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Abstract: Nitrogen dioxide (NO2) has a great influence on atmospheric chemistry. Scientifically
identifying the temporal-spatial characteristics of NO2 distribution and their driving factors will
be of realistic significance to atmospheric governance in the Yangtze River Economic Belt (YREB).
Based on the NO2 data derived from the TROPOspheric Monitoring Instrument (TROPOMI) onboard
the Sentinel-5 satellite (2017~present), spatial autocorrelation analysis, standard deviation ellipse
(SDE), and geodetectors were used to systematically analyze the spatial-temporal evolution and
driving factors of tropospheric NO2 vertical column density (NO2 VCD) in the YREB from 2019 to
2020. The results showed that the NO2 VCD in the YREB was high in winter and autumn and low
in spring and summer (temporal distribution), and high in the northeast and low in the southwest
(spatial distribution), with significant spatial agglomeration. High-value agglomeration zones were
collectively and stably distributed in the east region, while low-value zones were relatively dispersed.
The explanatory power of each potential factor for the NO2 VCD showed regional and seasonal
variations. Surface pressure was found to be a core influencing factor. Synergistic effects of factors
presented bivariate enhancement or nonlinear enhancement, and interaction between any two factors
strengthened the explanatory power of a single factor for the NO2 VCD.

Keywords: nitrogen dioxide (NO2); spatial-temporal pattern; spatial heterogeneity; geographical
detector method; Yangtze River Economic Belt (YREB)

1. Introduction

As a major national strategic development zone in China, the Yangtze River Economic
Belt (YREB) stretches across three major regions: the eastern, central, and western regions,
covering nine provinces and two municipalities. The YREB occupies an area of about
2,052,000 km2, which accounts for 21.4% of the total area of China. The permanent resident
population and gross domestic product (GDP) account for 43.0% and 46.2% of the nation,
respectively. Its potential impact on the nation’s economic development can be enormous.
Shanghai city and Jiangsu and Zhejiang provinces are within the eastern region; Hubei,
Hunan, Anhui, and Jiangxi provinces are within the central region; and Chongqing city,
Sichuan, Guizhou, and Yunnan provinces are in the western region (Figure S1). In 2017, the
nitrogen oxides (NOx) emitted as a waste gas over the YREB had already reached 576.7 t,
accounting for 32.3% of the national total emission (http://www.stats.gov.cn/tjsj/ndsj/20
20/indexch.htm, accessed on 1 September 2021). According to the data in the Monthly Report
on Urban Air Quality Status released by the Ministry of Ecology and Environment of the
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People’s Republic of China in 2019–2020 (http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/,
accessed on 1 September 2021), the main atmospheric pollutant is NO2 in many prefecture-
level cities in the Yangtze River Delta urban agglomeration, an urban agglomeration in the
middle reaches of the Yangtze River, and the Chengdu-Chongqing urban agglomeration in
the YREB in autumn and winter. As one of the most serious air pollutants, NO2 is closely
related to environmental problems such as acid rain and photochemical smog [1]. It is also
related to health problems such as respiratory system diseases, cardiovascular diseases,
diabetes, and adolescent psychological health [2–6]. The photochemical lifetime of NO2 is
relatively short, being about 2–6 h in summer and 12–24 h in winter. NO2 is an important
precursor of ozone and other secondary pollutants [7–10]. Due to the relatively short
lifetime of NO2, the vertical column density of tropospheric NO2 (NO2 VCD) is mainly
correlated with emissions due to burning fossil fuel and biomass, and emission from the
transportation sector [11–13]. Knowledge of the spatial-temporal variations of NO2 VCD
in the YREB and its influencing factors will help us prevent and control atmospheric NO2
pollution in the YREB.

In recent years, studies were performed on human activities such as major social
events [14], sports events [15], and emergent public health incidents [16] on NO2 emission
using the NO2 concentration data measured at ground stations. NO2 concentration with
high temporal and spatial resolutions was also derived through inversion from remote sens-
ing data combined with in situ measurements using the land use regression model [17,18],
the Community Multi-scale Air Quality model (CMAQ) [19], the hybrid random forest and
spatiotemporal kriging model [20], the geographical and temporal weighted regression
method [21], and the machine learning method [22]. These data provide opportunity for
exploring the relationships between the ground NO2 concentration and human health
or ecological environment. In order to comprehensively understand the spatio-temporal
variation of NO2 VCD, researchers have analyzed the variation and seasonal variability of
the NO2 VCD using a coefficient of variation (CV), univariate linear regression analysis,
and the Breaks for Additive Seasonal and Trend (BFAST) method using satellite remote
sensing data [23,24]. The spatial variation of NO2 VCD has been studied using the spatial
autocorrelation analysis and hotspot analysis methods [25]. Furthermore, its influencing
factors have been analyzed through simple linear regression [24], generalized additive
models [26], and spatial econometric models [25].

