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Citation: Řehoř, J.; Brázdil, R.; Trnka,

M.; Fischer, M.; Balek, J.; Štěpánek, P.;
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Abstract: Satisfactory requirements for the spatial resolution of climate and the influences of soil
data in defining the starting points, endings, and the intensities of droughts have become matters of
discussion in recent years. The overall inclusiveness of the modelling tools applied is also frequently
discussed. In this light, five model setups (MSs) of the daily SoilClim water balance model were
developed and tested for the Czech Republic (CR) in the 1961–2020 period. These included two
versions of the SoilClim model, two sets of soil data, and two sets of climatic data at different spatial
resolutions. MS1–MS4 were based on local, spatially-interpolated data from meteorological stations
(500 × 500 m resolution), while MS5 was developed for global drought monitoring, based on the
coarser ERA5-Land reanalysis (0.1◦ × 0.1◦). During the 1961–2020 period, all the MSs indicated
strong, statistically significant increases in the occurrence of 10th-percentile soil drought in the
April–June season; however, trends remained largely non-significant for the remainder of the year.
Variations among MS1–MS4 demonstrate that the range of soil property input data affects results to a
lesser extent than different modelling schemes. The major simplification of the model grid in MS5
still led to an acceptable conformity of results, while the non-conformities disclosed may be explained
by differences between meteorological inputs. Comparison with the Palmer Drought Severity Index
(PDSI) confirmed that the SoilClim model depicts the variability of soil drought occurrence in greater
detail, while PDSI tends to highlight the most severe events. The discussion arising out of the study
centers around model uncertainties and the expression of soil drought episodes in different MSs.

Keywords: soil moisture; soil drought; water balance model; soil-drought episode; drought variabil-
ity; drought trend; Czech Republic; central Europe

1. Introduction

Soil moisture is a fundamental physical variable related to the mass and energy bal-
ance between land surface and atmosphere (e.g., [1]). At annual and greater time-scales,
soil moisture is closely related to the balance between precipitation and evapotranspiration,
while at daily to monthly time-scales the roles of other factors, such as soil properties
affecting water-holding capacity and infiltration, become more important [1,2]. Since soil
moisture is a key factor for plant growth and plant production, its investigation has be-
come a fundamental part of drought monitoring systems at regional (e.g., [2]), continental
(e.g., [3]), and worldwide (e.g., [4–6]) scales. Systems of monitoring soil moisture over
large areas have been developed (e.g., [7]), but for most regions, in-situ observation net-
works remain inadequate if compared with precipitation measurements [1]. Soil-moisture
modelling may provide an alternative, overcoming the lack of observations sufficiently
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spatially distributed and extended over time, and providing a spatially consistent method
accessible to long-term analyses, and thus the study of drought climatology.

In the central European region, “Interdrought”, a multi-indicator drought-monitoring
and forecasting system featuring high spatial resolution (500 × 500 m) and daily updates,
was launched in 2014 [8]. The core tool of this system was based on the SoilClim water bal-
ance model, first introduced by Hlavinka et al. [9]. It has been used since 2014 in the Czech
Drought Monitor System (CDMS) for monitoring and forecasting agricultural drought
and its impacts [2]. In previous years, values calculated by SoilClim were employed for
investigations of soil moisture trends over the Czech Republic from 1961 to 2012 [10] and
for discussion of the drivers of soil drying [11]. Řehoř et al. [12] used the SoilClim model
for an analysis of the regional effects of synoptic situations on soil drought in the 1961–2017
period. In a further contribution, Řehoř et al. [13] investigated soil drought with regard
to circulation types in a west–east transect over the Czech and Slovak Republics for the
1961–2019 period.

A great deal of experience has been accumulated since the first version of the SoilClim
model. Progressive modifications have been made to it and new routines incorporated,
together with a new approach to available soil-water holding capacity featuring two
resolutions: 500 × 500 m for national drought monitoring and 0.1◦ × 0.1◦ for global
drought. These advances are currently deployed operationally at both national and global
scales. The new SoilClim setups (in terms of routines implemented and input data) provide
a unique opportunity to explore critical questions related to the influence of particular
modelling schemes, soil input data and weather data (source and resolution) upon regional
soil drought estimates.

