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1 Data and simulation models1

Table S1 lists 24 climate models used in this study. Figure S2 shows examples of time series2

plots of the observations (blue line) and the bias-corrected data of a simulation model, for3

the AMP1 (Annual Maximum Daily Precipitation). Green lines represent no-bias-corrected4

historical data whereas red lines represent the bias-corrected data in each grid point (G10,5

G17, G24, and G42).6

2 Multivariate bias correction7

When bias-correction (BC) such as quantile mapping is used, most model weights based on8

performance become equal because of a perfect matching [1], and thus, the prediction is same9

as the simple average of the bias-corrected model outputs. This is approximately true for10

the MBC (Multivariate Bias Correction) [2] employed in this study because the MBC is a11

multivariate generalization of quantile mapping. Thus, the historical data is not bias corrected.12

No-bias-corrected historical data are utilized to calculate the performance weight of a model.13

Chen et al.[3] found that the bivariate BC of rainfall and air temperature led to a much14

better performance than univariate BC. Cannon [2] proposes a multivariate generalization of15

quantile mapping (QM). It is an iterative method which conceptually lays between univariate16

bias correction (BC) methods and the empirical copula-based correction (EC-BC) [4]. For a17
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univariate BC, the quantile delta mapping (QDM) [5] is used, which preserves trends of model18

data19

It approximately preserves the multivariate dependence of the driving climate model. Here,20

an image processing technique—the N-dimensional probability density function transform (N-21

pdft)—designed to transfer color information from one image to another is adapted. In each22

iteration, univariate QM is first applied separately to each variable. Then a multivariate BC23

is employed by re-scaling the multivariate anomalies based on Cholesky decomposition of the24

covariance matrix. The algorithm ends when both the corrected marginals and the dependence25

structure are sufficiently close to their observed counter parts. A variant is based on ranks26

rather than on the actual values [1]. It provides a multivariate quantile delta mapping, referred27

to as MBCn (multivariate bias correction with N-pdft) algorithm. It consists, in each iteration,28

of a random orthogonal rotation of multivariate input data, a univariate quantile delta mapping29

on the rotated fields and the inverse rotation. This algorithm approximately preserves trends30

of model data. We used the ’MBC’ package [6] in R for computation. More details are found31

in Cannon [2].32

3 Computing weights33

3.1 Performance weights34

To compute the performance of each model, T -year return levels are compared based on the35

GEVD(Generalized Extreme Value Distribution) fitting on the historical data and the obser-36

vations. Let us denote riT and r0T as T -year return level obtained from the historical data of37

i-th model and the observations, respectively. These values are normalized as follows to make38

it scale-free, for i = 0, 1, · · · ,M :39

r̃iT =
riT −medi

Ri
, (1)40

where41

Ri =

{
maxi −medi if riT ≥ medi,

medi −mini if riT < medi,
(2)42

and maxi, mini, and medi are the maximum, the minimum, and the median of i-th model43

data. Other ways of standardizations are also possible.44

The distance for performance measure is calculated by45

D2
i =

∑
T

(r̃iT − r̃0T )2. (3)46

We set T = 2, 5, 10, 20, 30, 50, and 100. Note that Di does not depend on the shape parameter47

σD, and so obtained Dis are fixed for the next computation.48
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3.2 Independence weights49

To calculate the model similarity Sij , we follow a technique among several methods proposed50

by Sanderson et al. [7]. A method employed in this study is based on the empirical orthogonal51

function (EOF) or principal component analysis. The following process is done for each grid:52

First, for each model, the historical data and the future simulation data from three scenarios53

are lined up as one time series data. The bias correction is not applied to all data for this54

process. We can choose the historical data only, as was done by Brunner et al. [8], but we deploy55

all simulation data for a maximum use of available information. For each time series induced56

from each model, seven year moving averages are obtained. Then, a correlation matrix R57

among all M models is constructed by applying the Spearman correlation coefficients to those58

