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Abstract: The accuracy of the atmospheric mass density is one of the most important factors affecting
the orbital precision of spacecraft at low Earth orbits (LEO). Although there are a number of empirical
density models available to use in the orbit determination and prediction of LEO spacecraft, all
of them suffer from errors of various degrees. A practical way to reduce the error of a particular
model is to calibrate the model using precise density data or tracking data. In this paper, a long
short-term memory (LSTM) neural network is proposed to calibrate the NRLMSISE-00 density model,
in which the densities derived from spaceborne accelerometer data are the main input. The resulted
LSTM-NRL model, calibrated using the accelerometer data from Challenging Minisatellite Payload
(CHAMP) satellite, is extensively experimented to evaluate the calibration performance. With data in
one month to train the LSTM-NRL model, the model is shown to effectively reduce the root mean
square error of the model densities outside the training window by more than 40% in various time
spans and space weather environment. The LSTM-NRL model is also shown to have remarkable
transferring performance when it is applied along the GRACE satellite orbits.

Keywords: atmospheric density; calibration model; LSTM; empirical density model

1. Introduction

Low Earth orbiting (LEO) satellite orbit is affected by many perturbing forces, among
which the atmospheric drag has the largest uncertainty [1]. The drag is the result of the
exchange of energy and momentum between satellite and the atmosphere [2], and its model
needs the atmospheric mass density as one of several inputs. As such, the error of the
atmospheric mass density leads to uncertainty in the orbit determination and propagation
of LEO satellites, which is essential to space conjunction analysis and collision avoidance.

Since the launch of the first spacecraft, many atmospheric models have been devel-
oped to calculate the major parameters of the thermosphere, including the mass density.
These models can be divided into an empirical model and a physical model. The physical
model uses numerical methods to solve the fluid equations describing the thermospheric-
ionospheric coupling system, such as the global scale ionosphere-thermosphere coupled
numerical model (TIE-GCM) developed by the National Center for the Atmosphere
(NCAR) [3,4], and the global ionospheric thermosphere Model (GITM) developed by
the University of Michigan [5]. The physical model does not rely on historical measure-
ments, and can simulate the internal physical mechanisms of the atmosphere [6]. However,
due to the low computational efficiency [7] and the uncertainty of the physical input [8],
the physical model are mainly used in the theoretical research in the identification, analysis,
and interpretation of physical processes.

At present, the astrodynamics community mostly uses empirical models to compute
atmospheric mass density in the orbital propagation of LEO satellites. The empirical models
include the mass spectrometer and incoherent scatter radar model (MSIS) class model [9],
Jacchia class model [10], and the drag temperature model (DTM) class model [11]. The
latest versions of these models take into account the densities derived from high-resolution
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accelerometer data of the CHAMP and GRACE satellites. However, the empirical models
are still believed to have errors of about 15~30%, and the errors could be much larger
during the times of strong solar flares and geomagnetic storms.

Therefore, many researchers have been working on reducing the errors of empirical
models; one approach calibrated empirical models using the measured orbit and density
data. The modified atmospheric density model (MADM), proposed by Marcos et al., uses
a global calibration factor generated by the observations from one calibration satellite to
improve the Jacchia 1970 model, and the calibration improves short-term orbit prediction
capability by 15~30% [12]. Nazarenko et al. use a polynomial fitting the density model error
to improve the accuracy of the density model by obtaining the polynomial coefficients [13].
Shi et al. uses two-line element (TLE) data to calibrate the NRLMSISE-00 model during the
high solar activity period, and the root mean square error of the model is reduced by 9% [14].
The U.S. Air Force Space Battlelab’s high accuracy satellite drag model (HASDM) uses
radar tracking data of 75 satellites from the space surveillance network (SSN) to calibrate
the Jacchia-70 model, reducing the error of density to 6~8% at altitude ranges from 200 km
to 800 km. Moreover, the accuracy of orbital prediction within 3 days is improved by about
40% using the HASDM model [15,16]. Emmert et al. [17] and Picone et al. [18] proposed
to derive the thermospheric mass density from TLE data, and the density is then used to
calibrate the empirical density [19]. The results show that the error of density computed
from the NRLMSISE-00 model is reduced to 12% [20], but this approach is limited by
the temporal resolution and the accuracy of TLE data. Sang et al. proposed a method
for calibrating the empirical atmospheric density along the orbit using the Precise Orbit
Determination Data (POD) [21]. These methods are all based on the physical relationship
between atmospheric drag and orbit variation. The effectiveness of the methods is not only
affected by the quality and distribution of data, but also depends on the rationality of the
basic assumptions of the methods.

In the past few years, many researchers have applied the machine learning in calibra-
tion of the empirical density. Perez et al. use the feed-forward time delay neural network
(FTDNN) and the recurrent time delay neural network (RTDNN) to calibrate the empirical
model density along the orbits. The data used in the training process includes the density
computed from three empirical models (the DEM-2013, JB2008 and NRLMSISE-00) and
the density derived from accelerometer data [22,23]. Gao et al. use the Gaussian process
method to calibrate the NRLMSISE-00 and JB-2008, and a framework is developed to esti-
mate the atmospheric density based on empirical models, space environmental conditions,
and satellite measurements [24]. Chen et al. use artificial neural network to calibrate the
density model during magnetic storms; the accuracy of the short-term orbit prediction is
superior to those using JB-2008 and NRLMSISE-00 [25].

For the orbital propagation, a time series of the atmospheric density is needed. The
recurrent neural network (RNN) can remember the information before the current time,
and adopts this information into the current output. The RNN is proved to be effective on
calibrating the atmospheric density along the orbit (two neural networks used in Perez et al.
are RNN). However, the training process of traditional RNN could lead to “gradient
disappearance” or “gradient explosion”, which may cause the failure of the training model.
As a type of RNN, the long short-term memory (LSTM) neural network is specifically
designed to solve such problem by gate control system, which motivates us to train a
density calibration model based on the LSTM.

In this paper, the LSTM is applied to calibrate the empirical NRLMSISE-00 density
model along the orbit of spacecraft. The data used to train model includes the empirical
densities along the orbit of the CHAMP satellite and the space weather data. The labels
are the densities derived from the accelerometer data of the CHAMP, which is the target
of the calibration. In the test process, the empirical density and space weather data are
the inputs into the LSTM, resulting in a calibrated density model named LSTM-NRL. The
performance of the LSTM-NRL model outside the training window is evaluated with the
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accelerometer-derived density as the reference. The LSTM-NRL model is also applied in the
orbit propagation of CHAMP to demonstrate its ability to reduce the orbit prediction error.

Section 2 starts with the introduction of the data and methods used in this paper. The
NRLMSISE-00 and the accelerometer-derived density are introduced in Section 2. A brief
introduction of the LSTM neural network and the training process are also included in
Section 2, as well as eight test sets in this paper. The results of the eight experiments are
presented and analyzed in Section 3. Discussion of the results are presented in Section 4,
and Section 5 concludes this paper.