The current study uses the area of the Czech Republic (further, CR) as a case study
region to test hypotheses that have wider implications for drought monitoring (by testing
the influences of model complexity and climate/soil data resolution). Further, it addresses
the areal extent and temporal variability of historical soil-drought events using five different
setups of the SoilClim model. It is hypothesized herein that the prime factors determining
reported drought onset, severity, and duration are climatic conditions, soil characteristics,
model formulation, climate data, and soil data resolution (in that order). The second
hypothesis tested is that the main drought events within the period tested will be identified
regardless the method used, while partial differences between model setups are expected
to be found and further analyzed. Section 2 describes the climate and soil data used,
and presents the methods applied in particular versions of the SoilClim model. Section 3
addresses the areal extent and temporal variability of soil droughts, annual variations,
individual episodes of soil drought and relative soil saturation in the CR in terms of the
five model setups. Section 4 discusses the results obtained with respect to different model
setups and presents them in the broader context. Section 5 summarizes the main results of
the study.

2. Materials and Methods
2.1. Study Area

This study was conducted for the territory of the CR, a state located in central Europe.
The CR has a total area of 78,866 km2, with altitudes ranging from 115 to 1603 m (mean alti-
tude 390 m asl). In terms of land-use structure, agricultural land cover takes up more than
half of the territory (53.3%) with arable land accounting for 37.2%, permanent grasslands
for 13.0%, and other agricultural land for 3.1% [14]. More than a third of the CR (33.9%) is
covered by commercial forests, followed by built-up area (10.7%). Bodies of water take up
2.1% of the country.

2.2. Soil Moisture Model and Model Setups

The SoilClim water balance model [9] was employed to simulate soil moisture and
quantify drought. The volumetric soil moisture was converted to “relative soil saturation”
(AWR), in which 100 represents field capacity and 0 stands for wilting point. Five model
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setups (MS1–MS5) were employed herein for calculation of the soil moisture relevant
to operational application of drought monitoring at national to global scales (Figure 1).
A detailed overview presenting the differences between the MS setups 1–5 appears in
Table A1, Appendix A.
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MS1 lay at the core of soil moisture modelling during 2014–2020 within CDMS. The
MS1 setup is based on a two-layer (0.0–0.4 m and 0.4–1.0 m) soil-water balance-bucket
approach. The soil moisture in these layers is the result of the relationship between inflow
and outflow water-balance components. The inflow components consist of infiltration of
water from precipitation and snowmelt, while the outflow results from evapotranspiration
and deep percolation. The evapotranspiration routines are based on a single-crop coefficient
(Kc) approach [15] with modifications described by Hlavinka et al. [9]. At the heart of
these modifications is the dynamically changing crop coefficient as a function of growing
degree days (GDD). The parameterization of Kc and root depth is based on the Corine land
cover map (CLC 2006; version 12/2009) with a grid resolution of 100 × 100 m. Percolation
from a soil layer occurs whenever the water content exceeds field capacity, while a partial
percolation is also factored for water content below field capacity; the latter allows for the
effect of macropores [9]. While percolation from the top layer consists of an inflow of water
to the bottom layer, percolation from the bottom layer is considered as water loss from the
entire system (i.e., deep percolation). The available water capacity (AWC)—the difference
between field capacity and wilting point—was estimated in MS1 through combination of
parameters from the soil-type map by Tomášek [16] and detailed physical characteristics of
the soil from 1073 pits, collected as part of the Czech National Soil Survey (for more details
see [10]). The water-holding capacity was calculated on the assumption of a 1.0-m-deep
soil profile unless the database indicated a shallower soil depth. The input meteorological
variables included daily minimum and maximum air temperatures (Tmin, Tmax, ◦C), daily
mean vapor pressure (e, kPa), daily sum of global radiation (Rg, MJ m−2), daily mean
wind speed (u, m s−1), and daily precipitation total (P, mm) in the form of gridded data
at a resolution of 500 × 500 m, all based on Czech Hydrometeorological Institute (CHMI)
station observations. Daily climatological observations were subject to thorough quality
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control and homogenization [17] and were spatially interpolated on the basis of regression
kriging using terrain features (e.g., altitude, slope) as predictors.