M numbers of the series of seven year moving averages, for each climate variable. That is, R59

is the correlation matrix of M models, with size M ×M .60

A singular value decomposition (SVD) is applied to R1/2 and truncated to t modes to61

calculate the dominant modes of multivariate ensemble variability such that62

R1/2 = UλV T , (4)63

where U is an orthogonal matrix of model loadings (M by t size) whose columns are the64

eigenvectors of the model correlation matrix R, λ (t by t) are the eigenvalues of R, and V65

(M by t) are the eigenvectors of R. The dimensions are sorted by decreasing eigenvalue, such66

that the basis set can be truncated to a smaller number of modes t [7]. Note that t is often67

determined by selecting a number of the eigenvalues greater than 1.68

The model loadings U define a t-dimensional space in which intermodel and observation–69

model Euclidean distances may be defined, where t is the truncation length of the SVD. The70

inter-model distances are measured in a Euclidean sense in the loadings matrix, so that the71

distances Sij between two models i and j are expressed as [7]72

Sij =

{
t∑
l=1

[U(i, l) − U(j, l)]2

}1/2

. (5)73

U(i, l) is interpreted as a correlation or a dependency of the model i to the l-th principal74

component. Thus, a small Sij value means high dependency or similarity between models i75

and j.76

The above procedures are done separately for each of five climate variables. Thus, we have77

five distances between models i and j, corresponding to five climate variables. Then, the final78

distances are computed by averaging those five distances for models i and j.79
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3.3 Selection of σS80

To select an appropriate value of the shape parameter σS for the I-weights, we follow an81

entropy-based approach by Shin et al.[9]. We denote Ii(σS) as a normalized I-weight for model82

i and for the given σS , as defined in the following:83

Ii(σS) =
si(σS)∑M
l=1 si(σS)

, (6)84

where si(σS) = 1

1+
∑M
j 6=i exp(−

Sij
σS

)
.85

The entropy of the I-weights as a measure of uncertainty [10] from these weights is defined86

by the following:87

E(σS) = −
M∑
i=1

Ii(σS) log Ii(σS) (7)88

as a function of σS . When all Ii(σS)s are almost equal, the entropy has a high value. We89

thus expect the entropy to increase because σS has a large value. Note that the calculation90

of Sij does not depend on σS , and thus, the Sij values obtained are fixed for the entropy91

computation. The entropy is computed as σS changes from 0.1 to 1.0 in increments of 0.01.92

Figure 1 presents the entropy function of σS computed from the data used for this study,93

which indicates that it is at its minimum at σS = 0.4. It is interesting to note that the entropy94

function increases as σS decreases from 0.4 to zero. This is explained by looking into the95

similarity measure 1 +
∑M

j 6=i exp(−
Sij
σS

). As σS moves toward zero, this measure converges at96

one for all i. Thus, si moves toward one, and Ii is close to 1/M for all i. Because we want to97

have a shape parameter σS that can differentiate the I-weights most distinctly with minimum98

uncertainty, the value σS = 0.4 minimizing the entropy is chosen in this study.99
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Figure S 1: Plot of the entropy as σS changes from 0.1 to 1.0 and the selected σS = 0.4.
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4 Result100

4.1 Relative change101

The relative change of 20 year return level in the period P1 relative to the reference period P0102

is defined as:103

δR20(P1) =
R20(P1) −R20(P0)

R20(P0)
× 100, (8)104

where R20(P ) is the 20 year return level in the period P.105

4.2 Return period and exceedance probability106

We have experienced some technical flaws in computing the waiting time or the return periods107

corresponding to a return value. For example, the resulting return period sometimes turns out108

to be greater than 500 years even though it is expected to correspond to 50 years. It may be109

due to the cumulation of truncation or rounding errors in computer, related to inverting the110

quantile function of the GEVD. A trouble caused by this flow does not vanish even applied111

to unequally weighted regional frequency analysis (RFA). In this study, we thus adopted the112

trimmed mean [11] in RFA in which unfairly high estimates of return periods are deleted in113

computing the weighted average. The defects of return periods are described in Serinaldi [12].114