Although spatial-temporal patterns of and influencing factors on NO2 VCD have
been comprehensively discussed based on the theory of spatial correlation and spatial
heterogeneity in the previous studies, there are few studies on the independent impacts and
interactions of potential influencing factors on NO2 VCD in different seasons. In addition,
the existing studies on the YREB mainly used in situ data measured at ground stations,
analysis with full spatial coverage over the YREB has been rarely performed. Meanwhile,
knowledge of the explanatory power of each potential factor on the spatial variation of
NO2 VCD in different subregions of the YREB in different seasons and the interaction
between any two of these factors will help us to understand, prevent, and control the
atmospheric NO2 in the YREB. The objective of this study is to explore the spatial-temporal
distribution characteristics of NO2 VCD in the YREB and investigate the regional and
seasonal variations of the influencing factors on NO2 VCD in the YREB.

2. Materials and Methods

Based on the standard deviation ellipse (SDE), coefficient of variation (CV), spatial
autocorrelation analysis, and geographical detector model, the quarterly average TROPO-
spheric Monitoring Instrument (TROPOMI) NO2 VCD data in the YREB from September
2018 to November 2020 were analyzed. The main data, data processing and analysis
methods used in this study were summarized in Figure 1.

http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/
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u-component of wind; V10—10 m v-component of wind; BLH—Boundary Layer Height; RH_875—875 hPa Relative Hu-
midity; Si10—10 m wind speed; SNSR—surface net solar radiation; SP—surface pressure; SSRD—surface solar radiation 
downward; STRD—surface thermal radiation downward). 
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satellite, which was launched on 13 October 2017 as the first Copernicus mission dedicated 
to monitoring atmosphere by European Space Agency (ESA). The TROPOMI sensor was 
designed to monitor global atmospheric composition and related atmospheric processes 
[27]. The seasonal mean values were synthesized according to winter (December–Febru-
ary next year, WI), spring (March–May, SP), summer (June–August, SU), and autumn 
(September–November, AU). The seasonal average of NO2 VCD with spatial resolution of 
0.01° × 0.01° in YREB were then acquired. The S5P satellite data product for studying at-
mospheric NO2 has been evaluated using ground monitoring [28], airborne observation 
[29,30], and the Ozone Monitoring Instrument (OMI) NO2 dataset [31]. In situ observed 
NO2 concentrations at ground stations for air quality monitoring in the YREB were ac-
quired from China National Urban air quality real-time release publishing platform 
(http://106.37.208.233:20035/, accessed on 1 September 2021). Thirty minutes before and 
after the overpass time of S5P (about local time 13:30) were taken as the time window, and 
the NO2 concentration values conforming to National Ambient Air Quality Standards 
(GB3095-2012) within the time window were taken. Regression analysis showed that the 
Pearson correlation coefficient between the seasonal average of the TROPOMI NO2 VCD 
and in situ measured NO2 concentration at ground stations ranged from 0.66 to 0.72, pass-
ing the p = 0.01 significance test, indicating that the accuracy of this dataset meets our 
expectation (Figure S2). 
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Figure 1. The flowchart of research. (Note: NLI—Nighttime Light; CO2—Carbon Dioxide emissions from fuel combustion,
cement production and gas flaring; NDVI—Normalized Difference Vegetation Index; DEM—Digital Elevation Model;
TCO3—Total Column Ozone; TCC–Total Cloud Cover; T2 m—2 m temperature; TPrec—Total Precipitation; U10—10 m
u-component of wind; V10—10 m v-component of wind; BLH—Boundary Layer Height; RH_875—875 hPa Relative
Humidity; Si10—10 m wind speed; SNSR—surface net solar radiation; SP—surface pressure; SSRD—surface solar radiation
downward; STRD—surface thermal radiation downward).

2.1. Data and Data Preprocessing

In this study, a total of 12,861 TROPOMI NO2 VCD level 3 scenes of the YREB from
September 2018 to November 2020 were acquired from Google Earth Engine (GEE) plat-
form. The data was derived from the TROPOMI sensor carried on the Sentinel-5P (S5P)
satellite, which was launched on 13 October 2017 as the first Copernicus mission dedi-
cated to monitoring atmosphere by European Space Agency (ESA). The TROPOMI sensor
was designed to monitor global atmospheric composition and related atmospheric pro-
cesses [27]. The seasonal mean values were synthesized according to winter (December–
February next year, WI), spring (March–May, SP), summer (June–August, SU), and autumn
(September–November, AU). The seasonal average of NO2 VCD with spatial resolution
of 0.01◦ × 0.01◦ in YREB were then acquired. The S5P satellite data product for studying
atmospheric NO2 has been evaluated using ground monitoring [28], airborne observa-
tion [29,30], and the Ozone Monitoring Instrument (OMI) NO2 dataset [31]. In situ ob-
served NO2 concentrations at ground stations for air quality monitoring in the YREB were
acquired from China National Urban air quality real-time release publishing platform
(http://106.37.208.233:20035/, accessed on 1 September 2021). Thirty minutes before and
after the overpass time of S5P (about local time 13:30) were taken as the time window,
and the NO2 concentration values conforming to National Ambient Air Quality Standards
(GB3095-2012) within the time window were taken. Regression analysis showed that
the Pearson correlation coefficient between the seasonal average of the TROPOMI NO2
VCD and in situ measured NO2 concentration at ground stations ranged from 0.66 to 0.72,
passing the p = 0.01 significance test, indicating that the accuracy of this dataset meets our
expectation (Figure S2).