The MS2 setup was based on a modelling scheme nearly identical to that of MS1. The
only difference lay in AWC; in MS2, this was based on a new dataset provided by the
Research Institute for Soil and Water Conservation [18], and on topsoil physical properties
for Europe from the LUCAS 2015 topsoil dataset [19]. Differences between these two AWC
versions appear in Figure 2.
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In contrast to MS1 and MS2, setups MS3 and MS4 were based on a different modelling
scheme, applying four soil layers in the SoilClim model (0.0–0.1, 0.1–0.4, 0.4–1.0, and
1.0–3.0 m) and also a deeper root system (Table A1). Further, while the inflow components
of water balance are identical to those of MS1 and MS2, the outflow components of MS3
and MS4 feature a number of differences. Firstly, the evapotranspiration is based on the
dual Kc approach, in which evaporation (from soil and interception) and transpiration
are addressed separately. Secondly, percolation is approached in the same way as in MS1
and MS2, but partial percolation is not allowed for in the deepest layer. This rests on the
assumption that, soil water content from the lowest layer cannot decrease below field
capacity when there is no water uptake by roots. Thirdly, runoff based on a curve number
approach [20] is implemented in MS3 and MS4, thus reducing infiltration as a response to
precipitation rate, curve number, slope, and antecedent soil moisture in the topsoil. Finally,
in contrast to MS1 and MS2, MS3 and MS4 assume dynamically changing root depth in
field crops, proportional to the dynamics of Kcb driven by GDD. The input data for MS3
are identical to those for MS1, while the input data for MS4 are identical to those for MS2.
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The MS5 setup, used for global drought monitoring, was of an almost identical model
structure to that of MS3 and MS4, but Kcb was not a function of GDD, but of leaf area
index (LAI), as adopted from ERA5-Land reanalysis data. For MS5, the meteorological data
input consisted of the Climate reanalysis ERA5-Land available at a spatial resolution of
0.1◦ × 0.1◦ from 1981 until the present. The production of ERA5-Land is based on the tiled
ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology
(H-TESSEL). To monitor its simulated land fields, ERA5-Land inputs ERA5 atmospheric
variables (temperature and air humidity), “atmospheric forcing”, while ERA5 features
a coarser reanalysis available at a resolution of 0.25◦ × 0.25◦. Thus, while observations
are not used directly in the production of ERA5-Land, they exert an indirect influence
through atmospheric forcing from ERA5-Land, which assimilates a vast quantity of in-situ
and satellite observations. The input air temperature, air humidity, and pressure used to
run ERA5-Land were corrected to allow for altitude differences between the grid of the
forcing and the higher resolution grid of ERA5-Land, using what is known as “lapse rate
correction”. Since ERA5-Land is available in hourly time steps, the data were aggregated
into daily values for the SoilClim model. The original inputs from ERA5-Land were
precipitation, temperature at 2 m, dew-point temperature at 2 m, wind speed at 10 m, and
incoming short-wave radiation. The derived daily values required for the SoilClim model
were the same as those for MS1–MS4 and were recomputed into the required variables
and units from ERA5-Land. In addition, LAI for high and low vegetation categories from
ERA5-Land and the associated high vegetation and low vegetation cover fractions were
considered (in contrast to MS1–MS4, in which CLC 2006 was employed) to simulate canopy
height, root depth, and transpiration, together with the ERA5-Land orography for the
purpose of surface runoff simulation. An example of differences between MS1–MS4 and
MS5, in terms of mean annual temperature input, appears in Figure 2.

2.3. Methods

Comparison of drought anomalies between the SoilClim model setups was enabled by
converting the AWR data calculated from SoilClim values into percentiles of the 1961–2010
period, created individually for every grid point, date, and soil profile. In order to address
actual soil drought, values below the 10th percentile were also involved. The selection
of 10th-percentile drought is in conformity with its use in US Drought Monitoring since
1995 [21,22] and in CDMS [2,8], as well as with several publications addressing the same
limit (e.g., [12,13]). The gridded data were then aggregated for the entire CR, using the
percentage of grid points fulfilling the 10th-percentile drought condition for every day.
The aggregated time series were applied in selection of soil-drought episodes from the
MS1–MS4 series according to the three following criteria:

(i) During a drought episode, at least 75% of grid points over the territory of the CR had
to report a 10th-percentile drought on at least one day.

(ii) The onset of the episode occurred when at least 50% of the grid points reported
10th-percentile drought; it ended when the figure dropped below 50%.

(iii) A decline to below 50% of grid points reporting 10th-percentile drought of up to
5 days was not counted as interruption of the drought episode.

The areal extent and temporal variability of soil droughts in the 1961–2020 period was
analyzed in terms of the MS1–MS4 results, with particular emphasis on their differences.
MS5, with data reaching back to only 1981, was not included in this part of the study. Long-
term variability was characterized by linear trends and similarities between MS1–MS4
characterized by Pearson correlation coefficients and paired t-tests. Their statistical signifi-
cance was evaluated at a significance level of 0.05. Inter-annual variability in differences
among MS1–MS4 was further analyzed in terms of the annual cycle of AWR in the 0–40 cm
and 40–100 cm soil layers.

