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Abstract: Atmospheric particulate matters (PMs) were measured in an industry-intensive region in
central Taiwan in order to investigate the characteristics and possible sources of PMs. The samplings
were simultaneously conducted using a 10- and 3-stage Micro Orifice Uniform Deposit Impactor
(MOUDI) from 2017 to 2018. In this study, the characteristics of PMs in this region were evaluated by
measuring the mass concentration of PMs and analyzing water-soluble ions and metallic elements,
as well as dioxins. Additionally, principal component analysis (PCA) was used to identify the
potential sources of PMs. The results showed that the mean concentration of coarse (>1.8 µm),
fine (0.1–1.8 µm), and ultrafine (<0.1 µm) particles were 13.60, 14.38, and 3.44 µg/m3, respectively.
In the industry-intensive region, the size distribution of ambient particles showed a bi-modal distribution
with a high concentration of coarse particles in the spring and summer, while fine particles were
dominant in the autumn and winter. The most abundant water-soluble ions of PMs were NO3

−, Cl−,
and SO4

2−, while the majority of metallic elements were Na, Fe, Ca, Al, and Mg in different particle
sizes. The results of Pearson’s correlation analysis for metals indicated that the particles in the collected
air samples were related to the iron and steelmaking industries, coal burning, vehicle exhausts, and
high-tech industries. The dioxin concentration ranged from 0.0006 to 0.0017 pg I-TEQ/Nm3. Principal
component analysis (PCA) revealed that the contribution to PMs was associated with sea salt, secondary
pollutants, and industrial process.

Keywords: PMs; size distribution; chemical composition; PCA

1. Introduction

Air pollution is a major concern in urban areas because of its threat to human health,
including asthma and acute and chronic respiratory symptoms [1]. Ambient particulate
matters (PMs) include small solid or liquid particles suspended in the air. In addition,
PMs included particles with an aerodynamic diameter of less than 0.1 µm, less than
2.5 µm, and less than 10 µm, also known as PM1, PM2.5, and PM10, respectively [2].
Epidemiological studies reported that the highest association noted was an 18% rise in
asthma admissions correlated with a 10 µg/m3 increase in coarse particles on the same
day of admissions [3]. Furthermore, ultrafine particles cause a stronger toxic effect than
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fine and coarse particles due to their high surface area [4,5]. The chemical compositions of
PMs include water-soluble ions, metallic elements, and organic compounds, such as dioxin,
which are correlated to toxicity and health [6,7]. Typically, the ionic constituents accounted
for 35–60% of the PM2.5 mass in Korea, and sulfates and nitrates were the dominant ionic
species [8]. In southern Taiwan, Tsai et al. [9] reported that sulfate, nitrate, and ammonium
were the major ionic species and contributed a large fraction of PM mass in different sizes.
In Boston, over 80% of the elements mostly found in the coarse mode included Ca, Mn
(road dust), and Cl (sea salt) [10]. In Mexico City, high concentrations of Al, Cr, Ni, Pb, and
V were measured in late fall [11]. PCDD/Fs have been a source of much public concern
over the last decade due to adverse health effects [6]. The dioxin concentration in the
atmosphere could be affected by different seasons because of domestic heating, photolysis,
and chemical reactions [12]. In rural Germany, PCDD/F concentrations were higher in the
winter than in the summer due to domestic heating [13].

The main objectives of this study were to investigate the characteristics of ambient
PMs in an industrial area. The different particle sizes of PMs, including coarse, fine, and
ultrafine modes, were measured, as well as water-soluble ions, metallic elements, and
dioxins in PMs. The principal component analysis (PCA) is a useful statistical method to
assess possible sources of pollution and their contribution to ambient PMs. The results of
this study are of great importance to understand the characteristic of PMs in an industrial
area and will provide useful information for the future control strategy of ambient PMs.

