [31], while the concentration of Zn in raw meal for CP#2 was well within
this limit.
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3.1.3. Materials in Clinker-to-Cement Production Process

During the clinker-to-cement production process, material inputs include clinker, dust
captured by kiln head APCDs, additives and retarder (desulphurisation gypsum), while the
outputs are kiln head stack gas and cement products. For CP#1, the concentration of Zn in
kiln head dust, clinker and cement products was much higher than for CP#2 (Figure 1 and
Table A1). Again, the content of Zn in kiln head dust (average of 417 and 43 mg·kg−1 for
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CPs #1 and #2, respectively) was generally similar to that in clinker (428 and 49 mg·kg−1 for
CPs #1 and #2, respectively). As the reference limit for Zn in clinker in China is 500 mg·kg−1

(GB 30760–2014) [31], both CPs were within the standard. The Zn concentration in the
Portland cement was 357 ± 45 and 60 ± 3 mg·kg−1 for CP#1 and CP#2, respectively.
The average content of Zn in Germany’s cement was reported as 140 mg·kg−1 [32], which
was higher than for CP#2 but lower than for CP#1. Coal fly ash, coal slag (or bottom
ash) and desulphurisation gypsum were supplied by the local coal-fired power plants
(CFPPs). The coal fly ash used in the two CPs as an additive contained a much higher Zn
concentration (86–214 mg·kg−1) than that of gypsum (6–7 mg·kg−1) and coal bottom ash
(87 mg·kg−1). The Zn concentration in the cement products of CP#1 and CP#2 was slightly
different to that of clinker due to the incorporation of different additives and retarders.

3.2. Atmospheric Zn Emissions

The concentration of particulate-bound Zn in stack flue gas was somewhat higher
at the kiln tail (0.62–1.92 µg·m−3) than at the kiln head (0.29–1.76 µg·m−3; Table A1) but
was far below the values (6–100 µg·m−3) reported by Arfala et al. [20] for a CP in Morocco.
These results were similar to a CP that co-processed municipal solid waste incineration
fly ash in Beijing, which discharged Zn concentrations in the range of 1.3 to 6.0 µg·m−3,
which corresponded to a baseline level (without incineration fly ash addition) and a 1.7%
addition of incineration fly ash that contained 7000 mg·kg−1 Zn [33].

The EMF of Zn from pre-calcined CPs is the sum of emissions from the kiln tail and kiln
head. The EMFs of Zn for the two CPs in this study were in the range of 1.28–9.39 mg Zn·t−1

for clinker and 1.08–9.01 mg Zn·t−1 for cement (Table 2). The Zn EMF for CP#1 was about
9 times higher than for CP#2, which was a result of higher Zn concentrations in the kiln
dust in CP#1 than CP#2. The average EMF for the two CPs was 5.34 mg Zn·t−1 for clinker
and 5.05 mg Zn·t−1 for cement, which was comparable to the values (1.60–13.95 mg Zn·t−1

for cement) reported by Li et al. [34] but was much lower than the value (980 mg Zn·t−1

for cement) reported by Chen et al. [35]. Combining the average values from this study
and the cement production in Guizhou Province in 2020 (1.08 × 108 t, [26]), the total
provincial atmospheric Zn emissions in 2020 were estimated to be 545 kg·a−1, which was
two times lower than those emitted from coal-fired power plants (1276 kg·a−1) in the same
province [36]. The total atmospheric Zn emissions from the whole cement industry in
China were estimated to be 12.1 t·a−1 in 2020 based on the amount of cement (2.39 × 109 t)
produced in that year [15]; this was much lower than a previous estimation of 703 t·a−1 for
Chinese CPs [21] and 14,537 t·a−1 for Chinese coal combustion activities [13].

Table 2. Atmospheric EMFs of Zn for the two CPs.

Cement Plants
EMF1 (mg Zn·t−1 Clinker) EMF2 (mg Zn·t−1 Cement)