A simpler and more widely-used drought index, the Palmer Drought Severity Index
(PDSI), after Palmer [23], was selected for comparisons with the SoilClim model results. In
general, PDSI is based on the supply-and-demand concept of the water balance equation
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and thus incorporates antecedent precipitation, moisture supply, and demand at the surface.
The version of self-calibrated PSDI [24] employed was modified to estimate surface demand,
using a reference evapotranspiration calculated according to Penman-Monteith method
as formulated by Allen et al. [15]. The soil parameters were set on the basis of the same
database as that described for MS2 and MS4 [18]. The PDSI series were calculated on
500 × 500 m grids, using the same database as that for the MS1–MS4 calculations. Monthly
PDSI values were converted into 10th-percentile values and then compared with soil
drought series, calculated for the purposes of simplification from the MS4 setup, which
uses the same soil inputs and the more advanced version of the model algorithm (Table A1).

MS4 and MS5 were employed to compare high-resolution and low-resolution setups
for the 1981–2020 period. MS4 was selected as the most recent setup, currently used in
CDMS, while MS5 was developed as the first lower-resolution version of SoilClim for
monitoring global drought. Long-term variability in MS4 and MS5 was characterized by
linear trends and Pearson correlation coefficients (significance level 0.05).

In the main, the results of the analysis are presented for non-standard seasons: January–
March (JFM), April–June (AMJ), July–September (JAS), and October–December (OND).
This choice of non-standard seasons was made to establish continuity with many previ-
ous studies conducted for the summer (April–September) and winter (October–March)
half-years (e.g., [12,13]), and those that worked directly with those seasons (e.g., [11,25]).
Moreover, they correspond closely to the annual AWR cycle in the CR.

The Pearson correlation coefficient was used to characterize degrees of similarity
among different soil drought series calculated by the SoilClim model setups. The paired
t-test was used to establish the significance of differences in pairs of these series. Linear
trends were also calculated, and their significance was evaluated by t-test at a significance
level of 0.05. Trends of the soil drought series were also assessed by Mann-Kendall test at a
significance level of 0.05.

3. Results
3.1. Areal Extent and Temporal Variability of Soil Drought

The areal extent and temporal variability of soil droughts in the CR according to MS1–
MS4 SoilClim model setups, expressed as mean percentages of the grid points with 10th-
percentile drought in JFM, AMJ, JAS, and OND in the 1961–2020 period in the 0–100 cm
soil layer, appears in Figure 3. Close agreement among the four setups in the occurrence
of individual drought episodes, especially in JAS and OND, is apparent, but episodes
sometimes differ in terms of severity, largely in JFM and AMJ, in which MS3 and MS4
indicate larger areas of drought in certain cases.

Figure 3 shows that the main drought episodes (exceeding an extent of 40% of the CR
territory) in JFM occurred in 1964, 1973, 1984, and 2017. In 2017, MS3 and MS4 suggest
considerably larger areas affected than those that appear in MS1 and MS2. In AMJ, a far
higher concentration of the main drought episodes occurs in the second half of the 1961–
2020 period; the main episodes occurred in 1973–1974, 1998, 2007, 2014, and 2017–2020. In
JAS, such episodes occurred in 1983, 1990, 1992, 2003, 2015, and 2018, while in OND they
took place in 1962, 1969, 1982–1983, 2003, and 2018.

Fluctuations of areas with 10th-percentile soil drought shown at annual resolution
(Figure 3) may be aggregated into decadal values, as demonstrated in Figure 4. The
differences among the four setups are at their lowest for JAS and OND, while in JFM and
especially AMJ, there are well-expressed differences between the MS1–MS2 and MS3–MS4
pairs and some other differences beyond this division. The last decade, 2011–2020, is
characterized by the highest extent of soil drought (particularly for AMJ and JAS), except
in OND.
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Figure 3. Fluctuations in the area exhibiting 10th-percentile soil drought (% of grid points) in the 0–100 cm soil layer in
the Czech Republic, according to four different SoilClim model setups (MS1–MS4) for JFM, AMJ, JAS, and OND in the
1961–2020 period.
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Figure 4. Decadal means of areas with 10th-percentile soil drought (% of grid points) (a,c,e,g) for four SoilClim model
setups (MS1–MS4) and differences between MS2–4 and MS1 (b,d,f,h) in the 0–100 cm soil layer in the Czech Republic in
JFM, AMJ, JAS, and OND in the 1961–2020 period.