In this study, the influences of 17 potential influencing factors on the NO2 VCD
distribution in the YREB were analyzed using the geographical detector model (Table S1).

http://106.37.208.233:20035/
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Acronyms are given in Table S1. NTL has been verified as an important factor effectively
and accurately reflecting the intensity of human activities in different regions [25]. NDVI
reflects regional vegetation health status and vigor. Quarterly NDVI and annual NDVI
were acquired through the Maximum Value Composite (MVC) method [32]. The total
column ozone data and environmental data at 14:00 from ERA5 were selected as potential
influencing factors. NTL, NDVI, DEM, SNSR, SSRD, and STRD were preprocessed based
on the GEE platform. We calculated quarterly average CO2 and annual average CO2 of the
YREB. Other environmental factors were interpolated through the bilinear interpolation
method [10]. The spatial resolution of the NO2 VCD data and factor data was 1 km.

2.2. Methodology

The coefficient of variation (CV) is a dimensionless measure of the discrete degree of
data distribution [33]. As the ratio of standard deviation to mean value of NO2 VCD in the
YREB in each season, CV was used to express the difference of NO2 VCD values in this
study area during this period.

Standard deviation ellipse (SDE) was used to analyze the element center, discrete de-
gree, and directional feature through the spatial position and attribute value of geographic
elements. The center and azimuth angle of SDE represent the center of gravity and main
trend direction of spatial NO2 distribution, respectively. The major axis and minor axis
of a SDE reflect the discrete degrees of main changing direction and secondary direction
of NO2, and a larger difference between major and minor axes indicates more obvious
directivity of the data [34].

Global Moran’s I was used to measure the aggregation pattern of the NO2 VCD in the
YREB, and its value ranged from −1 to 1. Moran’s I < 0 means that NO2 VCDs of different
cities/provinces in the study area were negatively correlated, Moran’s I = 0 represents no
correlation, Moran’s I > 0 denotes positive correlation, and greater absolute value indicates
higher correlation degree. Getis-Ord Gi* was used to identify the specific aggregation
position of the NO2 VCD in the YREB. More details can be found in [35] and [36].

Geographical detector model (Geodetector), developed by [37], is a spatial statistical
method that is used to identify driving forces by detecting spatial heterogeneity. It utilizes
spatial variance to quantify relative importance of single controlling factors and their
interactions with dependent variables. It has been widely applied to data analysis of
natural environment [38], social science [39], and human health [40], to identify main
driving forces. The R language package “GD” of Geodetector developed by [41] provides
an optimal discretization method of continuous variables and analytic functions for the four
main functions (factor detector, interaction detector, risk detector, and ecological detector)
(https://cran.r-project.org/web/packages/GD/, accessed on 1 September 2021). In this
study, the “GD” package was used to study the explanatory power of potential influencing
factors for the spatial variation of the NO2 VCD in the YREB. The number of classification
grades was set to 3–8, and the optimal discretization method was chosen among four
classification methods: standard deviation, equal interval, quantile, and natural breaks
(Jenks). Specifically, we used risk detector to identify potential risk areas of NO2 VCD; the
factor detector was employed to examine the effect intensity of driving factors on NO2
VCD in the YREB; the interaction detector was applied to determine the interaction strength
between any two of influencing factors. The formula of factor detector is as follows [37]:

q = 1− ∑n
h=1 Nhσ2

h
Nσ2 , (1)

where n is the number of strata in potential influencing factor; Nh is the number of samples
in each stratum; σ2

h is the variance of NO2 VCD in each stratum; N is the total number of
samples in the study area; and σ2 is the variance of NO2 VCD in the entire study area. The
value of q is between 0 and 1, with both endpoints included, and large values of q indicate
a stronger effect by the element and explanatory power of the variable, and vice versa.

https://cran.r-project.org/web/packages/GD/


Atmosphere 2021, 12, 1142 5 of 16

In addition, the interaction detector reveals whether the potential influencing factors
X1 and X2 have an interactive influence on NO2 VCD, or whether these factors have
independent effects on NO2 VCD. The method of evaluation is to calculate the q values, i.e.,
q(X1) and q(X2), of the factors X1 and X2 on NO2 VCD, respectively, and then to calculate
the q value of their interaction, q(X1∩X2), and finally to compare q(X1), q(X2), and q(X1∩X2).
If q(X1∩X2) < Min (q(X1), q(X2)), the interaction is nonlinear weak. If Min (q(X1), q(X2))
< q(X1∩X2) < Max (q(X1), q(X2)), the results are univariate enhanced. If q(X1∩X2) > Max
(q(X1), q(X2)), the results are bivariate enhanced. If q(X1∩X2) = q(X1) + q(X2), the results are
independent of each other. If q(X1∩X2) > q(X1) + q(X2), the results are nonlinearly enhanced.
As the geodetector can only detect the influencing degrees of the potential factors, we
decided influencing directions using the correlation analysis. More details for the analysis
method were given in [37,41].