2. Data and Methods
2.1. NRLMSISE-00 Model

The NRLMSISE-00 is the latest of the MSIS class empirical models which describes
the density, temperature, and composition of the thermosphere. This model utilizes the
density derived from the accelerometer data and orbits, the molecular oxygen density, and
the temperature obtained from incoherent scatter radar [9]. The inputs of NRLMSISE-00
include the time, the position (geodetic latitude and longitude, altitude), and the space
weather data in forms of the daily value of solar extreme ultraviolet radiation index (F10.7),
its average (F10.7a) in 81 days, and the geomagnetic index (ap).

2.2. The “True” Density

The density derived from the spaceborne accelerometer data is widely used to evaluate
the accuracy of the atmospheric density model [22], since the high-precision accelerometer
accurately measures non-gravitational acceleration exerting on satellite. By eliminating the
acceleration caused by the solar radiation pressure from the measured acceleration, the rest
is the drag acceleration, adrag. The mass density, ρ, can be computed from the following
Equation (1):

adrag = −1
2

Cd
A
m

ρvv (1)

where, Cd is the drag coefficient of the satellite, A
m is the area-to-mass ratio of the satellite,

and v is the velocity vector of the satellite with respect to the atmosphere.
In this paper, The CHAMP satellite is selected as test satellite. CHAMP was launched

on 15 July 2000 into 460 km altitude orbit and reentered on 19 September 2010. The satellite
was equipped with high precision accelerometer and GPS receiver, among other sensors.
The atmospheric density retrieved from the accelerometer data is regarded as the “true”
value. The “true” density is used not only as calibration target in the training process,
but also as a reference to evaluate the performance of the LSTM-NRL outside the training
window. It is noted that, when retrieving the density from CHAMP accelerometer data, Cd
calculated through response surface model by Mehta [26–28] is used. For more information
about retrieving the density from accelerometer data, it is referred to in [20,29].

Precise ephemeris of the satellite is determined by processing GPS tracking data and
is made public on the website of the German Research Center for Geosciences (GFZ) [30].
It is used to compute the NRLMSISE-00 model density value along the orbit of satellite at
time of interest.

2.3. LSTM Neural Network
2.3.1. LSTM Cells

The LSTM network is a type of RNN network, which is designed specifically to
deal with time series data. RNN is characterized by the ability to consider the previous
information to the current output. The RNN mainly adopts back-propagation through
time (BPTT) [31], or real-time recurrent learning (RTRL) [32] to descent the gradient in
processing the time series data. Although the ways of getting gradients and updating
model parameters are different for two algorithms, the RNN is prone to the phenomenon
of “gradient disappearance” or “gradient explosion”, which will lead to too long learning
time or even failure to achieve the gradient descent or allocate weight [33,34].
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Unlike traditional RNN, the LSTM solves the problem of gradient disappearance and
explosion by gate control system, which includes the input gate, output gate, forget gate,
and memory gate. The structure of a LSTM cells is shown in Figure 1.
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The whole orange box in Figure 1 presents an LSTM cell at the current moment, and
the yellow rectangle means sigmoid or tanh layer, which are the activation functions in
the LSTM. The state of the cell (ct−1) and the information in the hidden layer (ht−1) at
the last moment are transformed into the current moment cell. First, ht−1 and the input
information at the current time, xt, are inputs into the forget gate (red box). The output of
the sigmoid [0, 1] determines how much information in ct−1 needs retained or discarded.
The 1 means all information retained and the 0 means completely discarded. The forget
gate can be represented by Equation (2):

ft = σ
(

W f 1xt + W f 2ht−1 + b f

)
(2)

where b is the bias vector, W are the weight matrix, and the subscript refers to the corre-
sponding element.

Then, there are two parts in the input gate (green box). The output of sigmoid and
tanh determines how much and what new information needs to be added in the current
cell, respectively. The output value of the input gate is added to the state of the current cell
ct, which is updated by the forget gate at the last step. The input gate can be represented
by Equations (3) and (4):

it = σ(Wi1xi + Wi2ht−1 + bi) (3)

ct = ftct−1 + ittanh(Wc1xt + Wc2ht−1 + bc) (4)

where ct is the updated cell state, and it ∈ [0, 1] determines how much information will be
added to ct, which will be regarded as input data to the next cell.

Finally, there are two parts in the output gate (blue box). The output of sigmoid
determines how much information will be used, and the tanh provides the information, as
described in Equations (5) and (6). Similarly, ct, the ht will be regarded as input data to the
next cell too.

ot = σ(Wo1xi + Wo2ht−1 + bo) (5)

ht = ottanh(ct) (6)
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2.3.2. LSTM-NRL Model

The training data of the LSTM-NRL includes the NRLMSISE-00 densities and space
weather data as the sample data, and the “true” density as corresponding labels from
1 January to 28 January 2007. The empirical density and the “true” density are introduced
in Sections 2.1 and 2.2. As the density value has a small magnitude (10−12 ∼ 10−13 kg/m3),
its logarithmic value is used to avoid the influence of data magnitude on the processing
results. The space weather data include F10.7, F10.7a, and ap index. The 10.7 cm solar radio
flux (F10.7) is one of the most widely used indices of solar actively [35]. F10.7 is determined
by the average of the intensity of solar radio emission in the 100 MHz bandwidth centered
at 2800 MHz (the wavelength is 10.7 cm) over an hour. The unit of F10.7 is sfu, and
1s f u = 1022 W/

(
m2·Hz

)
. Since the solar activity has a huge influence on the thermosphere

density, both the daily value of F10.7 and its average (F10.7a) in 81 days are used to represent
the solar activity level. Besides, during geomagnetic storms, the geomagnetic activity may
affect the thermospheric atmosphere more than the solar activity [36], thus the geomagnetic
index (ap) given every 3 h is used to represent the geomagnetic activity. The ap has a unit
in nT [37]. In this paper, the F10.7, F10.7a, and ap index are downloaded from CelesTrak
website [38].

In the training process, each type of the original training data is standardized using
the Equation (7).

x(n)t =
xo

(n)
t − µ(n)

σ(n)
(7)

where the xo
(n)

t is a specific type of original data (empirical density, “true” density, F10.7,
F10.7a or ap) at t, µ(n) and σ(n) are expectation and standard deviation of corresponding
original training data, respectively. The structure of the LSTM-NRL density calibration
model is shown in Figure 2, including an input layer, a hidden layer, an output layer, and
the training process.
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In Figure 2, the standardized data includes the sample data X and corresponding
labels Y, which can be expressed as Equations (8) and (9), respectively.

X =


X1
X2
...

Xn

 =


s1 s2 · · · st
s2 s3 · · · st+1
...

sn

...
sn+1

...
· · ·

...
st+n−1

 (8)
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Y =


Y1
Y2
...

Yn

 =


ρt

ρt+1
...