Correlation analysis of the soil drought series yields statistically significant Pearson
correlation coefficients, exceeding 0.90, among all four model setups for all seasons inves-
tigated. Pairs consisting of one MS1–MS2 setup and one MS3–MS4 setup have slightly
lower correlation coefficients, sometimes below 0.95 for JMF and AMJ. On the other hand,
MS1–MS2 and MS3–MS4 pairs exhibit coefficients of up to 0.99. Application of the paired
t-test to pairs of soil drought series yields no statistically significant differences.

Linear trends in areas exhibiting 10th-percentile soil drought (Table 1) are all slightly
negative and statistically non-significant in JFM, lower for MS1 and MS2 than for MS3 and
MS4. In AMJ, all trends are positive and statistically significant, with values exceeding
4.0%/10 years in MS1 and MS2 or around 3.5%/10 years in MS3 and MS4. All trends are
positive in JAS, but only that of MS1 is statistically significant. All trends are statistically
non-significant in OND, with values ranging from –0.61 to 0.21%/10 years. The significance
of the Mann-Kendall test is consistent with the significance of linear trends in all cases.

Table 1. Linear trends in the area of 10th-percentile soil drought (% of grid points per 10 years) in
the 0–100 cm soil layer in the Czech Republic in JFM, AMJ, JAS, and OND in the 1961–2020 period
according to four SoilClim model setups MS1–MS4. Statistically significant linear trends at a 0.05
significance level are in bold.

Model Setup
Season

JFM AMJ JAS OND

MS1 −1.14 4.20 2.56 −0.19
MS2 −0.98 4.14 2.13 −0.61
MS3 −0.49 3.41 2.11 0.21
MS4 −0.66 3.76 1.73 −0.38
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3.2. Episodes of Soil Drought

The temporal variability of 10th-percentile soil drought episodes within individual
years in the 1961–2020 period appears in Figure 5, categorized by the first four SoilClim
model setups. In JFM and OND, drought episodes generally occurred more often before
1990, and were longer and less frequent than in April–September. On the other hand, in
JAS, and particularly in AMJ, drought episodes were much more frequent after 1990, with a
marked concentration at the end of the period analyzed. This corresponds with the trends
presented in Section 3.1, although it appears even more distinct here. The four SoilClim
model setups agree largely upon the existence of individual drought episodes, although
their beginnings and ends often differ. In addition, some episodes, particularly in JFM and
AMJ, appear in only some of the model setups (e.g., in April–May 2007 and March 2014).
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Figure 5. Delimitation of 10th-percentile soil drought episodes for the Czech Republic, according to
four SoilClim model setups (MS1–MS4) in the 1961–2020 period.

Table 2 presents detailed information on the numbers of days within soil drought
episodes and their percentage agreement for individual model setups. JFM returns the
lowest number of days of soil drought episodes, ranging from 160 to 207. Further, there
is a high degree of disparity in percentage agreement among individual pairs of setups,
which varies from 58.9 to 94.4%. In AMJ, there are between 295 and 365 days within
drought episodes, with slightly higher numbers for MS1 and MS2. The variation range
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of percentage agreement is also very high (45.6–82.3%) and the MS1–MS2 and MS3–MS4
pairs show significantly higher percentage agreement (73.7–82.3%) than the other pairs
(45.6–67.2%). JAS contains the highest number of days within drought episodes, ranging
from 403 to 438 days (and also the highest percentage agreement, ranging from 81.1 to
94.5%). This is followed by the percentage agreement in OND, which ranges from 66.6 to
94.0%; however, the numbers of days are far lower (240–290).

Table 2. Percentage agreement (%) between the four SoilClim model setups in delimitating 10th-
percentile soil drought episodes for JFM, AMJ, JAS, and OND in the Czech Republic in the 1961–2020
period; n—number of days.