The spatially averaged estimates of exceedance probability over Iran are presented in Figure115

S5 and in Table S5.116
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Figure S 2: Examples of time series plots to show the bias correction of the CESM2 simulation

data (green line) to the observations (blue line), where red lines represent the bias-corrected

data in each grid point (G10, G17, G24, and G42).
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Table S 1: The list of 24 CMIP6 (Coupled Model Intercomparison Project Phase 6) models

analyzed in this study. The detaied information on each model are available at ESGF-node

https://esgf-node.llnl.gov/projects/cmip6/.

Model Name Institution Country
Resolution

(Lon × Lat Level)

ACCESS-CM2 CSIRO, ARCCSS (Australian Res Council Centre of Australia 192×144

Excellence for Clim System Sci) L85

ACCESS-ESM1-5 Commonwealth Scientific & Australia 192×145

Industrial Res Organ (CSIRO) L38

BCC-CSM2-MR Beijing Clim Center China 320×160

L46(T106)

CanESM5 Canadian Centre Clim Model & Analysis, Canada 128×64

Enviro & Clim Change (CCCma) L49(T63)

CESM2-WACCM Nat Center for Atmos Res, USA 288×192

Clim & Global Dynamics Lab (NCAR) L70

CESM2 Nat Center for Atmos Res, USA 288×192

Clim & Global Dynamics Lab (NCAR) L32

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui Italy 288×192

Cambiamenti Climatici(CMCC) L30

CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Italy 288×192

Cambiamenti Climatici(CMCC) L30

EC-Earth3-Veg-LR EC-Earth consortium, EU 320×160

Swedish Meteo & Hydro Inst/SMHI, Sweden L62(TL255)

EC-Earth3-Veg EC-Earth consortium, EU 512×256

Swedish Meteo & Hydro Inst/SMHI, Sweden L91(TL255)

EC Earth 3.3 EC-Earth consortium, EU 512×256

Swedish Meteo & Hydro Inst/SMHI, Sweden L91(TL255)

FGOALS-g3 Chinese Academy of Sciences (CAS) China 180×80

L26

GFDL-ESM4 National Oceanic & Atmos Admi, USA 360×180

Geophy Fluid Dynamics Lab L49

INM-CM4-8 Inst for Numerical Math, Russia 180×120

Russian Acad of Sci (INM) L21

INM-CM5-0 Inst for Numerical Math, Russia 180×120

Russian Acad of Sci (INM) L73

IPSL-CM6A-LR Institut Pierre Simon Laplace (IPSL) France 144×143

L79

KACE1.0-GLOMAP National Inst of Meteo Sci/Meteo Admin, Korea 192×144

Clim Res Div (NIMS-KMA) L85

MIROC6 JAMSTEC, AORI, NIES, R-CCS (MIROC) Japan 256×128

L81(T85)

MPI-ESM1.2-HR Max Planck Inst for Meteo (MPI-M) Germany 384×192

L95(T127)

MPI-ESM1.2-LR Max Planck Inst for Meteo (MPI-M) Germany 192×96

L47(T63)

MRI-ESM2.0 Meteoro Research Institute (MRI) Japan 320×160

L80(TL159)

NorESM2-LM NorESM Consortium of CICERO, Norway 144×96

MET-Norway, NERSC, NILU, UiB, UiO, UNI L32

NorESM2-MM NorESM Consortium of CICERO, Norway 288×192

MET-Norway, NERSC, NILU, UiB, UiO, UNI L32

TaiESM1 Research Center for Environmental Changes, Taiwan 288×192

Academia Sinica, Nankang(AS-RCEC) L30
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Table S 2: The similarity distance metric Sij between model i and model j. Small values

indicate high dependency or high similarity between two models.