ρt+n−1

 (9)

where si = (lg(ρMSISE)i, F10.7i, F10.7ai, api). t is the time delay of the LSTM network,
one of the important parameters, which will affect the performance of the model. For the
calibration of density time series, the time delay determines how many previous data points
are considered to calibrate the empirical density at the current time. The n in Equation (8)
is determined by t and another parameter: sample rate. The sample rate determines how
dense the density data is on the time scale. Whether small or too large, the sample rate
may lead to over-fitting or under-learning of the atmospheric density features, which will
affect the performance of trained model within and/or outside the training window. The
accelerometer data rate is 0.1 Hz, resulting in a total of 241,920 “true” densities and sample
data si during the training period. The appropriate time delay and sample rate are found
by trying different combinations. For the given problem, the time delay and the sample
rate are found to be 200 data points and 60 s, respectively. More details are presented in
Section 3. Therefore, the n in Equation (8) is 40,120 (n = total training data size/data sample
rate-time delay = 241,920/60–200) sets of data are eventually used in the model training.
The labels Yj is the “true” density at the next data point of the sample data. For example,
X1 includes 200 sample data from s1 to s200, the corresponding label is lg(ρ)200.

The hidden layer of the LSTM-NRL consists of n LSTM cells, as shown in Figure 2.
When Xi is the input to the cell, the output yi of each cell can be represented by Equation (10).

yi = LSTM f orward(Xi, Ci−1, Hi−1) (10)

where LSTM f orward is the LSTM forward calculation method Equations (2)–(6).
After that, the MSE is used as the loss function to calculate the difference between y

and the “true” density Y. The loss function is shown in Equation (11).

MSE(y, Y) =
1
n

n

∑
i=1

(yi −Yi)
2 (11)

The adaptive moment estimation (ADAM) is used to update the weights of LSTM
network in the direction of the decreasing value of the loss function, as shown in Figure 2.
More details about ADAM can be obtained from [39]. Lastly, X is the input to the cells
in the hidden layer, whose weights are updated at last epoch, to update the weights of
network for many times, then the final hidden layer and LSTM-NRL can be obtained.

When the LSTM-NRL is used to calibrate the empirical density, the output of hidden
layer yi is standardized and needs to be de-standardized to obtain the calibrated density,
as shown in Equation (12).

lg(ρ̂i) = yi × σ + µ (12)

where σ and µ are expectation and standard deviation of the empirical density, respectively.
In summary, the input to the LSTM-NRL include the NRLMSISE-00 empirical density,

the daily F10.7, its average F10.7a in 81 days, and the 3-hourly geomagnetic index ap, and
the output is the calibrated density. The input and output relationship of the LSTM-NRL
model is shown in Equation (13).

lg(ρ̂(t)) = f


lg(ρMSISE(t)), . . . lg(ρMSISE(t− (TMSISE − 1)ts))

F10.7(t), . . . F10.7(t− (TMSISE − 1)ts)
F10.7a(t), . . . F10.7a(t− (TMSISE − 1)ts)

ap(t), . . . ap(t− (TMSISE − 1)ts)

 (13)

where f represents the nonlinear function of the density calibration using the LSTM-NRL,
lg(ρ̂(t)) is the calibrated density output from the LSTM-NRL at t. ρMSISE(t), F10.7(t),
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F10.7a(t), and ap(t) are the empirical density, F10.7, it’s average in 81 days, and geomagnetic
index at t, respectively. TMSISE and ts are the time delay and sample rate, respectively.

2.4. Test Experiment Design

Given the training time window, from 1 January to 28 January 2007, the LSTM-NRL
model is trained and its performance within and outside the training window has to
be evaluated. In particular, the performance in different time spans and space weather
environments after the training window is of most interest, since the LSTM-NRL model is
to be used in practical applications. Eight tests are designed as follows.

• Test 1: the purpose is to determine the time delay and sample rate. The time delay
and the sample rate of the LSTM-NRL model are tuned. In the tuning, the data on
31 January 2007 is used as the test data. The parameter tuning results are presented in
Section 3.1.

• Test 2 and Test 3: the purpose is to evaluate the performance of LSTM-NRL over
different time spans after the training window. Test 2 uses the data sets in a month
1–28 February 2007 as test data, and Test 3 uses the data in a year from 1 March 2007
to 29 February 2008.

• Test 4 and Test 5: the purpose is to evaluate the performance of the LSTM-NRL model
at different solar and geomagnetic activity level. Test 4 chooses 2 days, a day of high
solar and geomagnetic activity on 30 January 2007 (day 30 of 2007) and a day of
low solar and geomagnetic activity on 19 August 2007 (d231), as test sets to observe
the performance of the LSTM-NRL model. It is noted that the 2 days in Test 4 are
chosen to compare with the calibration performance of other researchers under typical
high or low solar and geomagnetic activity [22,24]. To further verify the LSTM-NRL
model performance during period of high or low solar and geomagnetic activity, Test
5 chooses other 3 days with high solar and geomagnetic activity (Test 5-high, day 118,
195, and 345 of 2007), and 3 days with low (Test 5-low, day 103, 204, and 322 of 2007)
as test sets.

• Test 6: the purpose is to assess the LSTM-NRL’s performance over most of CHAMP
satellite’s operation life. The data in 6 full years from 2003 to 2008 is chosen as test
sets, during which the orbital altitude of the satellite has changed significantly.

• Test 7: the purpose is to demonstrate the transferring performance of the LSTM-NRL
model trained using the CHAMP data. Test 7 takes the density along the orbits of two
GRACE satellites as test sets.

• Test 8: the purpose is to present the effect of the LSTM-NRL model on the orbital
propagation accuracy.

The mean values of F10.7 and ap in the training process and Test 1 to Test 5 are presented
in Table 1, and the trend of space weather index in the tests is shown in Figure 3. Besides,
the mean values of F10.7 and ap in Test 6 are given in Section 3.4.

Table 1. The mean of solar radio flux (F10.7) and geomagnetic index (ap) in different time span.

Texst Time Span Mean of F10.7 (sfu) Mean of ap (nT)

Train 1 January 2007–28 January 2007 80.34 8.43
Test 1 31 January 2007 86.94 19.46
Test 2 1 February 2007–28 February 2007 75.8 7.08
Test 3 1 March 2007–29 February 2008 71.64 7.61

Test 4-d30 30 January 2007 84.9 24
Test 4-d231 19 August 2007 69.4 4
Test 5-high 28 April 2007 & 14 July 2007 & 11 December 2007 86.0 & 78.2 & 90.5 28.0 & 19.0 & 16.0
Test 5-low 13 April 2007 & 23 July 2007 & 18 November 2007 68.0 & 69.3 & 67.2 1.0 & 3.0 & 2.0
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2.5. Model Performance Evaluation

To assess the performance of the LSTM-NRL, two metrics are used: the root mean
squared error (RMSE) and the Pearson correlation coefficient (R). RMSE is used to represent
the deviation of the model density from the “true” density shown in Equation (14), and R
measures the linear dependence between two series shown in Equation (15).

RMSE =

√
1
n

n

∑
i=1

(ρ̂i − ρi)
2 (14)

R =
∑n

i=1(ρi − ρi)
(
ρ̂i − ρ̂i

)√
∑n

i=1(ρi − ρi)
2 ∑n

i=1
(
ρ̂i − ρ̂i

)2
(15)

where ρ is the “true” density, and ρ̂ is the density from the NRLMSISE-00 or LSTM-
NRL model.

For a series of calibrated density and corresponding “true” density series, the smaller
RMSE is, the closer the two density series are, and the better the calibration performance
of the model is. The R between the calibrated density series and the “true” density series
present the linear dependence between two series, and the R ∈ [0, 1]. R > 0.6 indicates a
strong correlation between the two density series, and R < 0.4 indicates a weak correlation.