2. Experiment and Methods
2.1. Sampling of PM

The atmospheric particle sampling site was designed according to the understanding of
local emission sources. The atmospheric particle samplings were taken at the campus of Tunghai
University in central Taiwan as a receptor for assessment. The sampling site was surrounded
by Taichung Industrial Park (A: 500 m away), Central Taiwan Science Park (B: 4 km away), and
Taichung Power Station (C: 10 km away) (Figure 1). The samples were collected continuously
for 24 h on four consecutive days during all four seasons in 2017 and 2018. This study employed
two 10-stage and 3-stage cascade impactors from Micro-Orifice Uniform Deposit Impactors
(MOUDI) (Model 110-R, 100S4; MSP Corporation, in Shoreview, MN, USA). The corresponding
cut-off sizes were 0.056, 0.10, 0.18, 0.32, 0.56, 1.0, 1.8, 3.2, 5.6, 10.0, 18 µm, and 1.0, 2.5, and
18 µm, respectively. A 47 mm Teflon filter was used to collect the samples with a flow rate of
30 L/min. The filters were conditioned at 25 ± 3 ◦C and 45 ± 5% relative humidity for 24 h
before weighing. In addition, PCDD/Fs were collected by a PS-1 sampler that was equipped
with quartz fiber filters.
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2.2. Analysis of Water-Soluble Ions and Metallic Elements

Water-soluble cations and anions were analyzed by ion chromatography according to
the standard method of the Taiwan Environment Protection Agency (EPA): NIEA W415.54B.
One-half of each Teflon filter was analyzed by ion chromatography (Metrohm, 883 Basic IC
plus). Each filter was put into a polyethylene bottle with 10 mL deionized distilled water and
was extracted using an ultrasonic bath for 60 min. The extract was filtered with an acetate filter
with 0.22 µm pore size diameter. Five cations (Na+, NH4

+, K+, Mg2+, Ca2+) and five anions
(F−, Cl−, NO2

−, NO3
−, SO4

2−) were analyzed by ion chromatography (Metrohm, 883 Basic IC
plus). The anion species were detected by Metrosep C 4-150/4.0 (4× 150 mm) analytical column
with an effluent of 1.7 mM HNO3/0.7 mM C7H5NO4 at a flow rate of 0.9 mL/min. The cation
species were separated by Metrosep A Supp5-150/4.0 (4× 150 mm) analytical column with an
effluent of 1.0 mM NaHNO3/3.2 mM NaCO3 at a flow rate of 0.7 mL/min. The detection limits
were 0.20, 0.18, 0.11, 0.42, 0.36, 0.59, 0.46, 0.48, 0.15, and 0.5 µg/L for Na+, NH4

+, K+, Mg2+,
Ca2+, Cl−, NO3

−, SO4
2−, NO2

−, and F−, respectively.
The metals were analyzed by inductively coupled plasma mass spectrometry accord-

ing to the standard method of NIEA A306.10C of the Taiwan Environment Protection
Agency (EPA). The other half of the Teflon filter was analyzed to clarify the metal concen-
trations. The Teflon filters were placed in a microwave digestion furnace and were heated
at 175 ◦C for 10 min, and then 24 metals (Zn, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Ni, Pb, Sr, Ag,
B, Ba, Bi, Ca, K, Li, Mg, Na, Tl, As, and Al) were analyzed by inductively coupled plasma
mass spectrometry (Thermo Scientific, iCAP RQ). The method detection limits for Zn, Cd,
Co, Cr, Cu, Fe, Ga, In, Mn, Ni, Pb, Sr, Ag, B, Ba, Bi, Ca, K, Li, Mg, Na, Ti, As, and Al were
0.55, 0.89, 0.66, 0.88, 0.63, 0.92, 0.78, 0.98, 0.55, 0.66, 1.75, 0.56, 0.65, 1.63, 0.37, 0.78, 0.62, 0.57,
0.36, 1.45, 0.45, 1.34, 1.23, and 1.55 ug/L, respectively. For clarity, the samples are divided
into coarse (>1.8 µm), fine (0.1–1.8 µm), and ultrafine (<0.1 µm) particles.