3. Results
3.1. General Characteristics of the NO2 VCD in the YREB

In order to avoid data redundancy, a total of 75,352 pixel values were extracted from
the NO2 VCD remote sensing images in each season using the equidistant sampling method.
These data were then used to investigate distribution characteristics of the NO2 VCD in
the study area. The results showed that the NO2 VCD in the YREB was highest in winter,
followed by autumn, spring, and summer, successively, and it was within 0–50 µmol/m2 in
most regions (Figure 2). The mean values of the NO2 VCD in winter, spring, summer, and
autumn of 2019 were 53.51, 39.17, 27.53, and 40.33 µmol/m2, respectively. The NO2 VCD
in winter was 1.94 times that in summer, indicating the evident seasonal difference. The
changing rates of the mean NO2 VCD in the YREB in winter, spring, summer, and autumn
from 2019 to 2020 were −21.33%, −11.18%, −6.90%, and 2.98%, respectively. The average
value of NO2 VCD in the autumn first dropped and then rose. Specifically, the highest NO2
VCD value in YREB in winter declined from 454.02 µmol/m2 in 2019 to 332.02 µmol/m2 in
2020, with the reduction amplitude of 26.87%, and the reduction rates of the maximum NO2
VCD values were 15.80%, 11.25%, and 12.65% in spring, summer, and autumn, respectively.
From the distribution frequency of data, over 90% of the NO2 VCD values were lower than
50 µmol/m2 in summer, and the range of data distribution was wide for the other three
seasons, indicating that the variation in the range of NO2 VCD for different seasons.

3.2. Spatial-Temporal Distribution Characteristics of the NO2 VCD in the YREB

The spatial distribution characteristics of the NO2 VCD and the seasonal differences in
the YREB during 2019–2020 were shown in Figure 3. The results showed that the NO2 VCD
value was generally high in the northeast and low in the southwest. The NO2 VCD values
in most regions of Jiangsu, Anhui, Hubei, and Sichuan provinces in the winter of 2020
were significantly smaller than those in 2019. Especially, the NO2 VCD value in Jiangsu
province showed a reduction in all four seasons from 2019 to 2020. Seasonal averages of
the NO2 VCD values in 11 provinces in the YREB (Table S2) show that Shanghai, Jiangsu,
Zhejiang, and Anhui provinces had relatively high NO2 VCD values in the YREB. The NO2
VCD value in Shanghai was higher than 200 µmol/m2 in both winter and spring of 2019,
while Sichuan, Guizhou, and Yunnan provinces, located in the southwest of the YREB, had
relatively low NO2 VCD values. The NO2 VCD values in different provinces and those in
the same province in the two years showed different seasonal variations. In general, the
NO2 VCD values in most provinces were higher in winter and lower in summer. Especially,
the NO2 VCD values in Hubei, Hunan, Sichuan provinces and Chongqing city in the fall
of 2020 were higher than those in the winter of the same year, and Yunnan province had
the highest NO2 VCD value in the spring. At the municipal level (prefecture-level city,
sub-provincial city, municipality) (Table S3), the mean NO2 VCD value in all cities in the
YREB in the two years was 53.47 µmol/m2. The cities with high mean values included
Suzhou, Wuxi, Shanghai, Changzhou, Jiaxing, Zhenjiang, Nanjing, Maanshan, Taizhou,
and Xuzhou, where the NO2 VCD values fell within the range of 113.39–170.64 µmol/m2,
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and 7 out of the 10 cities except for Shanghai, Jiaxing, and Maanshan were located in
Jiangsu province.

