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Abstract: Chronic obstructive pulmonary disease (COPD) is a major and increasingly prevalent
respiratory health problem worldwide and the fine particulate matter (PM2.5) is now becoming
a rising health threat to it. This study aims to conduct a comparison analysis of health effect on
acute exacerbation of COPD (AECOPD) associated with PM2.5 exposure in two typical cities (Beijing
and Shenzhen) with different levels of PM2.5 pollution. Both correlational relationship and causal
connection between PM2.5 exposure and AECOPD are investigated by adopting a time series analysis
based on the generalized additive model (GAM) and convergent cross mapping (CCM). The results
from GAM indicate that a 10 µg/m3 increase in PM2.5 concentration is associated with 2.43% (95% CI,
0.50–4.39%) increase in AECOPD on Lag0-2 in Beijing, compared with 6.65% (95% CI, 2.60–10.87%) on
Lag0-14 in Shenzhen. The causality detection with CCM reveals similar significant causative impact
of PM2.5 exposure on AECOPD in both two study areas. Findings from two methods agree that PM2.5

has non-negligible health effect on AECOPD in both two study areas, implying that air pollution
can cause adverse consequences at much lower levels than common cognition. Our study highlights
the adverse health effect of PM2.5 on people with COPD after exposure to different levels of PM2.5

and emphasizes that adverse effect in area with relative low pollution level cannot be overlooked.
Governments in both high-pollution and low-pollution cities should attach importance to the adverse
effects of PM2.5 on humans and take corresponding measures to control and reduce the related losses.

Keywords: PM2.5; health effect; causative impact; chronic obstructive pulmonary disease

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a major and increasingly preva-
lent respiratory health problem in the global, with a current estimate 700 million patients
and 3.2 million deaths worldwide [1,2]. So far, smoking has been recognized as the most
common factor in the etiology of COPD. Other associated factors, including dusts, gases,
biological and chemical exposures, have also been found in both smokers and nonsmok-
ers [3,4]. With the deterioration of air quality in recent decades, fine particulate matter
(PM2.5) is now becoming a rising health threat to human respiratory system [5]. PM2.5 is
an inhalable matter which can be deposited into lower bronchus and lung parenchyma
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and effect the respiratory system by inducing inflammatory reaction, which is known to
cause acute exacerbations of respiratory disease [6]. Recently, PM2.5 has been proven to
be a primary detrimental factor for COPD by plentiful epidemiological studies [7–10]. In
addition, there are also substantial evidences indicating that short-term exposure to PM2.5
can lead to acute exacerbation and even an increased risk of death in COPD patients [11–14].
A panel study in Beijing [15] also finds out that COPD patients are more susceptible to
respiratory inflammation following PM2.5 exposure than individuals without COPD.

It is reported that the morbidity and mortality rate of COPD is increasing in the
Asia-Pacific regions [16,17]. In China, the prevalence of COPD in the population over
40 years old is estimated to be 13.7% [18], making it a health issue that should not be
overlooked. In addition, COPD usually brings a substantial economic burden to healthcare
services [19]. According to the National Heart Lung Blood Institute, the direct cost of
COPD was estimated to be $29.5 billion in the U.S. in 2009 [20]. In Singapore, the average
direct cost of COPD was $9.9 million per year from 2005 to 2009 [17]. Therefore, controlling
the burden of COPD can be beneficial to effectively alleviate the pressure on healthcare
services and social economy. To reduce the disease burden of COPD, it is important to
explore the adverse health effects on COPD patients associated with exposure to PM2.5
pollution. Several time series studies have been conducted in this purpose. A case crossover
study in Ontario, U.S. [21] observed positive associations of COPD with PM2.5, indicating
a 7.00% (95% confidence interval, CI, 6.00–8.00%) increase in COPD exacerbation cases
associated to 3.4 µg/m3 increase in PM2.5 concentration. Similar results were also detected
in China. Ko et al. [22] observed that a 10 µg /m3 increase in the 5-day cumulative average
concentration of PM2.5 was associated with 3.10% (95% CI, 2.60–3.60%) increases in COPD
hospital visits, in Hongkong. Bao et al. [23] found that a 10 µg/m3 increase in PM2.5
concentration at a lag of 0–7 days was associated with 1.190% (95% CI, 0.176–2.215%)
increase in hospital outpatients for COPD in Lanzhou. A newly conducted case-crossover
study in Taiwan [24] showed that each interquartile range increase in PM2.5 was associated
with 6.6% (95% CI, 0.5–13.0%) increase in risk of COPD exacerbation.