2.3. Analysis of PCDD/Fs

Analysis of ambient air samples for PCDD/Fs was performed according to the US
EPA Reference Method TO9A [14]. Each sample was spiked with a known amount of
the internal standard. All samples were extracted with toluene for 24 h, and this was
then followed by a series of sample cleanup and fractionation procedures. The extract
was transferred to a vial and further concentrated by a N2 gas stream. High-resolution
gas chromatographs/high-resolution mass spectrometers (HRGC/HRMS) were used for
PCDD/F analysis. The HRGC (Hewlett-Packard 6970 Series gas, Atalanta, CA, USA) was
equipped with a DB-5 fused silica capillary column (L = 60 m, ID = 0.25 mm, film thickness
= 0.25 µm) (J&W Scientific, Atalanta, CA, USA) with a splitless injection, while the HRMS
(Micromass Autospec Ultima, Manchester, UK) had a positive electron impact (EI+) source.
The oven temperature program was set according to the following: start at 150 ◦C (held for
1 min), then increased by 30 ◦C/min to 220 ◦C (held for 12 min), and finally increased by
1.5 ◦C/min to 310 ◦C (held for 20 min). Helium was used as the carrier gas. Labo-
ratory blank samples were also sampled and analyzed for quality assurance purposes.
The PCDD/F mass of method blank samples for the tetra through hexa-chlorinated ho-
mologues ranged from 0.79 to 1.58 pg, while that for the hepta- and octa-chlorinated
homologues ranged from 0.19 to 0.70 pg.

2.4. Principal Component Analysis

Principal component analysis (PCA) is widely used as an assessment method to
identify possible pollution sources. PCA is applied to characterize large sets of data by
re-expressing to a rotated coordinate system in which the eigenvectors of the variance–
covariance matrix are calculated to explain as much variance as possible. The principal
component score, i.e., the weight of the eigenvector, can be obtained. These scores of the
original variables, called the principal component loadings (PC loadings), can illustrate
the relationship between the variable and the principal component. The first PC (PC1) will
explain most of the variance of the original data variables, whereas the second PC (PC2)
will explain fewer of the original data variables. By doing this, the raw data matrix can
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be reduced to two or three principal component loadings that account for the majority of
the variance. The PCA provides qualitative information about the nature of the source
profile compositions and the relative importance of a given source to the observed con-
centration [15]. The main objective of PCA is to reduce a large number of variables to a
smaller set of factors that retain most of the information in the original data set [16,17].
Each factor explains the maximum total variance of the data set, and this set is completely
uncorrelated with the rest of the data. Thus, the elements with higher factor loading (>0.7)
are interpreted as fingerprints of emission sources [18].

3. Results and Discussion
3.1. Particulate Matter Mass Concentrations and Particle Size distribution

The mass concentration of coarse (>1.8 µm), fine (0.1–1.8 µm), and ultrafine (<0.1 µm)
particles are listed in Table 1. The order of the mass of particle sizes in spring and summer was
coarse particles > fine particles > ultrafine particles, while those in autumn and winter were
fine particles > coarse particles > ultrafine particles. The coarse particles were dominant in
spring and summer, with an average mass concentration of 16.96 and 12.67 µg/m3, account-
ing for 47.5 and 45.6%, respectively. The concentration of the fine particles was 15.39 and
18.17 µg/m3 in autumn and winter, accounting for 46.7 and 62.2%, respectively. In summer, the
mass levels of coarse, fine, and ultrafine particles were 12.67, 9.14, and 5.96 µg/m3, respectively,
and were slightly higher than those in the Shanghai urban summer atmosphere (9.38, 8.82,
and 2.02 µg/m3) and the traffic site in Los Angeles (6.3, 5.8, and 1.7 µg/m3) [19,20]. There-
fore, the particle concentration in this industrial area is relatively polluted compared to the
references [19,20], and the mass level was different in different seasons. In addition, the PM10
concentration was measured as being from 9.26 to 42.59 µg/m3, which is close to values of the
previous study in central Taiwan [21]. Our data showed slightly lower values than the PM10
concentration of 13.83–53.67 µg/m3 at Xitun station (one of the EPA air quality monitoring
stations) due to the difference between the automatic and manual sampling methods. In ad-
dition, the PM10 data were much lower than the Taiwan EAP PM10 regulations (125 µg/m3).
The ambient PMs displayed a bimodal distribution, as shown in Figure 2. In spring and summer,
the most prominent peak occurred in the range of Dp = 3.2–5.6 µm, and the minor peak was
in the range of Dp = 0.18–0.32 µm. In autumn and winter, the most prominent peak occurred
in the range of Dp = 0.32–0.56 µm, and the minor peak was in the range of Dp = 3.2–5.6 µm.
These results are similar to a previous study in that coarse particles were the predominant
components in spring [22]. The cumulative mass fractions for fine particles were 41.8 and
33.4% in spring and summer, respectively, while they accounted for 51.8 and 62.5% in autumn
and winter, respectively (Figure 3). This indicated that fine particle pollution is dominant in
Taichung in autumn and winter. In addition, both coarse and fine particles were associated with
local traffic [23].