Figure 4 shows the SDE results of analysis, indicating the temporal evolution of the
seasonal average of the NO2 VCD in the YREB. Both the major and minor axis of the SDEs
of the NO2 VCD in the YREB were firstly lengthened and then shortened (Figure 4a). The
peak length of the major axis appeared in spring (960.11 and 971.62 km in 2019 and 2020,
respectively), while that of the minor axis appeared in summer (361.30 and 362.62 km in
2019 and 2020, respectively). The SDE center, located in the border area between Hubei
and Hunan provinces, first moved towards the southwest direction and then shifted back
towards the northeast after summer within the same year. Especially, the center of gravity
in the four seasons of 2020 shifted towards the southwest (Figure 4b). The azimuth angle
of the SDEs can characterize the main distribution of atmospheric NO2 pollution. The
azimuth angle from the winter to the autumn within the same year showed an “inverse
V-shaped” distribution. In 2020, the azimuth angles in all seasons were increased slightly,
indicating that the atmospheric NO2 pollution in the YREB showed a variation from
“northeast–southwest” towards “east–west”.
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Figure 2. Distribution characteristics of the seasonal average of NO2 VCD in the YREB from 2019 to
2020 (Note: WI—Winter; SP—Spring; SU—Summer; AU—Autumn, same as below. A violin plot
showing the probability density of data distribution is given in this Figure, where the red dashed
line and the stars represent the mean and maximum values of the NO2 VCD in each season in the
study area, respectively. The I-shaped box plot corresponds to the 10–90% interval of the NO2 VCD,
and the rectangular box corresponds to the 25–75% interval. The width of the violin plot denotes the
frequency of sampling falling into the concentration interval).
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The CV value and global Moran’s I value of the NO2 VCD at the municipal level in
the YREB in different seasons of 2019 and 2020 were shown in Figure 5. Results showed
that the CV value fluctuated seasonally, showing a typical “V”-type from winter to autumn
within the same year. This was caused by the NO2 concentrations being high in winter, then
decreasing in spring, reaching a minimum in the summer, and then increasing in autumn.
All global Moran’s I values were positive and passed the significance test (p < 0.001),
manifesting that the tropospheric NO2 VCD in the study area presented “high-high” and
“low-low” aggregation patterns. The Moran’s I value in winter was higher than that in the
other three seasons, showing that the aggregation effect of the NO2 VCD distribution was
more significant in winter than that in the other seasons. In addition, except for summer
and autumn in 2020, the variation of the global Moran’s I was similar with that of the CV
in the other seasons.
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Figure 5. The seasonal CV and the Global Moran’s I at prefectural level in the YREB.

Figure 6 shows the identification results of the NO2 VCD aggregation areas in the
YREB in different seasons using the Getis-Ord Gi* method. It shows that the hot spots and
cold spots of NO2 VCD in different seasons of 2019 and 2020 experienced no significant
changes. The hot spots of NO2 VCD were mainly located in Jiangsu, north of Zhejiang,
and east of Anhui and Shanghai city, indicating that they were highly NO2-polluted areas.
The cold spots were mainly located in Yunnan, Guizhou, the western regions of Hubei,
Hunan, and Sichuan provinces and most areas in Chongqing city, indicating that they were
low-NO2 VCD aggregation areas.
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Figure 6. The characteristics and evolution of the NO2 VCD spatial agglomeration.

3.3. Influencing Factor Analysis of NO2 VCD Distribution in YREB
3.3.1. Factor Detector Analysis

Influencing factors on seasonal average of the NO2 VCD in YREB and its eastern,
central, and western regions in 2019 were detected using the factor detector module in
the package “GD” of Geodetector. When regional differences of the influencing factors
were detected, 7190, 8087 and 7648 sampling points were sampled using the equidistant
sampling method (0.05◦ × 0.05◦, 0.09◦ × 0.09◦and 0.12◦ × 0.12◦) in the three regions.
Detection results, shown in Table 1, indicate that q values of the potential influencing
factors for the NO2 VCD in the YREB were within 0.11–0.64, and the explanatory power of
DEM, SP, NTL, and TCO3 for NO2 VCD all exceeded 50%. Different influencing factors
have different explanatory powers for the NO2 VCD in the eastern, central, and western
regions in the YREB. The explanatory powers of the 13 factors in Table S1 (except for DEM,
TCC, T2m, and V10) in the eastern region of the YREB were higher than those in the central
and western regions. Specifically, the explanatory power of TPrec in the eastern region
(q = −0.74) was 26 times that of the western region (q = −0.03). In addition, all potential
influencing factors had large explanatory powers in the eastern region of the YREB. The top
five factors in decreasing order in terms of explanatory power were TPrec, TCO3, RH_875,
SP, and SSRD in the eastern region; SP, DEM, RH_875, WS10, and NTL in the central region;
and DEM, SP, V10, NTL, and SSRD in the western region. The weakest factor was TPrec
for the whole YREB and its western region and V10 for the eastern and central regions.
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Table 1. Regional and seasonal differences in the potential impact factors’ q value of the NO2 VCD in the YREB in 2019.