Season Model Setup n Conformity with Other Model Setups (%)
MS1 MS2 MS3 MS4

JFM

MS1 179 - 88.8 78.8 79.9
MS2 207 76.8 - 58.9 62.8
MS3 200 70.5 61.0 - 75.5
MS4 160 89.4 81.3 94.4 -

AMJ

MS1 365 - 81.6 47.4 56.7
MS2 362 82.3 - 45.6 55.5
MS3 295 58.6 55.9 - 76.9
MS4 308 67.2 65.3 73.7 -

JAS

MS1 438 - 86.3 81.1 84.0
MS2 407 92.9 - 83.8 88.5
MS3 403 88.1 84.6 - 94.5
MS4 411 89.5 87.6 92.7 -

OND

MS1 268 - 94.0 66.8 76.5
MS2 290 86.9 - 66.6 79.3
MS3 240 74.6 80.4 - 84.6
MS4 245 83.7 93.9 82.9 -

3.3. Relative Soil Saturation

In order to investigate the differences disclosed between the four SoilClim model
setups, particularly between MS1–MS2 and MS3–MS4 pairs, the mean annual variations of
AWR in the 0–40 cm and 40–100 cm layers were examined (Figure 6). In the upper layer,
0–40 cm, AWR remains stable at around 85–90% in January–March with the highest values
for MS4 and lowest for MS1. A rapid decrease within all model setups follows in April,
most marked for MS3 and MS4. Their values stay 5–10% below MS1 and MS2 in May–July,
while values for all four setups decrease slowly, then almost close the gap in July. A mean
annual minimum of 55–60% is reached in early August within all four model setups. Their
values are nearly identical in August–October, steadily increasing. The values of individual
setups begin to differ in November–December, but they all indicate an increase until the
annual maximum in late December.

MS3 and MS4 values for the 40–100-cm layer are approximately 10–20% lower com-
pared to MS1 and MS2 throughout the whole year. There is also a difference in annual
amplitude, which is lower in MS1 and MS3, higher in MS2 and at its highest in MS4.
However, the shape of the curve of annual variation is very similar for all model setups,
with a maximum in March and a minimum in late August.
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3.4. Model Setups and PDSI

The MS4 results indicate more years with marked drought occurrence (Figure 7). PDSI
agrees with MS4 for some years, but does not show increased drought occurrence in others
disclosed by MS4. On the other hand, drought is indicated in only very few years by PDSI
alone. For multi-year drought, PDSI sometimes appears to indicate drought onset, but
with a delay compared to MS4; however, steady drought accumulation follows. This trend
is most distinctive in 2018 and 2019, when a five-year drought episode culminated. PDSI
indicates an extremely large area with 10th-percentile drought (close to 100%), while for
MS4 is the corresponding area smaller.

Seasonal and half-year linear trends of MS4 and PDSI appear in Table 3. They exhibit
statistically significant positive trends in AMJ and the summer half-year (SHY), and only
for PDSI values in JAS and OND. Non-significant trends in both variables appear in JFM
and the winter half-year (WHY), although with different trends. Absolute values of trends
calculated for MS4 are always lower than those for PDSI, except in AMJ. The Mann-Kendall
test does not indicate a significant trend for PDSI in OND, but it is consistent with the
significance of linear trends in all other cases.
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Figure 7. Fluctuations in the area of 10th-percentile soil drought (% of grid points) according to MS4 and PDSI for JFM,
AMJ, JAS, and OND in the Czech Republic during the 1961–2020 period.

Table 3. Linear trends in the area exhibiting 10th-percentile soil drought (% of grid points per
10 years) in the 0–100-cm soil layer according to MS4 and PDSI for JFM, AMJ, JAS, OND, SHY, and
WHY in the Czech Republic during the 1961–2020 period. Statistically significant linear trends, at a
0.05 significance level, appear in bold type.

Model/PDSI Version
Season Half-Year

JFM AMJ JAS OND SHY WHY

MS4 −0.66 3.76 1.73 −0.38 2.77 −0.61
PDSI 1.54 2.86 3.66 3.35 3.26 1.86

3.5. Soil Drought in MS4 and MS5

The variability of soil drought in the CR according to MS4 and MS5, expressed as
mean percentages of grid points with 10th-percentile drought in JFM, AMJ, JAS, and OND
in the 0–100-cm soil layer for the 1981–2020 period, appears in Figure 8. Stronger agreement
between the two setups occurs in JAS and OND. The differences for seasons appear to be
randomly distributed. In terms of JFM, considerable differences occurred in 2017 and 2019.
For AMJ, large differences appeared in 2014–2019 and further in 1990 and 1998. This shows
that differences are particularly marked towards the end of the period analyzed.