Table 1. The mass concentration of different particle sizes (coarse, fine, ultrafine particles).

Sampling
Time

Coarse Particles
(µg/m3)

Fine Particles
(µg/m3)

Ultrafine Particles
(µg/m3)

Mean SD Mean SD Mean SD

Spring 16.96 3.9 14.82 5.7 3.94 0.9
Summer 12.67 3.3 9.14 1.7 5.96 3.7
Autumn 14.99 1.8 15.39 3.0 2.61 0.5
Winter 9.78 5.8 18.17 10.0 1.27 0.1



Atmosphere 2021, 12, 926 5 of 12

Atmosphere 2021, 12, x FOR PEER REVIEW 5 of 13 
 

 

the Taiwan EAP PM10 regulations (125 µg/m3). The ambient PMs displayed a bimodal dis-

tribution, as shown in Figure 2. In spring and summer, the most prominent peak occurred 

in the range of Dp = 3.2–5.6 μm, and the minor peak was in the range of Dp = 0.18–0.32 

μm. In autumn and winter, the most prominent peak occurred in the range of Dp = 0.32–

0.56 μm, and the minor peak was in the range of Dp = 3.2–5.6 μm. These results are similar 

to a previous study in that coarse particles were the predominant components in spring 

[22]. The cumulative mass fractions for fine particles were 41.8 and 33.4% in spring and 

summer, respectively, while they accounted for 51.8 and 62.5% in autumn and winter, 

respectively (Figure 3). This indicated that fine particle pollution is dominant in Taichung 

in autumn and winter. In addition, both coarse and fine particles were associated with 

local traffic [23]. 

Table 1. The mass concentration of different particle sizes (coarse, fine, ultrafine particles). 

Sampling Time 

Coarse Particles 

(μg/m3) 

Fine Particles 

(μg/m3) 

Ultrafine Particles 

(μg/m3) 

Mean SD Mean SD Mean SD 

Spring 16.96 3.9 14.82 5.7 3.94 0.9 

Summer 12.67 3.3 9.14 1.7 5.96 3.7 

Autumn 14.99 1.8 15.39 3.0 2.61 0.5 

Winter 9.78 5.8 18.17 10.0 1.27 0.1 

 

Figure 2. Particle size distributions: (a) Spring; (b) Summer; (c) Autumn; (d) Winter. Figure 2. Particle size distributions: (a) Spring; (b) Summer; (c) Autumn; (d) Winter.
Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 3. Cumulative mass fractions of particulate matter: (a) Spring; (b) Summer; (c) Autumn; (d) 

Winter. 

3.2. Water-Soluble Ions 

Table 2 shows the water-soluble ion content in different particle sizes. The sequence 

of the major ionic species in the coarse particles was Cl− (1.63 ± 0.41 µg/m3) > NO3− (1.62 ± 

0.61 µg/m3) > SO42− (1.18 ± 0.29 µg/m3) > Na+ (0.90 ± 0.52 µg/m3), while the sequence was 

SO42− (2.32 ± 1.03 µg/m3) > Cl− (1.37 ± 0.29 µg/m3) > NO3− (1.30 ± 1.02 µg/m3) > NH4+ (1.24 ± 

1.01 µg/m3) for the fine particles. Huang et al. (2013) reported that the dominant species 

were SO42−, Cl−, NO3−, and NH4+ at an industrial complex site in China. SO42−, NH4+, and 

NO3− are considered to be the major secondary aerosols by anthropogenic sources [24]. 