However, there are still some insufficiencies in current studies. On one hand, related
studies in Chinese cities are limited and lack comparison among cities with different PM2.5
levels. On the other hand, most of the studies mainly focus on the correlational relationship
between the disease and air pollutions revealed by relative risk (RR) or odds ratio, the
causal connection between the two is unknown. In this study, we intend to explore the
adverse health effect of PM2.5 on acute exacerbation of COPD (AECOPD) in Beijing and
Shenzhen, two typical cities with large differences in PM2.5 concentration. In addition, to
reveal the correlational relationship between AECOPD and PM2.5 by adopting a regression
model-based lag effect analysis, we also detect the causal connection between the two by
applying a model-free method.

2. Materials and Methods
2.1. Study Areas

To perform a comparison analysis on health effect associated with different levels
of PM2.5, two typical study areas, Beijing urban area and Shenzhen City are selected.
Beijing, as the capital city of China, is the national political and economic center. With the
development of Jing-Jin-Ji metropolitan area, which is dominated by heavy industry, air
quality in Beijing has suffered a severe deterioration in recent decades [25]. Haze weather
occurs frequently and the adverse health effect of air pollution, especially PM2.5, has drawn
great public attention. Therefore, Beijing urban area (including Dongcheng, Xicheng,
Chaoyang, Haidian, Fengtai, Shijingshan), is chosen as the typical area with high PM2.5
level in this study for comparison. Shenzhen, a young city in China, was once praised as
an Environmental Protection Model City in 1997 for its favorable air environment. Playing
an important role in the Pearl River Delta region, which is one of the most developed
regions with the highest aggregation of industry in China, air quality in Shenzhen has
also deteriorated and affected the living condition of local citizens in some way [26,27].
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Nevertheless, compared to Beijing, PM2.5 level in Shenzhen is still considered quite low [28].
In this study, Shenzhen City is chosen as the typical area with low PM2.5 for comparison.

2.2. Data Collection

Daily AECOPD records were obtained at ten comprehensive hospitals in Beijing
urban area (from Xu’s study [29]) and 66 major hospitals in Shenzhen City (Figure 1),
from 1 January 2013 to 31 December 2013. Monitoring data of PM2.5 was gathered from
Beijing Environmental Protection Bureau and Shenzhen Environmental Monitoring Center,
including data from 17 monitoring sites located in Beijing urban area and 19 sites in
Shenzhen City (Figure 1), following the Chinese National Ambient Air Quality Standards
(GB3095-2012) [30]. Daily-averaged concentration is used to represent the degree of the
exposure to PM2.5. There are some missing values in the 17 monitoring sites in Beijing
which may cause some gaps in the time series analysis. To fill them up, we applied the
linear interpolation method by using a three-day average. In addition, to control for the
confounding factors, we also collected the weather conditions during the same period,
involving daily mean temperature (◦C) and relative humidity (%), from the official website
of the Chinese Meteorological Bureau.
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Figure 1. Distributions of selected hospitals and monitoring sites in Beijing urban areas and Shenzhen City.

2.3. Methods
2.3.1. Lag Effect Analysis

The core model used in lag effect analysis is a generalized additive model (GAM)
which is suitable for exploring and fitting non-linear relationship between the response
and the predictor variables. In this study, we use it to investigate the exposure-response
relationship between the exposure to PM2.5 and the occurrence of AECOPD. However,
the adverse health effect of the exposure is not limited to the period when the exposure
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occurs. There could be a lag before a response in human body. Therefore, we combined the
GAM with a distributed lag nonlinear model (DLNM) [31] which can provide a detailed
time-course representation of the lag procedure, to examine the health effect associated
with PM2.5. The main advantage of the DLNM is that it allows the model to estimate the
overall cumulative lag effect as the sum of the single-day lag effects over the whole selected
lag period [32]. In addition, the level of PM2.5, we also added several confounding variables
involving the calendar time, week and holiday effect, as well as meteorological variables
for improving the model performance [33,34]. The calendar time, temperature and relative
humidity are expressed as smoothing spline functions, while the week and holiday effects
are added as two dummy variables in the model. Degrees of freedom (df ) of smoothing
functions are determined by the Akaike’s information criterion. We applied a generalized
cross validation to guide the determination of df until the sum of absolute difference got a
minimum. In this study, df was set to 7 for calendar time and 3 for temperature and relative
humidity in both two study areas to account for the potential nonlinear effects. The final
lag effect model is of the following form:

Log[E(Yt)] = α+ β f (Xt−L) + S(time, d f ) + βwDOWt + βh Holidayt + S(Zt, d f ) (1)

where t is the day for observation; Xt−L represents the concentration of PM2.5 with a
lag period of L; f (Xt−L) stands for the lag model involving a single-day lag mode and a
cumulative lag mode; E(Yt) is the expected number of cases on day t; α is the intercept term;
β represents the log-RR of cases associated with a unit increase of PM2.5.; S(time, d f ) and
S(Zt, d f ) are the smoothing splines of calendar time and metrological factors (temperature
and relative humidity); DOW and Holiday stand for the week and holiday effects with
coefficient βw and βh, respectively.

To perform the analysis, DLNM and Mixed GAM Computation Vehicle (MGCV)
packages in R (3.4.0, University of Auckland, Auckland, New Zealand) were used. The
outcomes are calculated as RR or percent change in daily counts and at the 95% CI, in
association with a unit (10 µg/m3) increase of PM2.5 concentration.

2.3.2. Causative Impact Detection

The causative impact detection is conducted by applying the convergent cross map-
ping (CCM) method proposed by Sugihara et al. [35]. Previous studies prove that it shows
advantage in distinguishing causality from standard correlations based on a time series
analysis (at least 25 pairs of observations) [36,37]. In nonlinear dynamic systems, variables
are often inseparable and contain multi-dimensional information, making unstable correla-
tion and weak coupling relation common in the correlation relationships of the system. For
the most frequently used causality analysis method, the Granger causality analysis [38],
it tends to behave poorly in detecting causality in weak-to-moderate coupling relations.
Instead, CCM is insensitive to manual setting of parameters and can extract reliable causal-
ity between diverse variables, making it more suitable for revealing potential causality
in nonlinear dynamic systems [39,40]. In CCM, the complex and nonlinear systems is
analyzed through state-space reconstruction and the reconstructed shadow manifold of
the two variables corresponds to each other in the time dimension. Giving two time series
of variables X{x1,x2, . . . ,xL} and Y{y1,y2, . . . ,yL} (L is the length of time period), CCM
algorithm can be conducted in four steps, as follows:

Step One Reconstruct the shadow manifold, Mx and My, using the lagged-coordinate
vectors X and Y, which is:

Mx : x(t) =
〈

xt, xt−τ , xt−2τ , . . . , xt−(E−1)τ

〉
(2)

My : y(t) =
〈

yt, yt−τ , yt−2τ , . . . , yt−(E−1)τ

〉
(3)
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where t ranges from 1 + (E − 1) τ to L; E is the dimension in which the recon-
structed attractor is embedded; τ is the time lag. Assuming there is N pairs of
observations, E ≤ N − 1 [35].

Step Two Determine the weight. Since My is diffeomorphic to Mx, there will be syn-
chronous lagged-coordinate vector x(t) and its E + 1 nearest neighbors on Mx,
which can be used to build the weight wi, defined as:

wi =
ui

∑E+1
j=1 uj

(4)

where

ui = exp
(
− d[x(t), x(ti)]

d[x(t), x(t1)]

)
, (i = 1, 2, . . . , E + 1) (5)

For each x(t), the nearest neighbor search gets a set of distances sorted from
the closest to the outermost by an associated set of time {t1,t2, . . . ,tE+1}. The
distance is measured as the Euclidean distance between the two vectors.