3. Results
3.1. Determination of the Time Delay and Sample Rate

TMSISE and ts determine how many data sets before the current time are considered
to calibrate the density, which will affect the performance of the trained model. According
to Equations (8) and (10), the output of LSTM cell from the hidden layer y(i) is determined
by X(i) at time i, which can be expressed by Equation (16).

X(i) =
[

S(i) S(i− 1× ts) · · · S(i− ((TMSISE − 1)× ts)
]

(16)
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where S(i) = (lgρMSISE(i), F10.7(i), F10.7a(i), ap(i)). As shown in Equation (16), ts de-
termines how dense the density data on the time scale is used to compute y(i). TMSISE
determines how many data points before time i are considered to compute y(i). In the train-
ing process, overly small or large ts and TMSISE may lead to over-fitting or under-learning
of the atmospheric density features, respectively, which will affect the performance of
trained model.

In this section, the appropriated time delay and the sample rate of the LSTM-NRL
model are found by parameter tuning method Using the data on 31 January 2007 as the
test set, Test 1 evaluates the performance of the LSTM-NRL with different TMSISE and ts,
and then the two parameters resulting in the best model performance are chosen.

Firstly, the sample rate ts is set to fixed 60 s and various TMSISE are tried. The RMSE
and R values between the calibrated density series and the “true” density series are shown
in Table 2. For comparison, the two metrics between the empirical density series and the
“true” density series are also presented in Table 2 too. It is noted that the best results, in
terms of RMSE and R, are bold in the following tables.

Table 2. The performance of the LSTM-NRL when changing TMSISE. It is noted that the best results,
in terms of RMSE and R, are bold in the table.

Model TMSISE ts(s) RMSE( kg
m3×10−12) R

NRLMSISE-00 - - 1.0487 0.8761

LSTM-NRL

10 60 0.2899 0.9000
20 60 0.2742 0.9093
50 60 0.2822 0.9093

100 60 0.2715 0.9105
200 60 0.2616 0.9152
300 60 0.2646 0.9157
500 60 0.3053 0.9273

As shown in Table 2, for the tried TMSISE and ts, the LSTM-NRL performs better than
the NRLMSISE-00, where the density output from the LSTM-NRL is closer to the “true”
density than the empirical model. The minimum RMSE is obtained when TMSISE is set as
200. Increasing the time delay to 300 or 500 will result in higher R, but RMSE is decreased.
From this table, it is seen that the best TMSISE is 200, corresponding to the sample rate
ts = 60 s. In fact, given TMSISE = 200, the best sample rate ts = 60 s is obtained from
the results in Table 3. Therefore, the time delay and sample rate are set to 200 and 60 s,
respectively, in the following experiments.

Table 3. The performance of the LSTM-NRL when changing the ts. It is noted that the best results, in
terms of RMSE and R, are bold in the table.

Model TMSISE ts(s) RMSE( kg
m3×10−12) R

NRLMSISE-00 - - 1.0487 0.8761

LSTM-NRL

200 30 0.3014 0.9057
200 60 0.2616 0.9152
200 120 0.2667 0.9163
200 180 0.3181 0.9137
200 300 0.3632 0.8775
200 600 0.3602 0.8720

3.2. Extrapolation Performance of the LSTM-NRL over Long Time Span

Test 2 and the Test 3 use data in one month and one year, respectively, to evaluate
the long-term extrapolation performance of the LSTM-NRL outside the training window.
Table 4 presents the overall performance of the LSTM-NRL during the two evaluation
time spans.
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Table 4. The overall performance of the LSTM-NRL in Test 2 and Test 3. It is noted that the best
results, in terms of RMSE and R, are bold in the table.

Model Time Span Test 2 Test 3

LSTM-NRL
R

1 month
0.8859 0.9283

RMSE ( kg
m3 × 10−12) 0.2115 0.3129

NRLMSISE-00
R 1 year 0.8569 0.9055

RMSE ( kg
m3 × 10−12) 0.5747 0.9799

As presented in Table 4, the overall RMSE values are reduced by 63.2% and 68.1% for
Test 2 and Test 3, respectively, which means that the densities calibrated by LSTM-NRL
during a month (Test 2) or a year (Test 3) are closer to the “true” densities than the empirical
densities. The overall R values between the calibrated densities and the “true” densities
are increased during the test month and test year. The calibrated densities has better linear
correlation with the “true” densities than the empirical densities.

To have a more detailed knowledge about the performance of the LSTM-NRL during
the test month and the test year, Figures 4 and 5 show the daily RMSE and R over the time
spans of Test 2 and Test 3.

Atmosphere 2021, 12, 925 11 of 21 
 

 

 
Figure 4. The daily RMSE and R over a month of Test 2. 

 
Figure 5. The daily RMSE and R over a year of Test 3. 

3.3. Performance of the LSTM-NRL on Days of High and Low Solar and Geomagnetic Activity 
The solar and geomagnetic activities are two major driving factors affecting the dy-

namics of the atmosphere. Densities computed from empirical models during the time of 
high solar and geomagnetic activity usually have larger errors. It would be interesting to 
see whether the LSTM-NRL model has better performance than the original NRLMSISE-
00 model during the time of high activities, as well as the time of low activities. Test 4 and 
Test 5 have such days, the performance of which are presented below. 

In Test 4, day 30 and day 231 of 2007 represent the times of high and low activity, 
respectively. The densities computed by the LSTM-NRL, the NRLMSISE-00, and the ac-
celerometer on the two days are shown in Figures 6 and 7. 

Figure 4. The daily RMSE and R over a month of Test 2.

Atmosphere 2021, 12, 925 11 of 21 
 

 

 
Figure 4. The daily RMSE and R over a month of Test 2. 

 
Figure 5. The daily RMSE and R over a year of Test 3. 

3.3. Performance of the LSTM-NRL on Days of High and Low Solar and Geomagnetic Activity 
The solar and geomagnetic activities are two major driving factors affecting the dy-

namics of the atmosphere. Densities computed from empirical models during the time of 
high solar and geomagnetic activity usually have larger errors. It would be interesting to 
see whether the LSTM-NRL model has better performance than the original NRLMSISE-
00 model during the time of high activities, as well as the time of low activities. Test 4 and 
Test 5 have such days, the performance of which are presented below. 

In Test 4, day 30 and day 231 of 2007 represent the times of high and low activity, 
respectively. The densities computed by the LSTM-NRL, the NRLMSISE-00, and the ac-
celerometer on the two days are shown in Figures 6 and 7. 

Figure 5. The daily RMSE and R over a year of Test 3.



Atmosphere 2021, 12, 925 11 of 20

As shown in Figure 4, all the RMSE values between the calibrated densities and
the “true” densities in each day of the test month (Test 2) are smaller than the empirical
densities. Most of the R values between the calibrated densities and the “true” densities
are higher than the empirical densities. From these two metrics, the LSTM-NRL is shown
to perform better than the NRLMSISE-00 model in the test month.