EC-Earth3 CanESM5 EC-Earth3-Veg KACE-1-0-G BCC-CSM2-MR GFDL-ESM4 FGOALS-g3

ACCESS-CM2 0.70 0.66 0.68 0.68 0.79 0.80 0.80

ACCESS-ESM1-5 0.70 0.68 0.70 0.69 0.79 0.80 0.80

BCC-CSM2-MR 0.73 0.73 0.73 0.76 0.00 0.81 0.84

CanESM5 0.60 0.00 0.63 0.63 0.73 0.76 0.78

CESM2-WACCM 0.69 0.68 0.69 0.70 0.77 0.78 0.79

CESM2 0.67 0.71 0.71 0.71 0.79 0.78 0.82

CMCC-CM2-SR5 0.63 0.62 0.62 0.66 0.73 0.77 0.78

CMCC-ESM2 0.63 0.64 0.62 0.65 0.75 0.77 0.78

EC-Earth3-Veg-LR 0.61 0.64 0.61 0.69 0.74 0.77 0.79

EC-Earth3-Veg 0.55 0.63 0.00 0.67 0.73 0.74 0.73

EC-Earth3 0.00 0.60 0.55 0.65 0.73 0.75 0.76

FGOALS-g3 0.76 0.78 0.73 0.80 0.84 0.83 0.00

GFDL-ESM4 0.75 0.76 0.74 0.77 0.81 0.00 0.83

INM-CM4-8 0.73 0.70 0.71 0.72 0.82 0.83 0.84

INM-CM5-0 0.73 0.72 0.72 0.76 0.83 0.85 0.82

IPSL-CM6A-LR 0.63 0.63 0.62 0.66 0.74 0.75 0.78

KACE-1-0-G 0.65 0.63 0.67 0.00 0.76 0.77 0.80

MIROC6 0.68 0.71 0.71 0.74 0.79 0.80 0.81

MPI-ESM1-2-HR 0.74 0.72 0.73 0.76 0.80 0.82 0.84

MPI-ESM1-2-LR 0.71 0.71 0.74 0.72 0.77 0.79 0.82

MRI-ESM2-0 0.68 0.71 0.72 0.73 0.80 0.81 0.83

NorESM2-LM 0.71 0.70 0.70 0.74 0.76 0.80 0.82

NorESM2-MM 0.70 0.71 0.71 0.74 0.80 0.81 0.82

TaiESM1 0.65 0.65 0.67 0.68 0.75 0.77 0.81

Sum 15.65 15.69 15.70 16.33 17.82 18.15 18.50
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Table S 3: Statistics of 20 year and 50 year return levels of the annual largest daily rainfall

(unit: mm) averaged over 47 grids in Iran for the observations (OBS) and the future periods; P1

(2021-2050), P2 (2046-2075), and P3 (2071-2100) under the SSP2, SSP3, and SSP5 scenarios.

SSP2-4.5 SSP3-7.0 SSP5-8.5

Year Statistic OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 54 60 61 62 60 62 66 60 64 69

20- Q1 46 51 51 52 49 51 54 51 55 59

year Median 57 64 64 65 63 65 71 64 69 73

Q3 63 71 72 74 71 73 79 71 75 79

Mean 66 73 75 76 74 77 82 74 79 86

50- Q1 57 63 65 65 62 64 69 65 70 77

year Median 71 78 82 83 80 81 86 79 84 89

Q3 77 85 87 89 87 90 97 85 91 99

Table S 4: Relative change (unit: %) in 20 year and 50 year return levels of the annual largest

daily rainfall averaged over Iran from 1971 to 2014.