Correlation coefficients demonstrate that there are much larger differences between
MS4 and MS5 in JFM and AMJ than among MS1–MS4 pairs; their values achieve only
0.81 and 0.86 compared with coefficients over 0.90 in all MS1–MS4 pairs (Table 4). The
positive linear trends for the 1981–2020 period show higher values for MS4 than for MS5,
but they are statistically significant only in AMJ and SHY for both MS4 and MS5 setups.
The Mann-Kendall test indicates a significant trend for MS4 also in JFM, but it is consistent
with the significance of linear trends in all other cases. The MS5 setup indicates deeper
decreases in OND and WHY than MS4, but these trends are statistically non-significant.
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Model
Setup/Characteristic

Season Half-Year
JFM AMJ JAS OND SHY WHY

MS4 1.47 6.02 3.04 −1.46 4.52 −0.08
MS5 −0.30 4.42 2.22 −2.93 3.31 −1.79

Correlation coefficient 0.81 0.86 0.95 0.93 0.91 0.87

4. Discussion
4.1. Model Uncertainties

As pointed out in Section 2.2, the definitions of drought characteristics herein were
derived from five setups of the SoilClim model. MS1–MS4 employed daily weather data
collected by the CHMI in a station network of almost 800 rain-gauge stations and some
250 climatological stations. The mean distance between neighboring stations is c. 22–30 km
for climatological stations and c. 10 km for rain-gauge stations. A locally-weighted regional
regression, taking elevation and other terrain characteristics into account, was employed
to interpolate the daily data into 500 × 500 m grids. Although the daily global radiation
balance considered slope, aspect and horizon obstruction [26], uncertainties associated
with the nature of the ground data cannot be ignored.

In addition to a certain lack of precision in the input data, other uncertainties are
intrinsic to the model itself. For example, the module for actual evapotranspiration and
soil-water content in the SoilClim model simplifies otherwise complex, three-dimensional
soil-water transport processes by using only two (MS1–MS2) or four (MS3–MS5) soil layers
and the “bucket approach”. SoilClim estimates of soil-moisture content are substantially
affected by the estimated maximum soil-water holding capacity for the soil layers in each
grid, while considerable variation also exists at the sub-grid scale. Because the SoilClim
model setups use three different soil inputs (described in Section 2.2), the maximum
soil-water holding capacity for individual grids may differ dramatically.

Within grids where the soil water balance is, at least for some part of the growing
season, influenced by the presence of a shallow water table, the relative water content in the
lower soil layers cannot fall below a specific threshold. This strategy is applied to allow for
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the fact that soils with an observed gleyic process in close proximity to major water bodies,
peat, and bog areas have significantly slower soil-moisture depletion rates than neighboring
grids lacking these influences [11]. Such simplifications, and many others, arise naturally
out of large-scale modelling schemes and data availability. However, to assess the intensity
and duration of drought episodes, the soil moisture anomaly (a percentile-based value) has
been used herein, thus eliminating the effect of uncertainties in specific soil-water processes
and describing droughts as climatological phenomena in a process-based manner.

4.2. Different Models Setups and Expression of Soil-Drought Episodes

In the first half of the year, few important differences were disclosed in the analyses for
MS1–MS4 during the 1961–2020 period. The MS1–MS2 and MS3–MS4 pairs yielded more
similarities in both soil-drought extent and occurrence or soil-drought episodes than was
the case in comparison across these pairs. Most of the differences are also much higher in
JFM and AMJ than in JAS and OND when the differences are often marginal. This indicates
that changes in the model algorithm, conducted evenly for MS3 and MS4 compared to
MS1 and MS2 (see Table A1) have stronger impacts on the results than different soil
inputs, which are the same for MS1/MS3 and MS2/MS4 pairs, despite large differences in
soil-water holding capacity between the soil inputs (Section 2.2).

The larger differences in JFM and AMJ appear to arise out of a more rapid decrease
in AWR in the 0–40-cm soil layer in MS3 and MS4 compared to MS1 and MS2 (Figure 5).
There could be a number of reasons for this phenomenon. The MS3 and MS4 setups use
more advanced ways of computing the evapotranspiration dual-crop coefficient approach
(Section 2.2), which takes non-constant the bare-soil to reference evapotranspiration ratio
into account, affecting the actual evapotranspiration calculated, largely in winter and
early spring (i.e., before or after the soil is covered by vegetation). Because the soil mois-
ture is, on average higher during these two seasons, MS3 and MS4 exhibit higher actual
evapotranspiration than MS1 and MS2 in this part of the year.

A further reason for the differences may be the use of the dynamic depth of the roots
in MS3 and MS4, while MS1 and MS2 keep this value constant. Thus in spring, when
vegetation starts to consume more soil water, this is obtained largely from the upper
soil layer, before the simulated roots grow deeper, which also corresponds with a more
rapid decrease in AWR in the 0–40-cm soil layer. Other possible influences might include
different calculations of water runoff from rain and melted snow cover, or varying criteria
for constant infiltration of water from the upper to the lower soil layers (Section 2.2).