The daily RMSE and R values in Figure 5 show a similar picture in each day of the test
year (Test 3). It is noted that, although the R values in Figure 5 has a drop after day 250, most
of the R values are still greater than 0.6, which means there are strong linear correlations
between the calibrated densities and the “true” densities in most days of the test year. In
combination with Table 4 and Figures 4 and 5, the LSTM-NRL model is still quite effectively
over one year, and the density accuracy after the calibration is significantly improved.

3.3. Performance of the LSTM-NRL on Days of High and Low Solar and Geomagnetic Activity

The solar and geomagnetic activities are two major driving factors affecting the
dynamics of the atmosphere. Densities computed from empirical models during the time
of high solar and geomagnetic activity usually have larger errors. It would be interesting to
see whether the LSTM-NRL model has better performance than the original NRLMSISE-00
model during the time of high activities, as well as the time of low activities. Test 4 and
Test 5 have such days, the performance of which are presented below.

In Test 4, day 30 and day 231 of 2007 represent the times of high and low activity,
respectively. The densities computed by the LSTM-NRL, the NRLMSISE-00, and the
accelerometer on the two days are shown in Figures 6 and 7.
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It is clear that the densities from the LSTM-NRL (blue lines) are much closer to the
“true” density (red lines) than those from the NRLMSISE-00 (green lines) on both days.
Both in the general trends and at extremes, the densities from the LSTM-NRL are highly
consistent with the “true” densities. The RMSE and R with respect to the empirical model
and LSTM-NRL on the two days are presented in Table 5. The improvement on RMSE is
67.3% and 73.0% on day 30 and day 231, respectively.

Table 5. The performance of the LSTM-NRL in Test 4. It is noted that the best results, in terms of RMSE and R, are bold in
the table.

Day Model RMSE
( kg

m3×10−12) R Improvement on RMSE

Test4-d30
(F10.7 = 84.9s f u, Ap = 24nT)

NRLMSISE-00 0.9128 0.8643 -
LSTM-NRL 0.2987 0.9184 67.3%

Test4-d231
(F10.7 = 69.4s f u, Ap = 4nT)

NRLMSISE-00 0.7653 0.9230 -
LSTM-NRL 0.2065 0.9440 73.0%

As shown in Table 5, using LSTM-NRL, the RMSE between the calibrated densities and
the “true” densities is reduced from 0.9128 and 0.7653 to 0.2987 and 0.2065 on the day 30
(high activity) and the day 231 (low activity), respectively. It is presented by Perez et al. [22]
and Gao et al. [24] that the RMSE improvement on these two days uses different machine
learning methods. The improvements by Perez et al. using RTDNN are 36.1% and 59.5%
on day 30 and day 231, respectively. Following Gao et al.’s use of the Gaussian Process
method, they are 43.1% and 66.4%, respectively. As a comparison, the LSTM-NRL achieves
better RMSE improvements of 67.3% and 73.0%, respectively. The improvement on day
231 of low activity is more significant than that on day 30 of high activity.

On other days in Test 5, the RMSE improvements from the calibration are further
confirmed, as shown in Table 6.

Table 6. The performance of the LSTM-NRL in Test 5. It is noted that the best results, in terms of
RMSE and R, are bold in the table.

Day Model RMSE ( kg
m3×10−12) R

Test5-high

2007d118
LSTM-NRL 0.5114 0.9403

NRLMSISE-00 1.2177 0.9270

2007d195
LSTM-NRL 0.4908 0.8672

NRLMSISE-00 0.6937 0.8302

2007d345
LSTM-NRL 0.4029 0.7684

NRLMSISE-00 1.0659 0.8146

Test5-low

2007d103
LSTM-NRL 0.2122 0.9692

NRLMSISE-00 0.9479 0.9657

2007d204
LSTM-NRL 0.2322 0.8975

NRLMSISE-00 0.5989 0.8303

2007d322
LSTM-NRL 0.1996 0.8032

NRLMSISE-00 1.0596 0.7489

As shown in Table 6, the RMSE values between the calibrated densities and the
“true” densities, which are shown in bold, are smaller than the no-calibrated densities,
and the values of R are almost similar in all six days. On the three days of high activity,
the improvements of the RMSE values by the calibration are 58.0%, 29.2%, and 62.2%,
respectively. They are 77.6%, 61.2% and 81.2%, respectively, on the three days of low
activity. There are strong linear correlations between the calibrated densities and the
“true” densities in all six days. Again, the improvements on days of low activity are more
significant than those on days of high activity.
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From these results, it could be concluded that the LSTM-NRL model has a better
performance in both the times of high and low solar and geomagnetic activities in 2007.

3.4. Performance of the LSTM-NRL over the CHAMP Operational Life

Test 2 and Test 3 have shown the performance improvements from the LSTM-NRL
model over a month and a year after the training window of one month. In Test 6, the
LSTM-NRL model is applied over the six operational years of CHAMP satellite from 2003
through 2008, and thus a more comprehensive performance evaluation is made. These six
years not only cover most operational life of CHAMP, but also high solar and geomagnetic
activity year (2003) and low year (2007). The yearly RMSE and R values over the six years
are presented in Table 7, as well as the yearly mean F10.7 and ap values.

Table 7. The performance of the LSTM-NRL in 6 years from 2013 through 2018. It is noted that the
best results, in terms of RMSE and R, are bold in the table.

Year Model RMSE ( kg
m3×10−12) R

2003
(F10.7 = 139.4s f u, Ap = 12.5nT)

NRLMSISE-00 0.9659 0.8668
LSTM-NRL 0.4393 0.9398

2004
(F10.7 = 106.5s f u, Ap = 13.4nT)

NRLMSISE-00 0.6882 0.9075
LSTM-NRL 0.3886 0.9435

2005
(F10.7 = 91.72s f u, Ap = 13.5nT)

NRLMSISE-00 0.7696 0.8902
LSTM-NRL 0.4575 0.9244

2006
(F10.7 = 80.0s f u, Ap = 8.5nT)

NRLMSISE-00 0.7705 0.9068
LSTM-NRL 0.3184 0.9346

2007
(F10.7 = 73.1s f u, Ap = 7.5nT

NRLMSISE-00 0.9277 0.9025
LSTM-NRL 0.2844 0.9331

2008
(F10.7 = 68.6s f u, Ap = 6.9nT)

NRLMSISE-00 1.3110 0.8988
LSTM-NRL 0.3611 0.9335

2003~2008
(F10.7 = 91.4s f u, Ap = 11.9nT)

NRLMSISE-00 0.9297 0.8721
LSTM-NRL 0.3791 0.9411

2004~2008
(F10.7 = 84.0s f u, Ap = 9.5nT)

NRLMSISE-00 0.9221 0.8761
LSTM-NRL 0.3654 0.9395

As presented in Table 7, the performance of the LSTM-NRL model in terms of RMSE
and R is significantly better than that of the NRLMSISE-00 model throughout the six years,
although the LSTM-NRL model is trained using one month of data only. The yearly RMSE
improvements are presented in Table 8. For comparison, the improvements using the
RTDNN by Perez et al. are presented too. It is noted that the result of the RTDNN has the
best performance without the velocity as input in the paper of Perez et al.

Table 8. The RMSE improvement comparison between LSTM-NRL and RTDNN-3inputs in 6 years.