SSP2-4.5 SSP3-7.0 SSP5-8.5

P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 10.9 13.4 14.9 10.9 14.8 23.1 12.3 19.4 28.7

20- Q1 7.5 10.2 12.6 7.6 11.9 18.7 9.7 15.7 24.6

year Median 11.9 13.9 15.6 11.2 14.7 23.2 12.3 19.6 28.7

Q3 14.2 17.0 18.2 14.2 18.0 27.1 16.0 23.2 32.1

Mean 11.4 13.7 15.8 12.1 15.8 24.4 12.8 20.4 30.3

50- Q1 7.1 10.9 12.9 8.5 11.8 19.7 8.7 15.6 24.7

year Median 12.9 13.6 17.5 11.6 15.7 25.2 13.9 20.4 30.0

Q3 15.1 18.3 19.6 15.8 19.2 28.7 17.9 25.3 35.0
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Table S 5: Spatially averaged exceedance probabilities over Iran for the annual maximum daily

precipitation (AMP1) from 20 mm to 100 mm, obtained from the observations (OBS) and the

CMIP6 models under the three scenarios for three future periods.

AMP1 OBS SSP2-4.5 SSP3-7.0 SSP5-8.5

20mm 0.736 0.790 0.756 0.806

30mm 0.334 0.368 0.357 0.454

40mm 0.114 0.160 0.153 0.160

Period 1 50mm 0.030 0.070 0.075 0.077

60mm 0.010 0.028 0.025 0.030

80mm 0.001 0.004 0.004 0.008

100mm <0.001 0.001 0.001 0.002

20mm 0.736 0.832 0.798 0.827

30mm 0.334 0.424 0.380 0.435

40mm 0.114 0.186 0.174 0.200

Period 2 50mm 0.030 0.078 0.073 0.092

60mm 0.010 0.027 0.031 0.041

80mm 0.001 0.005 0.004 0.011

100mm <0.001 0.002 0.001 0.004

20mm 0.736 0.802 0.823 0.851

30mm 0.334 0.394 0.469 0.470

40mm 0.114 0.161 0.213 0.245

Period 3 50mm 0.030 0.064 0.098 0.126

60mm 0.010 0.023 0.038 0.050

80mm 0.001 0.005 0.007 0.013

100mm <0.001 0.002 0.003 0.004
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Table S 6: The expected frequency of reoccurring years during 30 years for specific the annual

maximum daily precipitation (AMP1) values from 20 mm to 100 mm in Iran, obtained from

the observations (OBS) and the CMIP6 models under the 3 scenarios for 3 future periods.

SSP2-4.5 SSP3-7.0 SSP5-8.5

AMP1 OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

20mm 22.080 23.700 24.960 24.060 22.680 23.940 24.690 24.180 24.810 25.530

30mm 10.020 11.040 12.720 11.820 10.710 11.400 14.070 13.620 13.050 14.100

40mm 3.420 4.800 5.580 4.830 4.590 5.220 6.390 4.800 6.000 7.350

50mm 0.900 2.100 2.340 1.920 2.250 2.190 2.940 2.310 2.760 3.780

60mm 0.300 0.840 0.810 0.690 0.750 0.930 1.140 0.900 1.230 1.500

80mm 0.030 0.120 0.150 0.150 0.120 0.120 0.210 0.240 0.330 0.390

100mm 0.012 0.030 0.060 0.060 0.030 0.030 0.090 0.060 0.120 0.120

Figure S 3: Arrangement of data and 7 year moving averages composed of the historical data

from 1850 to 2014 and the future data from 2015 to 2100 under SSP2, SSP3, and SSP5 scenarios

for computing the Spearman correlation coefficient between models.
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Figure S 4: Box-plots of 50 year return levels of the annual largest daily rainfall (unit: mm)

averaged over 47 grids in Iran for the future periods P1 (2021–2050), P2 (2046–2075), and P3

(2071–2100) under the SSP2, SSP3, and SSP5 scenarios. OBS and HIST(NBC) stand for the

observations and the historical data without bias correction.
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Figure S 5: The exceedance probability plots for the annual maximum daily precipitation

(AMP1) from 10 mm to 100 mm in Iran, calculated from the observations (OBS) and the

CMIP6 models under the three scenarios for three future periods.
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