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Instrumentation and evaluation of in-situ aerosol properties 
Aethalometer and aerodynamic particle sizer used in this study were connected to 

the sampling system which automatically switches sampling from one environment to 
another every 30 minutes. Nephelometer measured just in outdoor environment.  

Mass concentration and light absorption coefficient (babs) of eBC were retrieved from 
the measurements of 7-wavelenghts (370, 470, 520, 590, 660, 880 and 950 nm) Aethalometer 
(A Magee Scientific, Model AE31 Spectrum, manufactured by Aerosol d.o.o., Slovenia). 
The time resolution of measurements was set to 5 min (collecting area of 0.5 cm2 and flow 
rate of 4 l/min). The Aethalometer measures the real time light attenuation caused by par-
ticles collected on the quartz filter. Since BC is the main light absorbent in the ambient air, 
it is assumed that light attenuation is the result of eBC absorption. The measurements at 
880 nm were used as eBC mass concentration in the ambient air [1]. 

A correction proposed by Weingartner et al., (2003) [2] was implemented to reduce 
‘shadow’, multiscattering and other effects causing measurement biases. ‘Aethalometer 
model’ by Sandradewi et al. (2008) [3] was applied to assign eBC mass concentration to 
biomass burning (eBCbb) and fossil fuels (eBCff) origin. This method uses absorption Ang-
ström exponent (AAE) for selected wavelengths (470 and 880 nm) as following: 𝑏ୟୠୱ,୆େ౜౜ሺ880 nmሻ = ௕౗ౘ౩ ሺସ଻଴ ୬୫ሻିቀరళబఴఴబቁఽఽు౜౜

ቀరళబఴఴబቁఽఽుౘౘିቀరళబఴఴబቁఽఽు౜౜ , (1) 

𝑏ୟୠୱ,୆େౘౘሺ880 nmሻ = ௕౗ౘ౩ ሺସ଻଴ ୬୫ሻିቀరళబఴఴబቁఽఽుౘౘ
ቀరళబఴఴబቁఽఽు౜౜ିቀరళబఴఴబቁఽఽుౘౘ , 

(2) 

AAE values were selected following Zotter et al. (2017) [4] suggestions: AAEff=0.9 for 
fossil fuel and AAEbb=1.68 for biomass burning related eBC. 

Brown carbon (BrC) was investigated based on AAE wavelength dependence 
method (WDA) [5]. This method is based on an assumption that light absorption at 880 
nm represents only BC while absorption at 370 nm could be related to both eBC and BrC 
light absorption. WDA method can be expressed as following: AAEଷ଻଴/଼଼଴୆େ = AAE଺଺଴/଼଼଴ + WDA (3) bୟୠୱ,୆୰େሺ370 nmሻ = bୟୠୱ ሺ370nmሻ − bୟୠୱ,୆େ ሺ370nmሻ. (4) 

Outdoor aerosol particle light scattering properties were measured by a 3-wave-
lenght (450, 550 and 700 nm) integrating Nephelometer (TSI model 3563) with 5 min time 



resolution and an automatic calibration every 60 min. The scattering Angström exponent 
(SAE) was calculated using scattering coefficient (bscat) at 450 and 550 nm. For light scat-
tering coefficient a truncation correction was applied following Anderson and Ogren 
(1998) [6]. 

Based on the wavelength-dependent bscat scattering Angström exponent (SAE) was 
estimated as follows: SAEସହ଴/଻଴଴ = − ୪୬ ቆా౩ౙ౗౪రఱబా౩ౙ౗౪ళబబቇ୪୬ቀరఱబళబబቁ . (5) 

For indoor and outdoor aerosol particle size, number and mass concentration assess-
ment, we used an aerodynamic particle sizer (APS; TSI model 3321). It measures the time-
of-flight (TOF) of sampled aerosol particles in the size range from 0.5 to 20.0 µm (TSI, Inc. 
2004). Although, the APS sizing accuracy of aerodynamic diameter is estimated correctly 
for most of aerosol particles [7], however, its counting efficiency (CE) varies and is particle 
size-dependent [8]. Sizing calibration was performed using PSL particles (1 and 2 microm-
eter). The aerosol mass-weighted aerodynamic concentration was estimated by utilizing 
the APS data of number-weighted distributions [9]. The estimation of mass concentration 
for each size bin is defined as follows: dMୈ౗ = dNୈ౗ π଺ Dୟଷ ቀρబ∙େ౗∙஧େ౬ ቁଷ ଶ⁄ ቀρ୮ቁିଵ ଶ⁄ . (6) 

For this purpose, the aerodynamic diameter is transformed into volumetric equiva-
lent diameter [10]. The shape factor χ was assumed to be 1 and the density of aerosol 
particles ρp - 1.52 g cm-3 [11].  

Satellites data and fire map tool 
The air mass backward trajectories (HYSPLIT4, [12]) were used to provide infor-

mation on long-range transport dynamics during the pollution event. Backward trajecto-
ries were calculated for a 72 h period at three selected heights: 500, 1000, and 1500 m a. g. 
l. The 48 h backward trajectory frequency was calculated from our sampling site at 500 m 
height. The resulting graph showed the sum frequency that the trajectory passed over a 
grid cell (1.0° × 1.0°) normalized by the total number of the trajectories. 

Wildfire locations were surveyed using Fire Information for Resource Management 
System (FIRMS), which assigns Near Real-Time (NRT) active fire data within 3 hours of 
satellite measurement from NASA’s Moderate Resolution Imaging Spectro-radiometer 
(MODIS) aboard on Terra and Aqua satellites and Visible Infrared Imaging Radiometer 
Suite (VIIRS) aboard on Suomi NPP and NOAA-20 satellites. The Navy Aerosol Analysis 
and Prediction System (NAAPS) was employed to provide information about aerosol sat-
ellite measurements over Europe. 
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