Year
Yearly RMSE Improvement

LSTM-NRL Perez (RTDNN-3inputs) 1

2003 54.5% -
2004 43.1% 14.7%
2005 40.5% 5.9%
2006 58.7% 28.6%
2007 69.3% 47.2%
2008 72.5% 45.0%

2004–2008 60.4% 32.6%
1 3 inputs include the density estimated by the DEM-2013, JB2008 and NRLMSISE-00.
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It can be seen that the yearly improvement of the RMSE by the LSTM-NRL is at least
more than 40%, and they are 69.3% and 72.5% for 2007 and 2008, respectively. The better
performance in 2007 can be attributed to the closeness between 2007 and the training
window, and the similar solar and geomagnetic activity levels during these two time
periods. On the other hand, Perez et al. use the data in 2003 to train RTDNN-3inputs
model, and the density data in 2007 is to find the appropriate time delay. That results in
better performance of the RTDNN-3inputs in 2007 and 2008, and worse performance in
2004 and 2005, which are furthest away in time from 2007. Comparing with the RTDNN-
3inputs model, the LSTM-NRL not only has better performance in 2007 and 2008, but also
is good in 2004 and 2005. From these analyses, it is demonstrated that the LSTM model is
better suited to the problem of density calibration since the LSTM is better at memorizing
and processing data over much longer periods of time.

3.5. Transferring Ability of the LSTM-NRL

An important feature of machine learning models is their transferring ability. In the
case of the density calibration discussed in this paper, the data from CHAMP satellite
is used to train the LSTM-NRL model. To evaluate the transferring performance of this
LSTM-NLR model, experiments using data from GRACE satellites are made.

The GRACE mission consists of twin satellites (GRACE-A and GRACE-B) at the orbital
altitude of 500 km and inclination of 89.96◦. Both GRACE satellites are equipped with
accelerometers, and thus the densities derived from the accelerometer data can be regarded
as the “true” densities to evaluate the transferring ability of the LSTM-NRL model trained
using the data from CHAMP which is at the altitude of 350 km and inclination of 87.18◦.

Test 7 takes the NRLMSISE-00 empirical densities, “true” densities of the two GRACE
satellites, and space weather data in January 2008 as test set, to evaluate the performance
of the trained LSTM-NRL model along GRACE satellite orbit. The density series along the
GRACE orbits on day 10 and day 20 in January is shown in Figures 8 and 9, respectively.
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It can be seen that the density calibrated by the LSTM-NRL (blue lines) is closer to
the “true” density (red lines) than the density computed from the NRLMSISE-00 (green
lines) on the two days for both GRACE-A and GRACE-B. Both in the general trends and at
extremes, the densities from the LSTM-NRL are highly consistent with the “true” densities.
The LSTM-NRL shows significant calibration effect on the NRLMISISE-00 densities on
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two days for GRACE-A and GRACE-B. The overall performance metrics are presented in
Table 9.

Atmosphere 2021, 12, 925 16 of 21 
 

 

 
Figure 9. The density series along the GRACE orbits on day 20 of 2008. 

It can be seen that the density calibrated by the LSTM-NRL (blue lines) is closer to 
the “true” density (red lines) than the density computed from the NRLMSISE-00 (green 
lines) on the two days for both GRACE-A and GRACE-B. Both in the general trends and 
at extremes, the densities from the LSTM-NRL are highly consistent with the “true” den-
sities. The LSTM-NRL shows significant calibration effect on the NRLMISISE-00 densities 
on two days for GRACE-A and GRACE-B. The overall performance metrics are presented 
in Table 9. 

Table 9. The RMSE and R of the density series along the orbits of three satellites in January 2008. It 
is noted that the best results, in terms of RMSE and R, are bold in the table. 

Satellite Model RMSE (𝐤𝐠𝐦𝟑 × 𝟏𝟎ି𝟏𝟐) R 

CHAMP 
NRLMSISE-00 1.0646 0.9269 

LSTM-NRL 0.3783 0.9479 

GRACE-A 
NRLMSISE-00 0.0743 0.7256 

LSTM-NRL 0.0357 0.7562 

GRACE-B 
NRLMSISE-00 0.0857 0.7231 

LSTM-NRL 0.0358 0.7552 

As evident from Table 9, the overall RMSE values in January 2008 are improved in 
January 2008 by 64.5%, 52.0%, and 58.2% for CHAMP, GRACE-A, and GRACE-B, respec-
tively. Although the performance on CHAMP is better than the GRACE satellites, the 
LSTM-NRL model has shown a remarkable transferring ability when it is applied to the 
two GRACE satellites. This can be further demonstrated by plotting the daily RMSE and 
R values in Figures 10 and 11. 

Figure 9. The density series along the GRACE orbits on day 20 of 2008.

Table 9. The RMSE and R of the density series along the orbits of three satellites in January 2008. It is
noted that the best results, in terms of RMSE and R, are bold in the table.

Satellite Model RMSE ( kg
m3×10−12) R

CHAMP
NRLMSISE-00 1.0646 0.9269

LSTM-NRL 0.3783 0.9479

GRACE-A
NRLMSISE-00 0.0743 0.7256

LSTM-NRL 0.0357 0.7562

GRACE-B
NRLMSISE-00 0.0857 0.7231

LSTM-NRL 0.0358 0.7552

As evident from Table 9, the overall RMSE values in January 2008 are improved
in January 2008 by 64.5%, 52.0%, and 58.2% for CHAMP, GRACE-A, and GRACE-B,
respectively. Although the performance on CHAMP is better than the GRACE satellites,
the LSTM-NRL model has shown a remarkable transferring ability when it is applied to
the two GRACE satellites. This can be further demonstrated by plotting the daily RMSE
and R values in Figures 10 and 11.

From Figure 10, the RMSE values between the calibrated densities and the “true”
densities are smaller than the NRLMSISE-00 densities for GRACE-A on each day in January
2008. The R values are mostly the same during the test month. Figure 11 shows almost
the same picture of Figure 10. These two figures have clearly demonstrated the good
transferring performance of the LSTM-NRL model trained using the CHAMP data, a
feature important for the practical application of the model.
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3.6. Applying Calibrated Density to the Orbital Propagation

A main objective of calibrating an empirical density model is to replace the empirical
model with the calibrated one in order to improve orbit propagation accuracy. Test 8
is designed to demonstrate the effectiveness of the LSTM-NRL model in reducing the
orbit propagation error for CHAMP satellite. The orbit prediction errors are computed
as the difference between the predicted positions and the positions computed using GPS-
derived precise ephemeris. In this test, three density series are used in the CHAMP
orbit determination and prediction: the density calibrated by the LSTM-NRL, the density
computed from the NRLMISIE-00 model, and the “true” density derived from the CHAMP
accelerometer data. For each density series, the orbit determination is first performed
using the precise positions over one day on 1 April 2007, in which the position and velocity
vectors as well as the drag coefficient Cd are estimated, and the orbit is then predicted for
7 days from April 2 to April 8. Figure 12 shows the three series of prediction errors in along
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the track direction, since the density error is dominantly affecting the orbit in along the
track direction.
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As shown in Figure 12, the orbit prediction errors using any of the three density series
in the first four days are at the similar level. However, in the final three days, the advantage
of using the calibrated density becomes clear. At the end of seven days, the error using the
NRLMSISE-00 model is 12.2 km, which is significantly larger than the error of 6.7 km using
the calibrated density. It is noted that the error at the end of seven days using the “true”
density is 4.9 km, the smallest among the three error values. This example shows that the
LSTM-NRL model is effective in reducing the orbit determination and prediction errors.