Kiln Tail Kiln Head Total Kiln Tail Kiln Head Total

CP#1 5.20 4.19 9.39 4.99 4.02 9.01
CP#2 0.57 0.71 1.28 0.48 0.60 1.08

Mean 2.89 2.45 5.34 2.74 2.31 5.05

3.3. Mass Flow of Zn during Clinker and Cement Production

During clinker production, limestone was the dominant material and accounted for
~83% of the raw material mass at the two CPs (Tables A3 and A4). The other raw materials,
including shale, iron-rich materials, beneficiation waste, yellow phosphorus slag, carbide
slag, coal bottom ash and coal accounted for the other 17% of material inputs. Combined
with the Zn concentration in different input/output materials (Tables A1 and A2) and the
associated material mass flows (Tables A3 and A4), the proportion of each material in the
Zn inputs and outputs during the clinker production process and the clinker-to-cement
process was calculated (Figures 2 and 3).
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Figure 2 shows that the iron-rich materials in CP#1, which contained ultra-high Zn
content (19,000 mg·kg−1), completely dominated (96.6%) the input volume of Zn, although
they only accounted for 1.8% of the total material mass (Table A3). In CP#2, where all raw
materials had low Zn concentrations (<120 mg·kg−1), limestone was the main input of Zn
and accounted for 66% of the total inputs. Clinker represented almost all (97.5–99.7%) of
the Zn outputs from these two CPs. Additionally, the daily Zn inputs and outputs of Zn
during the clinker production process were roughly equal at the two CPs (Figures 2 and 3),
indicating that almost all Zn inputs from raw materials and fuels ended up in the clinker or
were maintained in a dynamic equilibrium of inputs and outputs. While the Zn inputs for
CP#1 were 10 times higher than for CP#2, low Zn emission levels (0.002%) in flue gases
were observed for both CPs, suggesting that there was minimal atmospheric release.

During the clinker-to-cement production process, clinker was the main Zn input
(63–96%), coal fly ash and other additives contributed a lesser portion of 3–36%, while
retarder (desulphurisation gypsum) contributed the least (0.5%), both due to its lowest Zn
concentration (6–7 mg·kg−1) and low mass contribution (4–5%). However, desulphurisation
gypsum and coal fly ash are major contributors for some other metals (e.g., Hg and Tl)
in cement products [29,37]. For different brands of Portland cement, such as Portland
ordinary cement (P.O 425) and Portland composite cement (P.C 425), there were minimal
variations (<10%) in the Zn concentration outputs for the same CP.

The detailed input and output flow of Zn during the whole production process in
each CP are shown in Figure 4. Almost all of the Zn inputs from different raw materials
(2731 kg·d−1 for CP#1; 238 kg·d−1 for CP#2) and coal (17 kg·d−1 for both CPs) ended up
in the clinker (2231 kg·d−1 for CP#1; 259 kg·day−1 for CP#2), some of which was then
was incorporated in the cement products (1868 kg·d−1 for CP#1; 384 kg·d−1 for CP#2;
Figure 4). The mass balance of Zn, represented by the output/input ratios, during clinker
production and clinker-to-cement production was 91% and 87% on average for the two
CPs (Figures 2–4), respectively. The slight difference was a result of fluctuation in the Zn
concentrations of solid samples and the relatively small dataset.

The Zn enrichment factors, calculated from Equation (1), were 0.96 and 0.93 for CP#1
and CP#2, respectively. Both were around 1 and were similar to the enrichment factors
for Pb (0.91–1.03) and Cd (0.99–1.1) in CPs [38]. However, during the clinker production,
volatile metals like Tl and Hg had much higher enrichment factors (85–148 for Tl and
6–104 for Hg) [29,37], which was ascribed to the accumulation of these elements during the
clinker production process. The close to 1 Zn enrichment factor in this study suggested that
Zn was roughly balanced during clinker production, with the daily Zn output equivalent to
the daily input. In other words, the Zn flow mainly followed the sequence of raw materials
to raw meal, then to clinker and finally to cement products. Hence, a much higher Zn
input in CP#1 has resulted in a nearly 10-fold increase in Zn concentration in clinker and
cement products compared to CP#2; a similar phenomenon was found for cement plants
that co-processes high Zn laden municipal solid incineration fly ashes [39].

The observations from this study were very different to previous speculations that
Zn would be volatilised at high temperature, condense and be enriched in fly ash, thereby
forming a potential or important environmental Zn source—as is the case for coal-fired
power plants [13] and Zn smelters [11]. This study indicated that the atmospheric Zn
emissions from preheater–precalciner CPs were negligible, as Zn was incorporated into the
main minerals of clinkers—such as tetracalcium aluminoferrite (C4AF) by the substitution
of Fe atoms, and tricalcium silicate (C3S) and dicalcium silicate (C2S) by replacing Ca
ions during the clinkerisation process [27]. The forms of Zn in clinker could be ZnO,
Zn2SiO4, ZnAl2O4 and Ca6Zn3Al4O15 [40,41], and the threshold limit of Zn in ordinary
Portland clinker was estimated to be 0.7 wt% [41], which is the maximum amount of Zn
that could be incorporated into clinker without modifying its phase stability or resulting in
the appearance of a new phase.
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4. Conclusions

This study disclosed the preheater–precalciner CPs are not an important Zn atmo-
spheric source based on a thorough mass flow analysis of Zn in two precalciner CPs; the
mechanism might be the formation of Zn aluminosilicate during the clinkerisation process,
which largely restricted the volatilisation of Zn. As a result, Zn kept a dynamic equilibrium
during the clinkerisation process with daily Zn inputs from different raw materials and
fuels ending up in the clinker; very little Zn (0.002%) was lost to the atmosphere. The aver-
age emission factors for Zn in this study were 5.34 mg Zn·t−1 clinker and 5.05 mg Zn·t−1

cement. The total atmospheric Zn emissions from the whole cement industry in Guizhou
Province and China in 2020 were estimated to be 0.5 and 12.1 t·a−1, respectively, which
was much lower than the previous estimation. Since Zn in clinker and cement products are
wholly inherited from the input materials, the utilisation of Zn-containing materials—like
metallurgical slags—should be careful, since this will dramatically increase the Zn content
in clinker and cement.
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Table A1. Concentration of Zn in different solid materials during the clinker production process.