Abbreviation
Regional Differences Seasonal Differences

YREB East Center West Winter Spring Summer Autumn

NTL 0.51 0.53 0.50 0.39 0.49 0.45 0.51 0.49
CO2 0.45 0.48 0.31 0.28 0.40 0.45 0.44 0.45

NDVI −0.16 −0.35 −0.22 −0.04 −0.14 −0.04 −0.15 −0.18
DEM −0.64 −0.57 −0.59 −0.44 −0.68 −0.54 −0.56 −0.60
TCO3 0.50 0.73 0.48 0.17 0.29 0.44 0.57 0.51
TCC 0.26 −0.27 −0.45 0.34 0.35 0.15 −0.40 −0.19
T2m 0.23 −0.19 −0.16 0.29 0.23 0.22 0.27 0.23

TPrec −0.11 −0.74 −0.32 −0.03 0.06 0.06 −0.12 −0.19
U10 −0.36 −0.60 −0.30 −0.15 −0.28 −0.31 −0.42 −0.44
V10 −0.20 0.17 0.06 −0.40 −0.24 −0.18 −0.11 0.17
BLH 0.12 0.33 0.14 0.06 0.13 −0.13 0.13 0.20

RH_875 −0.15 −0.72 −0.57 −0.11 −0.16 −0.24 −0.15 −0.34
WS10 0.43 0.59 0.56 0.04 0.23 0.30 0.45 0.38
SNSR −0.24 0.54 0.41 −0.27 −0.25 −0.20 −0.17 −0.25

SP 0.64 0.69 0.61 0.41 0.70 0.53 0.54 0.59
SSRD −0.35 0.61 0.43 −0.38 −0.35 −0.32 −0.32 −0.31
STRD 0.19 −0.61 −0.20 0.27 0.18 0.18 0.24 0.20

Note: The bolded values in each column represent the top five factors of the q value of the factor detection result in the potential influencing
factors, and the underlined value is the factor with the smallest q value. The q value represents the explanatory power of the factor, and the
value range is [0,1]. The larger the value, the stronger the explanatory power of NO2 VCD.

The dominant anthropogenic and natural factors for the NO2 VCD in the YREB had
seasonal differences (Table 1). The top five factors in terms of explanatory power were
SP, DEM, NTL, CO2, and TCC in winter; DEM, SP, NTL, CO2, and TCO3 in spring; TCO3,
DEM, SP, NTL, and WS10 in summer; and DEM, SP, TCO3, NTL, and CO2 in autumn. SP,
DEM, and NTL were the three common key explanatory factors for NO2 VCD in all seasons.
As for influencing the direction of each factor, TCC and TPrec exerted positive influence in
winter and spring, and negative influence in the other two seasons; V10 showed a positive
influence in autumn, and BLH showed a negative influence in spring. The weakest factors
in terms of explanatory power for NO2 VCD in winter, spring, summer, and autumn were
TPrec, NDVI, V10, and V10, respectively.

3.3.2. Interaction Detector Analysis

By analyzing the influencing factors through the interaction detector module, it was
found that interactions between factors enhanced the explanatory power for atmospheric
NO2 VCD. The q values of interactions between any two of the potential driving factors
and double-factor enhancement types in the whole YREB in 2019 are given in Figure 7, and
the q statistics of the diagonal line was the q value denoting the independent influence of
each factor. The results showed that (1) the interactions between NTL, CO2, DEM, SP, and
any other potential influencing factor were all bivariate enhancements; (2) the q value of the
interaction between NTL and SP was the largest (q = 0.79), followed by that between CO2
and SP (q = 0.78) and between NTL and TCO3 (q = 0.76). The interaction between NDVI and
BLH (q = 0.28) showed the weakest explanatory power after their interaction. As shown
in Figure 7, the interactions between NTL, CO2, DEM, TCO3, SP and any other potential
influencing factor could explain the distribution characteristics of NO2 VCD in the study
area to a great extent. By comparing the original q value of each potential influencing factor
with the q value after its interaction with any other factor, it was found that although the
original q value of DEM (q = 0.64) was the largest, its interactive enhancement with any
one of the other factors is from 3% to 12% (0.67–0.76).
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3.3.3. Risk Detector Analysis

The risk detector module in the “GD” package can be used to calculate the mean
differences of the influencing factors in the subareas. If a factor has high value in an area
with the highest NO2 VCD value, the area was referred to as the main influence area of
this factor. Risk detection results showed that the NO2 VCD value was relatively high in
the areas with high NTL, CO2, and SP, but relatively low in areas with high U10 and DEM
(Table S4). With increasing NDVI, T2m, BLH, RH_875, SNSR, and STRD in the study area,
NO2 VCD first increased and then decreased. The change in the variation direction of NO2
VCD in response to increasing TCO3 and WS10 was opposite. As the TPrec and SSRD values
increased, NO2 VCD showed a fluctuating pattern of “declining→rising→declining”. With
increasing TCC, NO2 VCD changed in way of “rising→declining→rising”. NO2 VCD
changed in a way of “declining→rising→declining→rising” as V10 increased.