Regarding ultrafine particles, the majority of components were SO42− (0.44 ± 0.20 µg/m3), 

Cl− (0.41 ± 0.25 µg/m3), NO3− (0.26 ± 0.09 µg/m3), and Na+ (0.23 ± 0.28 µg/m3), accounting 

for 62.05% of the total species. The Cl− in both the coarse and fine particles is generally 

derived from sea spray [25]. Motor vehicle emissions and fossil fuel combustion are the 

dominant contributors to NO3− and SO42−, respectively [26,27]. In addition, the high con-

centration of Cl− and K+ during the heating season may be due to increased coal combus-

tion [28] and straw burning [29]. Notably, the K+ concentration (0.16–0.35 μg/m3) was not 

relatively high in this study because the sampling site is 10 km away from Taichung Power 

Station (see Figure 1). Compared with other cities, water-soluble constituents contributed 

an average of 11.57% in PM2.5 and 16.98% in PM1in Drug city in India. Notably, similar to 

our study, the concentrations of SO42− and NO3− were high in all size fractions and ac-

counted for 32.76% and 13.38% of the total mass of the water-soluble ions in PM2.5 [30]. In 

Palermo, Italy, a large fraction of PM10 (31–47% in weight) and PM2.5 (29% in weight) are 

made up of water-soluble ions. SO42− and NH4+ concentrations in the PM2.5 fraction were 

higher than in PM10. SO42−, NH4+, and NO3− ions also constituted 51–63% of the total meas-

ured water-soluble ions [31]. In the electronic processing industrial region of Kunshan, 

China, the most abundant ions are NO3− (30.96 μg/m3), SO42− (24.67 μg/m3), and NH4+ 

(19.98 μg/m3), and are significantly higher than those found in this study [32]. 

(a) (b) 

(c) (d) 

Figure 3. Cumulative mass fractions of particulate matter: (a) Spring; (b) Summer; (c) Autumn; (d) Winter.

3.2. Water-Soluble Ions

Table 2 shows the water-soluble ion content in different particle sizes. The sequence
of the major ionic species in the coarse particles was Cl− (1.63 ± 0.41 µg/m3) >
NO3

− (1.62 ± 0.61 µg/m3) > SO4
2− (1.18 ± 0.29 µg/m3) > Na+ (0.90 ± 0.52 µg/m3),

while the sequence was SO4
2− (2.32 ± 1.03 µg/m3) > Cl− (1.37 ± 0.29 µg/m3) >

NO3
− (1.30± 1.02 µg/m3) > NH4

+ (1.24± 1.01 µg/m3) for the fine particles. Huang et al. (2013)
reported that the dominant species were SO4

2−, Cl−, NO3
−, and NH4

+ at an industrial complex
site in China. SO4

2−, NH4
+, and NO3

− are considered to be the major secondary aerosols
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by anthropogenic sources [24]. Regarding ultrafine particles, the majority of components
were SO4

2− (0.44 ± 0.20 µg/m3), Cl− (0.41 ± 0.25 µg/m3), NO3
− (0.26 ± 0.09 µg/m3), and

Na+ (0.23 ± 0.28 µg/m3), accounting for 62.05% of the total species. The Cl− in both the
coarse and fine particles is generally derived from sea spray [25]. Motor vehicle emissions and
fossil fuel combustion are the dominant contributors to NO3

− and SO4
2−, respectively [26,27].

In addition, the high concentration of Cl− and K+ during the heating season may be due
to increased coal combustion [28] and straw burning [29]. Notably, the K+ concentration
(0.16–0.35 µg/m3) was not relatively high in this study because the sampling site is 10 km
away from Taichung Power Station (see Figure 1). Compared with other cities, water-soluble
constituents contributed an average of 11.57% in PM2.5 and 16.98% in PM1in Drug city in
India. Notably, similar to our study, the concentrations of SO4

2− and NO3
− were high in all

size fractions and accounted for 32.76% and 13.38% of the total mass of the water-soluble ions
in PM2.5 [30]. In Palermo, Italy, a large fraction of PM10 (31–47% in weight) and PM2.5 (29%
in weight) are made up of water-soluble ions. SO4

2− and NH4
+ concentrations in the PM2.5

fraction were higher than in PM10. SO4
2−, NH4

+, and NO3
− ions also constituted 51–63% of

the total measured water-soluble ions [31]. In the electronic processing industrial region of
Kunshan, China, the most abundant ions are NO3

− (30.96 µg/m3), SO4
2− (24.67 µg/m3), and

NH4
+ (19.98 µg/m3), and are significantly higher than those found in this study [32].