Step Three Use the wi to create a cross-mapped estimation of yt by calculating with a
weighted mean the nearest neighbors in My. The cross-mapped estimation is
express as:

ŷt|Mx =
E+1

∑
i=1

wiyti (6)

Step Four Calculate the CCM correlation coefficient. The degree of consistency between
the cross-mapped estimation and the true value determines the predictive
ability of Y on X [37], which can be quantified by Pearson correlation coefficient
between original and estimated time-series. It is also referred to as the CCM
correlation coefficient (ρ), defined as:

ρYŶ = ρ(yt, ŷt|Mx ) (7)

Meanwhile, a t-statistic for correlation coefficient at a level of significance is calculated as:

t =
ρYŶ
Sρ

where Sρ =

√
1− ρYŶ

2

N − 2
(8)

In CCM method, determining the optimal E and τ is crucial to the analysis. Suppos-
ing that Emax is the optimal dimension, the dimensionality generically ranges between
(Emax − 1)/2 and Emax, based on Whitney’s theorem [41]. In this study, dimension (E) from
the two times series is defined as 2 using the false nearest neighbor method and the value
of τ is set to 2 based on the average mutual information criterion for both study areas.

3. Results and Discussion
3.1. Descriptive Statistics

During the study period, the average daily PM2.5 concentration was 102 µg/m3,
ranging from 6.7 µg/m3 to 508.5 µg/m3 in Beijing and 37 µg/m3, ranging from 7.9 µg/m3

to 129.8 µg/m3 in Shenzhen. There were 155 days (45.7%) in Beijing and 321 days (88%)
in Shenzhen when the daily PM2.5 concentration met the national standard, according to
the Chinese Ambient Air Quality Standards (Grade II, 75 µg/m3 for 24 h average PM2.5
concentration). However, only 30 days in Beijing and 120 days in Shenzhen met the WHO
Air Quality Standards, which is 25 µg/m3 for 24 h average PM2.5 concentration. Based on
the statistics above, PM2.5 pollution in Beijing was much more severe than that in Shenzhen
in 2013.

At the same time, a total of 712 and 3634 AECOPD cases were recorded from the
selected hospitals in Beijing and Shenzhen in 2013, respectively. The statistical characteris-
tics of AECOPD, PM2.5 concentration and meteorological factors in Beijing and Shenzhen
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in 2013 are summarized in Table 1. The average daily count of AECOPD was 2 in Beijing
(ranged from 0 to 7) and 10 in Shenzhen (ranged from 1 to 23). The time series graph in
Figure 2 shows the temporal distribution of AECOPD and PM2.5 concentrations in 2013.
The curve of PM2.5 in Shenzhen showed an apparent decrease of concentration during the
summer period (June, July, August), which is correlated to the monsoon from the sea in
summer [42]. The curve of PM2.5 in Beijing showed no noticeable trend. Judging from
the time series graph, no particular association between the AECOPD and PM2.5 can be
observed in both study areas through the unaided viewing.

Table 1. The statistical characteristics of AECOPD, PM2.5 concentration and meteorological factors in
Beijing and Shenzhen in 2013.

Variable Study
Area Mean ± SD Min P(25) P(50) P(75) Max

AECOPD
Beijing 2 ± 1 0 1 2 3 7

Shenzhen 10 ± 4 1 7 10 12 23

PM2.5 (µg/m3)
Beijing 102 ± 73.6 6.7 53.1 82.4 129.5 508.5

Shenzhen 37 ± 23.7 7.9 20.8 34.7 61.2 129.8

Temperature (◦C) Beijing 11.3 ± 11.6 −12.6 1.2 11.0 22.2 29.0
Shenzhen 23.2 ± 5.2 4.4 18.8 25.6 27.3 35

Relative humidity (%) Beijing 58.7 ± 17.3 18.9 46.7 59.0 73.3 93.3
Shenzhen 73 ± 12.8 22 59 77 93 100
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3.2. The Lag Effect of PM2.5 on AECOPD