Zn Input/Output Materials

Zn Concentration (mg·kg−1)

Cement Plant #1
Rang (Mean ± Standard

Deviation)

Cement Plant #2
Rang (Mean ± Standard

Deviation)

Zn input
Raw/alternative materials

Limestone 4–5 (5 ± 0, n = 3) a 16–26 (21 ± 4, n = 3)
Shale 95–127 (108 ± 14, n = 3) 111 (n = 1)

Iron-rich materials 18,262–20,868 (19,383 ±
1095, n = 3) / b

Beneficiation waste / 85–102 (94 ± 9, n = 2)
Yellow phosphorus slag / 35–48 (41 ± 5, n = 3)

Carbide slag / 32–37 (35 ± 3, n = 2)
Coal slag / 85–90 (87 ± 2, n = 3)

Fuel Coal 18–28 (24 ± 4, n = 3) 20–33 (26 ± 5, n = 3)

Weighted average 365 27

Intermediate products Raw meal 308–385 (343 ± 32, n = 3) 27–28 (27 ± 1, n = 3)
Kiln tail dust 296–357 (320 ± 27, n = 3) 30–37 (33 ± 3, n = 3)

Zn output

Kiln head dust 393–437 (417 ± 18, n = 3) 43 (n = 1)

Stack flue gas at the kiln tail 1.76 c 0.29 c

Stack flue gas at the kiln head 1.92 c 0.62 c

Clinker 393–449 (428 ± 25, n = 3) 48–50 (49 ± 1, n = 3)

a n is the sample numbers; b not applicable; c unit of Zn concentration in flue gas: µg·m−3.
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Table A2. Concentration of Zn in different input and output materials during the clinker-to-cement
production process.

Zn Input/Output Material

Zn Concentration (Mean ± SD, mg·kg−1)

Cement Plant #1
Rang (Mean ± Standard

Deviation)

Cement Plant #2
Rang (Mean ± Standard

Deviation)

Zn input

Clinker 393–449 (428 ± 25, n = 3) a 48–50 (49 ± 1, n = 3)
Kiln head dust 393–437 (417 ± 18, n = 3) 43 (n = 1)

Fly ash from coal-fired power plants 79–92 (86 ± 7, n = 3) 213–215 (214 ± 1, n = 3)
Desulfurization gypsum 5–6 (6 ± 1, n = 3) 6–7 (7 ± 0, n = 3)

Limestone 4–5 (5 ± 0, n = 3) / b

Bottom ash from coal-fired power plants / 85–90 (87 ± 2, n = 3)
Basalt / 156–170 (165 ± 6, n = 3)

Black stone / 189–292 (225 ± 47, n = 3)
Weighted average 362 65

Zn output Cement products 278–399 (357 ± 45, n = 6) 58–63 (60 ± 3, n = 6)
a n is the sample number; b not applicable.

Table A3. Mass flow of solid materials during the clinker production process of the CPs.

Material Input/Output Materials
Mass Flow (t·Day−1)

Cement Plant #1 Cement Plant #2

Input
Raw/alternative

materials

Limestone 6235 7960
Shale 432 52

Iron-rich materials 137 / a

Beneficiation waste / 494
Yellow phosphorus slag / 183

Carbide slag / 165
Coal slag / 45

Fuel Coal 723 649

Intermediate products Raw meal 7723 8600
Kiln tail dust 185 260

Output

Kiln head dust 134 20
Stack flue gas at the kiln tail 1486 b 1046 b

Stack flue gas at the kiln head 1098 b 601 b

Clinker 5025 5236
a Not applicable; b unit of flue gas volume: 104 m3·d−1.

Table A4. Mass flow of solid materials during the clinker-to-cement production process of the CPs.

Material Input/Output Materials
Mass Flow (t·Day−1)

Cement Plant #1 Cement Plant #2

Input

Clinker 5025 5236
Kiln head dust 96 20

Fly ash from coal-fired power
plants 424 535

Desulfurization gypsum 264 271
Limestone 212 / a

Bottom ash from coal-fired
power plants / 212

Basalt / 30
Black stone / 60

Output Cement products 6021 6364
a Not applicable.
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