Table 2. The content of water-soluble ions in different particle sizes.

Water-Soluble
Ions

Coarse Particles
(µg/m3)

Fine Particles
(µg/m3)

Ultrafine Particles
(µg/m3)

Mean SD Mean SD Mean SD

Na+ 0.90 ±0.52 0.43 ±0.39 0.23 ±0.28
NH4

+ 0.30 ±0.10 1.24 ±1.01 0.16 ±0.05
K+ 0.35 ±0.16 0.32 ±0.11 0.16 ±0.21

Ca2+ 0.47 ±0.18 0.25 ±0.17 0.09 ±0.08
Mg2+ 0.20 ±0.17 0.11 ±0.10 0.04 ±0.05

F− 0.35 ±0.28 0.35 ±0.25 0.13 ±0.13
Cl− 1.63 ±0.41 1.37 ±0.29 0.41 ±0.25

NO3
− 1.62 ±0.61 1.30 ±1.02 0.26 ±0.09

SO4
2− 1.18 ±0.29 2.32 ±1.03 0.44 ±0.20

3.3. Metallic Elements

The fraction of metals in coarse particles in different seasons is shown in Figure 4a.
The data of the winter samples are not discussed due to contamination. In spring, the
dominant species were found to be Na (18.1%), Fe (17.9%), and K (17.5%), contributing
about 53.5% of the total metallic elements, while Na (25.1%), Ca (20.9%), and Al (13.9%)
accounted for 59.9% of the total components in summer. In autumn, Fe contributed 22.6%,
Al 22.2%, and Mg 21.0%, which accumulated to 65.79%. Notably, Na, Fe, Ca, and Al were
mainly distributed in coarse particles that may have come from the earth crust elements and
road/tires [33]. Figure 4b shows the fractions of metals in fine particles during different
seasons. In spring, the most abundant elements were Na (31.6%), Ag (12.3%), and Fe
(11.2%), while in summer, the proportions of Na, Ca, and Al were 29.1, 22.5, and 12.4%,
respectively. In autumn, the dominant species were found to be Al (28.3%), K (16.7%), and
Mg (15.4%), accounting for 60.4% of total elements. In addition, Ag was measured in fine
particles that came from anthropogenic sources, such as the iron and steel industries, the
cement industry, the combustion of coal and oil, and incineration [34–37]. According to the
national emissions inventory of sources and emissions of silver [37], the principal sources
(after emission control, if any) are the iron and steel industries (46%), the cement industry
(25.7%), the combustion of coal and oil (13.6%), and incinerators (5.6%). Fe was also the
most abundant element that was sourced from the Earth’s crust [38]. Hence, the major
elements in the fine particles were Na, Fe, Ca, and Al. In China, the crustal elements Al, Ca,
K, Na, Mg, and Fe were most abundant at an industrial site, which may be due to more
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vehicle emissions and dust resuspension [24]. Figure 4c shows the fraction of metals in
ultrafine particles in different seasons. In spring, the dominant species were found to be Na
(23.4%), K (18.8%), and Ca (18.1%). On the other hand, the fractions of Na, Ca, and Al were
30.8%, 23.4%, and 11.8%, respectively, in summer. In autumn, the dominant species were
Al (24.5%), Fe (19.7%), and K (14.9%), accounting for 59.1% of the total metallic elements.
As a result, the most abundant species in the ultrafine particles were Na, K, Ca, and Al.
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Pearson’s correlation coefficients of heavy metals in coarse, fine, and ultrafine particles are
summarized in Figure 5. By analyzing the value of the correlation coefficient between the metal
elements, it is possible to understand the possible sources of air pollution around the sampling
point. The significant correlations of Fe-Mn (r = 0.664–0.965), Fe-Zn (r = 0.638–0.826), and Mn-Zn
(r = 0.127–0.779) were observed in coarse, fine, and ultrafine particles, with the exception of
Zn-Mn (0.127) in ultrafine particles, suggesting possible iron and steelmaking industry activities
near the sampling site. This result agrees with a previous study conducted by Mohiuddin et al.
(2014), which analyzed the correlation of Fe-Mn-Zn from iron and steel industry sites [39].
In Agra, India, Fe shows a good correlation with Mn (0.605), Pb (0.506), Cr (0.957), and
Al (0.580), indicating emissions sources such as the iron or steel industries and crustal ma-
terials contribute to ambient air pollution [40]. As shown in Figure 5, Pb displayed significant
correlation (p < 0.05) with Zn (r = 0.607–0.684), Cr (r = 0.772–0.914), Fe (r = 0.555–0.720), and
Al (r = 0.684–0.737) in both coarse and fine particles, illustrating the contribution of crustal
emissions and coal burning. The results of the statistical analyses by PCA showed that the
factors loaded with Co, Cd, Pb, Ni, Cu, and Zn are anthropogenic emissions from the combus-
tion of fossil fuels and industry in the ambient air in the central Himalayan region, Nepal [41].
High correlations were observed between Al-Cu (r = 0.718–0.891), Al-Sr (r = 0.782–0.864),
Al-K (r = 0.629–0.856), K-Sr (r = 0.380–0.662), and Sr-Cu (r = 0.531–0.726) in coarse, fine and
ultrafine particles (see Figure 5), indicating the contribution from the vehicle exhausts. These
results are similar to the findings from the Pittsburgh metropolitan area; that is, Al, K, Mo, Sb,
Sr, and Cu are related to the characteristics of vehicle emissions. Notably, Mo, Sb, Sr, and Cu are
related to brake and tire wear [42]. The sampling site (THU) is near the Central Taiwan Science
Park (CTSP), which is a high-tech, industry-intensive area. Therefore, positive correlations were
observed between Zn-Cu (r = 0.638–0.782), Cd-Cr (r = 0.679–0.943), Cd-Pb (r = 0.638–0.675),
Cu-Ga r = (0.444–0.689), Pb-K (r = 0.493–0.652), and In-Bi (r = 0.409–0.600). Some correlations
between two metals (Cd-V, Cu-Ga, Zn-Cu, Mo-As, Pb-As, Pb-Cd, K-V, K-Pb, and Cr-Cd) had a
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greater confidence level and correlation coefficient in the CTSP [43] because the CTSP is a major
contributor to Ga and As in ultrafine particles [44].
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3.4. PCDD/F Concentration in Ambient Air