The lagged health effect on AECOPD associated with short-term exposure to PM2.5
was analyzed using the GAM model introduced in Section 2.3.1. The lag period was set to
range from 0 to 14 days (denoted as Lag0, Lag1 . . . Lag14) in both two study areas. In the
model, effects of PM2.5 on AECOPD was considered as a linear correlation relationship.
The RR for AECOPD was calculated as variation in counts of daily cases associated with
10 µg/m3 increase of PM2.5 concentration. The exposure-response graphs for single-day lag
effect and cumulative lag effect are shown in Figure 3, in which the 95% CIs are represented
as black bars and gray areas. The cumulative lag effect was computed by applying a
polynomial curve fitting on single day lag effect at a degree of 3 in both study areas.
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Results in Tables 2 and 3 show the specific RR values for AECOPD associated with
a 10 µg/m3 increase in PM2.5 in terms of single-day lag effect and cumulative lag effect,
together with the 95% CIs in the two study areas. For Beijing urban area, significant single-
day lag effects are only observed at Lag0 (the same day) and Lag1, with a maximum RR of
1.0155 (95% CI, 1.0058–1.0253) at Lag0; and significant cumulative lag effects are observed
from Lag0 to Lag3, with a maximum cumulative RR of 1.0243 (95%, 1.0050–1.0439) at
Lag2. For Shenzhen city, significant single-day lag effect appears from Lag2 to Lag8, with
a maximum RR of 1.0065 (95% CI, 1.0010–1.0120) at Lag5; and significant cumulative lag
effect appears from Lag4 and remains significant until Lag14, with a maximum cumulative
RR of 1.0665 (95% CI, 1.0260–1.1087) at Lag14.
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Table 2. Relative risk (RR) values for AECOPD in single-day lag mode in associations with 10 µg/m3

increase in PM2.5 concentrations in 2013. (Value with * is significant at the 0.05 level).

Lag RR (95% CI)
(Beijing)

RR (95% CI)
(Shenzhen)

Lag0 1.0155 (1.0058, 1.0253) * 1.0033 (0.9893, 1.0174)
Lag1 1.0071 (1.0009, 1.0133) * 1.0046 (0.9973, 1.0120
Lag2 1.0015 (0.9965, 1.0066) 1.0056 (1.0005, 1.0107) *
Lag3 0.9983 (0.9933, 1.0034) 1.0062 (1.0006, 1.0118) *
Lag4 0.9970 (0.9919, 1.0021) 1.0065 (1.0006, 1.0125) *
Lag5 0.9971 (0.9923, 1.0020) 1.0065 (1.0010, 1.0120) *
Lag6 0.9983 (0.9938, 1.0029) 1.0063 (1.0016, 1.0110) *
Lag7 1.0001 (0.9958, 1.0045) 1.0058 (1.0016, 1.0101) *
Lag8 1.0021 (0.9976, 1.0065) 1.0052 (1.0006, 1.0099) *
Lag9 1.0038 (0.9990, 1.0085) 1.0045 (0.9991, 1.0100)

Lag10 1.0048 (0.9999, 1.0097) 1.0037 (0.9978, 1.0096)
Lag11 1.0047 (0.9998, 1.0095) 1.0028 (0.9973, 1.0084)
Lag12 1.0030 (0.9983, 1.0077) 1.0020 (0.9970, 1.0069)
Lag13 0.9993 (0.9936, 1.0051) 1.0011 (0.9940, 1.0083)
Lag14 0.9933 (0.9842, 1.0025) 1.0003 (0.9867, 1.0142)

Table 3. Relative risk (RR) values for AECOPD in cumulative lag mode in associations with 10 µg/m3

increase in PM2.5 concentrations in 2013. (Value with * is significant at the 0.05 level).

Lag Cumulative RR (95% CI)
(Beijing)

Cumulative RR (95% CI)
(Shenzhen)

Lag01 1.0227 (1.0071, 1.0386) * 1.0079 (0.9871, 1.0291)
Lag02 1.0243 (1.0050, 1.0439) * 1.0136 (0.9900, 1.0377)
Lag03 1.0226 (1.0005, 1.0451) * 1.0199 (0.9953, 1.0451)
Lag04 1.0195 (0.9950, 1.0447) 1.0265 (1.0010, 1.0527) *
Lag05 1.0166 (0.9896, 1.0444) 1.0332 (1.0065, 1.0606) *
Lag06 1.0150 (0.9855, 1.0453) 1.0397 (1.0116, 1.0686) *
Lag07 1.0151 (0.9834, 1.0478) 1.0458 (1.0164, 1.0760) *
Lag08 1.0172 (0.9833, 1.0522) 1.0512 (1.0206, 1.0828) *
Lag09 1.0210 (0.9850, 1.0584) 1.0560 (1.0238, 1.0892) *
Lag10 1.0260 (0.9875, 1.0659) 1.0599 (1.0257, 1.0953) *
Lag11 1.0307 (0.9898, 1.0734) 1.0629 (1.0264, 1.1007) *
Lag12 1.0338 (0.9906, 1.0789) 1.0650 (1.0268, 1.1045) *
Lag13 1.0332 (0.9880, 1.0804) 1.0662 (1.0275, 1.1063) *
Lag14 1.0262 (0.9788, 1.0759) 1.0665 (1.0260, 1.1087) *