4. Discussion

This paper has proposed to apply the LSTM neural network to calibrate empirical
atmospheric density models, and the NRLMSISE-00 model is calibrated using the density
derived from CHAMP accelerometer data, resulting in the LSTM-NRL model. The calibra-
tion performance is comprehensively evaluated with RMSE and the Pearson coefficient
R as the metrics and the density derived from the accelerometer data as “truth”. The
evaluation of the LSTM-NRL performance includes the following parts.

First of all, the effects of different combinations of two critical parameters, the time
delay and sample rate on the performance of the LSTM-NRL, are presented in Section 3.1.
The training of the LSTM-NRL model uses the data in four weeks from 1 January 2007 to
28 January 2007. The two parameters are tuned using the data on 31 January 2007 (Test 1).
The appropriate values for the two parameters are found to be 200 and 60 s, respectively.

Secondary, the extrapolation performance of the trained model is evaluated over a
long time span. Test 2 and Test 3 take data over one month and one year as test sets,
respectively; the results show that the RMSEs of the calibrated density series are reduced
by 63.2% and 68.1% for Test 2 and Test 3, respectively, comparing with those of the density
series computed from the NRLMSISE-00 model. Extending the testing time span to six
years from 2003 through 2008 (Test 6), the calibrated model outperforms the NRLMSISE-00
model in terms of the RMSE by a significant margin, with at least a 40% reduction in
yearly RMSE. Although the LSTM-NRL model is trained using one month of data only,
the performance of the LSTM-NRL model in terms of RMSE and R is significantly better
than that of the NRLMSISE-00 model throughout the six years. The yearly improvement of
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the RMSE by the LSTM-NRL is at least more than 40%; they are 69.3% and 72.5% for 2007
and 2008, respectively. The better performance in 2007 can be attributed to the closeness
between 2007 and the training window, and the similar solar and geomagnetic activity
levels during these two time periods.

Then, the performance of the calibrated model in different space weather environment
is also evaluated in Test 4 and Test 5, where eight days in 2007 of high or low solar and
geomagnetic activity are chosen in total. The calibrated densities on all these days are
much closer to the “true” densities than those from the NRLMSISE-00 model. It is also
found that the calibration has better performance on the days of low activity.

Moreover, Test 7 is designed to study the transferring performance of the LSTM-NRL
model trained by the CHAMP data, when the model is applied along the orbits of two
GRACE satellites. Using the densities derived from GRACE accelerometer data in January
2008 as a reference, the LSTM-NRL is shown to have significantly better performance
in terms of the RMSE than the NRLMSISE-00 model. The overall RMSE reduction for
GRACE-A and GRACE-B is 52.0% and 58.2%, respectively; a clear indication that the
LSTM-NRL model has remarkable transferring ability.

Besides, the LSTM-NRL model is also tested to examine its effectiveness in reducing
the orbit prediction errors in Test 8. It is found that, over a 7-day prediction time, the orbit
errors using the calibrated, “true” and NRLMSISE-00 density, respectively, are at similar
level in the first four days. Nevertheless, at the end of the seven days, the error is 12.2 km
using the NRLMSISE-00 model, and is reduced to 6.7 km when the LSTM-NRL model
is used.

5. Conclusions

The empirical atmospheric mass density model error remains a dominant error source
for accurate orbit determination and prediction for LEO satellites. An effective approach
to reduce the model errors is to calibrate the empirical models using satellite tracking
data and mass densities derived from accelerometer data. The evaluation results of the
LSTM-NRL performance show that the calibration model not only works over different
time spans, but is also suitable on days of different space weather environment. More than
that, the transferring ability and the ability of improving orbit propagation accuracy of the
LSTM-NRL are illustrated.

In summary, the paper has demonstrated that the LSTM neural network is able to ef-
fectively calibrate the NRLMSISE-00 model, given the accurate and dense densities derived
from the spaceborne accelerometer data. In the next phase of the research, the developed
approach will be applied to calibrate other empirical models using not only the density
from the accelerometer data but also the density derived from precise orbit positions.

Author Contributions: Conceptualization, J.S.; Data curation, Y.Z. and J.Y.; Formal analysis, J.Y.
and J.S.; Funding acquisition, J.S.; Investigation, Y.Z., J.Y. and J.C.; Methodology, Y.Z., J.Y., J.C. and
J.S.; Resources, J.S.; Software, Y.Z. and J.Y.; Supervision, J.S.; Validation, Y.Z.; Visualization, Y.Z.;
Writing—original draft, Y.Z.; Writing—review & editing, J.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China under
Grant 41874036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within this article.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.



Atmosphere 2021, 12, 925 19 of 20

References
1. Montenbruck, O.; Gill, E.; Lutze, F. Satellite orbits: Models, methods, and applications. Appl. Mech. Rev. 2002, 55, B27–B28.

[CrossRef]
2. Prieto, D.M.; Graziano, B.P.; Roberts, P.C.E. Spacecraft drag modelling. Prog. Aerosp. Sci. 2014, 64, 56–65. [CrossRef]
3. Qian, L.; Burns, A.G.; Emery, B.A.; Foster, B.; Lu, G.; Maute, A.; Richmond, A.D.; Roble, R.G.; Solomon, S.C.; Wang, W. The

NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. Model. Ionos. Thermosphere Syst. 2014,
201, 73–83.

4. Richmond, A.D.; Ridley, E.C.; Roble, R.G. A Thermosphere/ionosphere general-circulation model with coupled electrodynamics.
Geophys. Res. Lett. 1992, 19, 601–604. [CrossRef]

5. Ridley, A.; Deng, Y.; Toth, G. The global ionosphere—Thermosphere model. J. Atmos. Sol. Terr. Phys. 2006, 68, 839–864. [CrossRef]
6. Emmert, J.T. Thermospheric mass density: A review. Adv. Space Res. 2015, 56, 773–824. [CrossRef]
7. Chen, J.; Sang, J. Thermospheric mass density measurement from precise orbit ephemeris. Geod. Geodyn. 2016, 7, 210–215.

[CrossRef]
8. Deng, Y.; Ridley, A.J. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution,

and vertical velocity. J. Geophys. Res. Space Phys. 2007, 112. [CrossRef]
9. Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and

scientific issues. J. Geophys. Res. Space Phys. 2002, 107, 1468–1483. [CrossRef]
10. Bowman, B.; Tobiska, W.K.; Marcos, F.; Huang, C.; Lin, C.; Burke, W. A new empirical thermospheric density model JB2008

using new solar and geomagnetic indices. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit,
Honolulu, HI, USA, 18–21 August 2008.