The measured species and concentrations of PCDD/F are listed in Table 3.
In 2017, the total concentrations of PCDD/F were 0.2541 and 0.1387 pg/Nm3 in the spring and
summer, respectively. The corresponding I-TEQ concentrations were 0.0017 pg I-TEQ/Nm3

in spring and 0.0006 pg I-TEQ/Nm3 in summer 2017. This result is consistent with the find-
ings of atmospheric PCDD/Fs ranging from 0.97 to 255 fg I-TEQ/m3 in 11-year observations
in Taiwan [45]. Those values were slightly lower than those in the previous study in south-
ern Taiwan (0.0319–0.0847 pg I-TEQ/Nm3) [46,47]. A study in Southeast Asia showed that
the ambient levels were 15 times greater in urban areas than in rural areas, varying from
23 to 565 fg TEQ m−3 [48]. In addition, the present results were much lower than the reg-
ulation values of ambient air PCDD/F concentrations in Japan (0.6 pg I-TEQ/Nm3). As
shown in Table 3, the main species of measured PCDD/F were 1,2,3,7,8,9-Hexachlorodibenzo-p-
dioxin (1,2,3,7,8,9-HxCDD), 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDD),
1,2,3,7,8,9-Hexachlorodibenzofuran (1,2,3,7,8,9-HxCDF), 2,3,4,6,7,8-Hexachlorodibenzofuran
(2,3,4,6,7,8-HxCDF), 1,2,3,4,6,7,8- Heptachlorodibenzofuran (1,2,3,4,6,7,8-HpCDF), and
Octachlorodibenzofuran (OCDF), which were similar to the dominant congeners of OCDD,
OCDF, 1,2,3,4,6,7,8-HpCDF, and 1,2,3,4,6,7,8-HpCDD in Taiwan’s atmosphere [49].