Though significant lag effects on AECOPD associated with increase in PM2.5 con-
centration are detected in both two study areas, the lag patterns are quite different. The
response time of the lag effect in Beijing is shorter than that in Shenzhen, which occurs
on the same day of exposure and lasts for a small period (3 days in cumulative mode). In
contrast, the lag effect in Shenzhen does not emerge until two days after the exposure and
the cumulative lag effect could last for at least 10 days. Judging by the value of single-day
RR, the same amount of increase in PM2.5 concentration has slightly greater effect on AE-
COPD in Beijing urban area than in Shenzhen. However, for the cumulative lag effect, the
same amount of increase in PM2.5 concentration is associated with much more responses
on AECOPD in Shenzhen than in Beijing urban area.

To sum up, PM2.5 exposure was proved to have non-negligible lag effect on AECOPD
in both two study areas, regardless of the level of PM2.5 concentration. The regression
model-based method applied in this section reveals the correlational relationship between
the two variables. However, correlation does not mean causality [39] and the causal
connection between AECOPD and PM2.5 exposure still remained unconfirmed. In the
following section, we will discuss the causative impact of PM2.5 on AECOPD based on the
results from a model-free analysis by using CCM method.
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3.3. The Causative Impact of PM2.5 on AECOPD

To confirm the causality using CCM method, two conditions are required: (1) the
convergence result of the CCM correlation coefficient (ρ) is significantly larger than 0;
(2) the pattern of CCM curve shows an obvious increasing and convergence trend with
the growth of the time series length (L). The convergent cross maps of Beijing urban area
and Shenzhen City are shown in Figure 4, in which red lines represent causative impact of
AECOPD count on PM2.5 concentration while the blue lines represent the opposite.
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As shown in Figure 4, the blue lines in the two graphs meet the required conditions of
CCM, indicating that PM2.5 concentration has causative impacts on the counts of AECOPD
in both Beijing urban area and Shenzhen City. Regarding the red lines in two graphs,
the required conditions are not fulfilled, implying that count of AECOPD has no causal
impact on PM2.5 concentration. Numerical results of causality (ρ value) in Table 4 illustrate
the strength of the causative impact and similar causality strength is observed for both
study areas.

Table 4. Numerical result of causality (ρ value) between PM2.5 and AECOPD in Beijing urban areas
and Shenzhen City. (Value with * is significant at the 0.05 level).

Combination Causative Impact (ρ Value)

PM2.5-AECOPD in Beijing 0.369 *
AECOPD-PM2.5 in Beijing −0.173

PM2.5-AECOPD in Shenzhen 0.382 *
AECOPD-PM2.5 in Shenzhen 0.047

In general, significant causative impact of PM2.5 exposure on AECOPD has been
confirmed in both two study areas, regardless of the level of PM2.5 concentration. Different
from the common cognition that exposure to higher level of PM2.5 may have greater effect
on human health, this study finds that the effect of PM2.5 on human body has little to do
with the concentration level. In most cases, people are likely to underestimate the adverse
health effect of PM2.5 when the exposure level is low. However, this study provides a
persuasive evidence to show that health effect in area with relative low pollution level also
need to be taken seriously, especially for people with chronic respiratory disease.
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4. Conclusions

In this study, a comparison analysis of health effect associated with PM2.5 is conducted
in two typical cities with different levels of PM2.5 concentration. Both correlational rela-
tionship and causal connection between PM2.5 exposure and AECOPD are investigated by
adopting a time series analysis based on GAM and CCM. Results from the two methods
agree that PM2.5 exposure has non-negligible health effect on AECOPD in both two study
areas, implying that air pollution cause adverse consequences at much lower levels than
common cognition. In conclusion, our study highlights the adverse health effects of PM2.5
pollution on people with chronic respiratory disease in cities with both high and low levels
of PM2.5 in China and emphasizes adverse effect in area with relative low pollution level
cannot be overlooked. Governments in both high-pollution and low-pollution cities should
attach importance to the adverse effects of PM2.5 on human body and take corresponding
measures to control and reduce the related losses.
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