4. Discussion
4.1. Comparison of Spatial-Temporal Changes of NO2 VCD in Different Administrative Units of
the YREB

As shown in Section 3, the NO2 VCD in the YREB showed seasonal variations and
regional differences during 2019 to 2020. In general, the NO2 VCD in the YREB was
the highest in winter, followed by autumn and summer, successively. However, Yunnan
province showed seasonal characteristics quite different from the other provinces due to
its unique topography, landform, and meteorological conditions. In Yunnan province, the
NO2 VCD value was the highest in spring, which agreed with the in situ observation. The
changes in the CV value show that the regional difference in the NO2 VCD value in the
YREB in winter was greater than that in summer. The CVs and the global Moran’s I values
showed different variation patterns from spring to autumn in 2020 (Figure 5). This may be
because CV only considered the difference of numerical values, while Moran’s I considered
the data agglomeration degree and spatial distribution of data. Therefore, it was deemed
that from spring to autumn in 2020, the regional difference in NO2 VCD was firstly reduced
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and then increased. However, in the same period, the NO2 VCD values in municipal-level
cities were firstly agglomerated and then dispersed, which was the opposite of the change
in 2019. This is due to the decline of NO2 VCD in the YREB in 2020.

The statistical results of NO2 VCD from two administrative units—province and
prefecture-level city—showed that 7 among 10 cities with the highest NO2 VCD were
located in Jiangsu province, except for Shanghai, Jiaxing (Zhejiang), and Maanshan (Anhui).
Jiangsu was the province with the highest NO2 VCD value (Tables S2 and S3). According
to the spatial autocorrelation analysis results (Figure 6), Jiangsu province, Shanghai City,
the north of Zhejiang province, and the east of Anhui province were areas with high
NO2 VCD values. This verified that these areas were heavily polluted by the atmospheric
NO2 [42]. Most areas in Chongqing and Yunnan, the west of Sichuan province, and some
areas in Guizhou, Hubei, and Hunan provinces were cold spots, with relatively low NO2
VCD values. Affected by the pandemic of COVID-19 at the beginning of 2020, many
areas were forced to lock down in the winter of 2020, and the energy dissipation of many
industries experienced a significant reduction [43]. The NO2 VCD values in Hubei, Hunan,
Chongqing, and Sichuan in the winter of 2020 were found to be lower than those in autumn
of the same year. Meanwhile, Wuhan formed an aggregation zone with high NO2 VCD
value together with peripheral prefecture-level cities in the winter of 2019. However, as
Wuhan was an area severely afflicted by COVID-19 and was thus locked down for the
longest time in 2020, NO2 VCD hot spots did not appear in Wuhan in the winter. This
observation may indicate that NO2 VCD could be largely influenced by human activities
and regional economic development. The NO2 VCD in the YREB can be reduced by
strengthening planning of regional industrial structure and reasonably setting the NOx
emission reduction goals.

The major axis of the SDEs of NO2 VCD distribution oriented in the “northeast–
southwest” direction. This is consistent with the regional morphology in the YREB.
Data from the government bulletins in Shanghai, Zhejiang, Jiangsu, and Anhui provinces
showed that the NOx emissions from the four provinces of the Yangtze River Delta in 2020
were all lower than those in 2019. The range of SDEs was expanded in 2020. The center
of gravity moved along the southwest direction. These results were consistent with the
change in distribution pattern oriented from the “northeast–southwest” to the “east–west”
direction. Figures 3 and 4 show that the winter NO2 VCD in the northeast of the YREB
declined greatly from 2019 to 2020. The SDEs experienced a visible shift, indicating that the
NO2 emission control in the Yangtze River Delta was of great importance to the distribution
pattern of NO2 VCD in the whole the YREB.

4.2. Regional Difference and Seasonal Difference of Influencing Factors on NO2 VCD

Using the data of 2019 as an example, the regional differences of the explanatory
power of potential influencing factors for the NO2 VCD in the YREB and its eastern, central,
and western regions, as well as their seasonal differences in influencing NO2 VCD were
determined, respectively. The results showed that at different spatial-temporal scales, SP
was a common core factor related to NO2 VCD since the NO2 VCD value was higher
in the area with the higher weight of all the air in a column vertically above a point on
the Earth’s surface. DEM was another primary influencing factor of NO2 VCD in the
YREB. The influence on NO2 VCD by DEM was multifold: the lower the altitude is, the
higher the NO2 VCD value will be. The low-altitude areas were mainly concentrated in the
Yangtze River Delta urban agglomeration. They are characterized by high surface pressure,
intense human activities, many pollution sources, high ozone concentration, and relatively
low vegetation coverage [44,45]. Although Yunnan province has many areas where there
are intense human activities and large fossil fuel combustion, it had the minimum NO2
VCD value. This might be due to its unique landform and environmental factors such as
high altitude, strong shortwave radiation, intense surface net solar radiation, low surface
pressure, and high eastward and northward wind. These factors might also be the reason
for the relatively weak explanatory power of NTL and CO2 in the western region of the
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YREB. This study showed that TCO3 had high explanatory power for NO2 VCD, but the
explanatory power varied with the region and season. The explanatory power of TCO3 for
the NO2 VCD value in the whole YREB exceeded 50%. Its explanatory power can be as high
as 73% for the NO2 VCD value in the eastern region of the study area, but the explanatory
power was only 18% in the western region. The explanatory power of TCO3 for NO2 VCD
in summer (q = 0.56) was higher than that in winter (q = 0.28), which was attributed to
the higher temperature, stronger solar radiation, and more effective conversion of NO2
into O3 through photochemical reaction in summer [44,46,47]. The factor detection results
related to wind velocity and wind direction showed that in the area with high WS10 value,
the NO2 VCD value was higher, agreeing with the conclusion drawn by [42]. This was
because under the influence of ocean wind, the wind velocity was high in the coastal areas
in Jiangsu and Zhejiang provinces, where the NO2 VCD value was the highest.