Table 3. PCDD/F concentration (pg/m3) in ambient air.

PCDD/F Spring, 2017 Summer, 2017

2,3,7,8-TeCDD ND ND
1,2,3,7,8-PeCDD ND ND

1,2,3,4,7,8-HxCDD ND ND
1,2,3,6,7,8-HxCDD ND ND
1,2,3,7,8,9-HxCDD ND ND

1,2,3,4,6,7,8-HpCDD 0.0377 0.0177
OCDD 0.1042 0.0488

2,3,7,8-TeCDF ND ND
1,2,3,7,8-PeCDF ND ND
2,3,4,7,8-PeCDF ND ND

1,2,3,4,7,8-HxCDF ND ND
1,2,3,6,7,8-HxCDF ND ND
1,2,3,7,8,9-HxCDF 0.0068 ND
2,3,4,6,7,8-HxCDF 0.0013 ND

1,2,3,4,6,7,8-HpCDF 0.0341 0.0288
1,2,3,4,7,8,9-HpCDF ND ND

OCDF 0.0699 0.0434
PCDDs 0.1122 0.0722
PCDFs 0.1418 0.0665

PCDDs/PCDFs ratio 1.26 0.92
Total PCDD/DFs 0.2541 0.1387
PCDDs I-TEQ a 0.0005 0.0002
PCDFs I-TEQ a 0.0012 0.0003

PCDDs/PCDFs(TEQ) ratio 0.39 0.68
I-TEQ a 0.0017 0.0006

a The unit is pg I-TEQ/Nm3.

3.5. Source Identification by Principal Component Analysis

In order to estimate the possible emission sources for PMs, the PCA model was used
in this study. The PCA for water-soluble ions is listed in Table 4. The total value was over
79.8% of the explained variance. The PC1 had high loadings of Cl−, Na+, F−, and Mg2+

with a maximum percentage of variance of 46.94%. The Na+, Mg2+, and Cl− may come
from sea salt, while F− may come from industrial processes [50]. The PC2 consisted of
NO3

− and SO4
2−, with 32.92% of the total variance comprised of secondary pollutants

formed by photochemical reactions [51–53].
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Table 4. Principal component analysis (PCA) for water-soluble ions. The bold means it emphasize
the strong related ions to each Factors.

Water-Soluble Ions Factor 1 Factors 2

Na+ 0.831 0.324
NH4

+ −0.711 0.657
K+ −0.449 0.138

Ca2+ 0.184 −0.365
Mg2+ 0.781 0.064

F− 0.821 −0.110
Cl− 0.870 0.109

NO3
− 0.163 0.950

SO4
2− 0.487 0.719

% of Variance 46.942 32.921
Cumulative % 46.942 79.864

Possible sources Sea salt
Industrial process Secondary pollutants

4. Conclusions

In this study, we successfully characterized the PMs with size distributions, ion and
cation compositions, metals, and PCDD/F concentrations in an industry-intensive area in
central Taiwan. Coarse particles were dominant in spring and summer, with an average mass
concentration of 16.96 and 12.67 µg/m3, accounting for 47.5 and 45.6%, respectively. Fine
particle concentrations were 15.39 and 18.17 µg/m3 in autumn and winter, accounting for
46.7 and 62.2%, respectively. The sequence of the major ionic species in the coarse particles
were Cl− (1.63 µg/m3) > NO3

− (1.62 µg/m3) > SO4
2−(1.18 µg/m3), whereas the sequence

was SO4
2− (2.32 µg/m3) > Cl− (1.37 µg/m3) > NO3

− (1.30 µg/m3) in the fine particles.
In addition, the largest metal components were Na, Fe, Ca, Al, and Mg in different particle
sizes. The measured PCDD/F concentrations ranged from 0.0006 to 0.0017 pg I-TEQ/Nm3.
According to the results of PCA, the contribution to PMs were associated with sea salt,
secondary pollutants, and industrial process.
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