11. Bruinsma, S. The DTM-2013 thermosphere model. J. Space Weather Space Clim. 2015, 5, A1. [CrossRef]
12. Marcos, F.A.; Kendra, M.J.; Griffin, J.M.; Bass, J.N.; Larson, D.R.; Liu, J.J. Precision low earth orbit determination using atmospheric

density calibration. J. Astronaut. Sci. 1998, 46, 395–409. [CrossRef]
13. Nazarenko, A.I.; Cefola, P.J.; Yurasov, V. Advances in the Astronautical Sciences. In Spaceflight Mechanics; Amer Astronautical

Society: Springfield, VA, USA, 1998; Volume 99, pp. 1–2.
14. Shi, C.; Li, W.; Li, M.; Zhao, Q.; Sang, J. Calibrating the scale of the NRLMSISE00 model during solar maximum using the two line

elements dataset. Adv. Space Res. 2015, 56, 1–9. [CrossRef]
15. Storz, M.F.; Bowman, B.R.; Branson, M.J.I.; Casali, S.J.; Tobiska, W.K. High accuracy satellite drag model (HASDM). Space Weather

2005, 36, 2497–2505.
16. Bowman, B.; Storz, M. Time series analysis of HASDM thermospheric temperature and density corrections. In Proceedings of the

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, USA, 5–8 August 2002.
17. Emmert, J.T.; Picone, J.M.; Lean, J.L.; Knowles, S.H. Global change in the thermosphere: Compelling evidence of a secular

decrease in density. J. Geophys. Res. Space Phys. 2004, 109. [CrossRef]
18. Picone, J.M.; Emmert, J.T.; Lean, J.L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line

element sets. J. Geophys. Res. Space Phys. 2005, 110, 110. [CrossRef]
19. Cefola, P.J.; Proulx, R.J.; Nazarenko, A.I.; Yurasov, V.S. Advances in the Astronautical Sciences. In Astrodynamics; Univelt:

Escondido, CA, USA, 2003; pp. 1–3.
20. Doornbos, E.; Klinkrad, H.; Visser, P. Use of two-line element data for thermosphere neutral density model calibration. Adv. Space

Res. 2008, 41, 1115–1122. [CrossRef]
21. Sang, J.; Smith, C.; Zhang, K. Towards accurate atmospheric mass density determination Using precise positional information of

space objects. Adv. Space Res. 2012, 49, 1088–1096. [CrossRef]
22. Perez, D.; Bevilacqua, R. Neural Network based calibration of atmospheric density models. Acta Astronaut. 2015, 110, 58–76.

[CrossRef]
23. Perez, D.; Wohlberg, B.; Lovell, T.A.; Shoemaker, M.; Bevilacqua, R. Orbit-centered atmospheric density prediction using artificial

neural networks. Acta Astronaut. 2014, 98, 9–23. [CrossRef]
24. Gao, T.; Peng, H.; Bai, X. Calibration of atmospheric density model based on Gaussian Processes. Acta Astronaut. 2020, 168, 273–281.

[CrossRef]
25. Chen, H.; Liu, H.; Hanada, T. Storm-time atmospheric density modeling using neural networks and its application in orbit

propagation. Adv. Space Res. 2014, 53, 558–567. [CrossRef]
26. Mehta, P.M.; Walker, A.; Lawrence, E.; Linares, R.; Higdon, D.; Koller, J. Modeling satellite drag coefficients with response surfaces.

Adv. Space Res. 2014, 54, 1590–1607. [CrossRef]
27. Mehta, P.M.; Walker, A.C.; Sutton, E.K.; Godinez, H.C. New density estimates derived using accelerometers on board the CHAMP

and GRACE satellites. Space Weather-the International. J. Res. Appl. 2017, 15, 558–576.
28. Walker, A.; Mehta, P.; Koller, J. Drag Coefficient Model Using the Cercignani-Lampis-Lord Gas-Surface Interaction Model.

J. Spacecr. Rockets 2014, 51, 1544–1563. [CrossRef]
29. Sutton, E.K. Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite

Accelerometer Data. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 2008.
30. GFZ Data Services. Available online: https://dataservices.gfz-potsdam.de/portal/?q=champ* (accessed on 1 May 2021).
31. Werbos, P.J. Backpropagation through Time—What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]

http://doi.org/10.1115/1.1451162
http://doi.org/10.1016/j.paerosci.2013.09.001
http://doi.org/10.1029/92GL00401
http://doi.org/10.1016/j.jastp.2006.01.008
http://doi.org/10.1016/j.asr.2015.05.038
http://doi.org/10.1016/j.geog.2016.05.004
http://doi.org/10.1029/2006JA012006
http://doi.org/10.1029/2002JA009430
http://doi.org/10.1051/swsc/2015001
http://doi.org/10.1007/BF03546389
http://doi.org/10.1016/j.asr.2015.03.024
http://doi.org/10.1029/2003JA010176
http://doi.org/10.1029/2004JA010585
http://doi.org/10.1016/j.asr.2006.12.025
http://doi.org/10.1016/j.asr.2011.12.031
http://doi.org/10.1016/j.actaastro.2014.12.018
http://doi.org/10.1016/j.actaastro.2014.01.007
http://doi.org/10.1016/j.actaastro.2019.12.014
http://doi.org/10.1016/j.asr.2013.11.052
http://doi.org/10.1016/j.asr.2014.06.033
http://doi.org/10.2514/1.A32677
https://dataservices.gfz-potsdam.de/portal/?q=champ*
http://doi.org/10.1109/5.58337


Atmosphere 2021, 12, 925 20 of 20

32. Williams, R.J.; Zipser, D. Gradient-based learning algorithms for recurrent. In Backpropagation: Theory, Architectures, and
Applications; L. Erlbaum: Hillsdale, NJ, USA, 1995; p. 433.

33. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
35. Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [CrossRef]
36. Knipp, D.J.; Tobiska, W.K.; Emery, B.A. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys. 2004,

224, 495–505. [CrossRef]
37. Bartels, J. The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation

studies in other geophysical fields. Ann. Intern. Geophys. 1957, 4, 227–236.
38. EOP and Space Weather Data. Available online: https://celestrak.com/SpaceData/ (accessed on 1 May 2021).
39. Kingma, D.P.; Ba, J.L. Adam: A method for Stochastic Optimization. In Proceedings of the 3rd International Conference for

Learning Representations, San Diego, CA, USA, 7–9 May 2015.

http://doi.org/10.1142/S0218488598000094
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1002/swe.20064
http://doi.org/10.1007/s11207-005-6393-4
https://celestrak.com/SpaceData/

	Introduction 
	Data and Methods 
	NRLMSISE-00 Model 
	The “True” Density 
	LSTM Neural Network 
	LSTM Cells 
	LSTM-NRL Model 

	Test Experiment Design 
	Model Performance Evaluation 

	Results 
	Determination of the Time Delay and Sample Rate 
	Extrapolation Performance of the LSTM-NRL over Long Time Span 
	Performance of the LSTM-NRL on Days of High and Low Solar and Geomagnetic Activity 
	Performance of the LSTM-NRL over the CHAMP Operational Life 
	Transferring Ability of the LSTM-NRL 
	Applying Calibrated Density to the Orbital Propagation 

	Discussion 
	Conclusions 
	References