The results of the interaction detector module with 17 potential driving factors showed
a bivariate or nonlinear enhancement, indicating that the interaction between any two
factors can enhance the explanatory power of each factor on NO2 VCD. Specifically, the
interaction between NTL and SP enhanced the explanatory power on NO2 VCD to the
greatest extent (q = 0.78), followed by the interaction between CO2 and SP, between NTL
and DEM, and between CO2 and SP, sequentially. These results demonstrate that inten-
sity of human activity, energy consumption intensity, landform, and surface pressure
can interact with each other and play a main role in controlling the NO2 VCD in the
YREB. The industrial production was an important source of tropospheric NO2 emissions.
Zheng et al. (2019) [25] used the NO2 products of Sentinel-5P TROPOMI for the period
from February 2018 to January 2019 and showed that both nighttime light intensity and
GDP proportion of the secondary and tertiary industries are positively correlated with
NO2 VCD value. Our results based on two years’ data showed that surface pressure,
nighttime light intensity, and fossil fuel emission intensity are positively correlated with
the NO2 VCD value. The higher the regional nighttime light intensity is, the greater the
intensity of socioeconomic activities will be. The socioeconomic activities will inevitably
cause environmental pollution, especially in a region such as the YREB where the economic
development is rapid. The areas with high nighttime light intensity and high CO2 emis-
sion from fossil fuel combustion were mainly located in the Yangtze River Delta urban
agglomeration, the urban agglomeration in the middle reaches of the Yangtze River, and
the Chengdu-Chongqing urban agglomeration. The NTL and CO2 had higher explanatory
power on NO2 VCD in the eastern provinces than the central and western provinces. This
might be caused by the regional differences in economic development. Influenced by the
landform and environmental conditions, the NO2 VCD level in the western provinces may
not be effectively revealed by the nighttime light intensity and total CO2 emission from
fossil fuel combustion.

5. Conclusions

According to the above analysis, we concluded the following: (1) in general, the
NO2 VCD in the YREB declined from 2019 to 2020; (2) The NO2 VCD distribution in the
YREB showed remarkable spatial autocorrelation during 2019–2020; and (3) The NO2 VCD
distribution in the YREB also showed remarkable spatial heterogeneity. The NO2 VCD
in different provinces experienced different seasonal characteristics. Specifically, Yunnan
province had the highest NO2 VCD in spring. Influenced by COVID-19 in the winter of
2020, the NO2 VCD in Hubei, Hunan, Sichuan, and Chongqing in the autumn of 2020 was
higher than that in the winter. Shanghai, Jiangsu, Anhui, and Zhejiang had high NO2 VCD,
while Guizhou, Sichuan, and Yunnan had low NO2 VCD. (4) The explanatory power of
potential influencing factors for NO2 VCD in the YREB displayed regional and seasonal
variations. The interaction between any two of the factors experienced either bivariate or
nonlinear enhancement. Specifically, the intensity of human activity, energy consumption
intensity, landform, and surface pressure and their binary interactions had a very strong
explanatory power on NO2 VCD in the YREB. (5) The risk detection results indicated that
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the NO2 VCD was high in the areas with high NTL, CO2, and SP but relatively low in the
areas with strong eastward component of 10 m wind and high terrain.

However, as the TROPOMI NO2 VCD daily data products could be acquired from the
GEE platform only after June 2018, variation at a longer time scale, e.g., the annual variation
of NO2 VCD in the YREB, could not be explored. With the continuous generation of
TROPOMI atmospheric monitoring data, the annual variation analysis of the atmospheric
NO2 VCD in a long time series will be a key emphasis in a follow-up study.
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10.3390/atmos12091142/s1, Figure S1: Spatial distribution of surface air quality monitoring stations in
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for all seasons. Table S1: Descriptions of 17 potential influencing factors on NO2 VCD; Table S2: The
seasonal average of the NO2 VCD in 11 provinces and cities in the YREB; Table S3: The 10 cities with
the highest NO2 VCD in YREB in each season from 2019 to 2020 (µmol/m2); Table S4: The optimal
classification method of NO2 VCD potential impact factors and the highest value range of NO2 VCD
for each impact factor in 2019.
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