These differences also lead to a larger gap in AWR for MS3 and MS4 compared to MS1
and MS2 in the 40–100 cm layer, while the course of annual variation is almost the same for
all setups. But because the percentile-based soil-drought used in the study is not primarily
affected by the mean level of AWR, but by its variation, the differences in the 0–40 cm layer
are more crucial, despite mean annual values differing marginally.

The MS5 setup (analyzed only for the 1981–2020 period) uses a model algorithm very
similar to that of MS3 and MS4, but its meteorological, land-use, and terrain inputs are de-
rived from ERA5-Land reanalysis, with the grid simplified to corresponding resolution and
soil inputs using SoilGrids [27,28]. This led to larger differences than those disclosed among
MS1–MS4, even when compared to the MS4 algorithm, the most similar, alone. Most of the
differences appear to be concentrated around the final dry period in 2014–2019, when MS5
indicates a smaller area affected by 10th-percentile drought. In consequence, lower values
are generated for the linear trend over the 1981–2020 period in all seasons when compared
to MS4. In order to investigate the drivers of the differences, the meteorological inputs for
MS4 and MS5 were compared (Table 5). Although no significant linear trends were found
for variables in the series of seasonal differences, the mean values of the differences differ
substantially. MS5 inputs (ERA5-Land reanalysis) for the mean temperature are lower by
c. 1.6 ◦C for AMJ and JAS and by c. 0.5 ◦C for JFM and OND compared with MS4 inputs
(CHMI data). In addition, MS5 inputs indicate a higher precipitation total, by 28–37 mm
on average for all seasons (133 mm annually). This is only partially compensated for by
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the reference evapotranspiration being higher for MS5 inputs by c. 20 and 24 mm in AMJ
and JAS and by only c. 4 and 6 mm in JFM and OND (54 mm annually).

Table 5. Mean differences in meteorological inputs between MS5 (ERA5-Land) and MS4 (CHMI data)
for JFM, AMJ, JAS, and OND in the Czech Republic during the 1981–2020 period.

Season Mean Temperature
(◦C)

Precipitation Total
(mm)

Reference
Evapotranspiration (mm)

JFM −0.6 33.7 4.2
AMJ −1.6 37.0 19.8
JAS −1.6 33.8 23.8

OND −0.4 28.5 6.0

Although these differences are evident throughout the entire 1981–2020 period, they
were probably of the highest impact during the extended 2014–2019 soil-drought episode.
Such conditions dictated that soil moisture values were very often close to the threshold
of 10th-percentile drought. In the case of the colder and wetter MS5 data, the resulting
values did not cross the drought threshold in such a substantial proportion of cases as that
calculated using MS4 data.

In the PDSI time series, the area of the 10th-percentile drought in the 2014–2019
episode is markedly larger for all seasons when compared with MS4 results and the
remainder of the 1961–2020 period. This may also be one of the reasons why linear trends
in PDSI are higher than those in MS4 for all seasons, except AMJ (Table 3). The method
of PDSI calculation is responsible for this. PDSI employs accumulation of water-balance
anomalies (Z-index) over a longer period [23] and therefore short-term wetter periods
during long drought episodes do not influence PDSI values significantly. In contrast, in the
MS4 setup, the SoilClim model calculates AWC in daily steps and reveals even short-term
increases in AWC, leading to temporary decreases in the area affected by soil drought; it
also decreases seasonal means of the affected area during long-term drought episodes. The
largest difference in linear trends between PDSI and MS4, for OND (Table 3), is probably
caused by extended PDSI accumulation during dry summer half-years in the 2014–2019
drought episode contrasting with rapid AWC increases during wetter OND in MS4. The
previous drought episodes were rather isolated, while in the 2014–2019 period (especially
in 2018 and 2019), there were several drought episodes in sequence (Figure 5), separated
only by a few weeks or months. This led to the described accumulation of the PDSI index
values, which subsequently indicated extremely large mean area affected by drought in
those years (according to the PDSI), which did not occur in previous cases.

Soil-moisture and soil-drought frequency trends in the CR have been investigated by
several previous studies (e.g., [11–13]), covering various regions within the CR and neigh-
boring areas. Statistically significant positive trends in soil drought frequency emerged in
most cases for the summer half-year (October–March) and non-significant, almost zero or
negative trends, for the winter half-year (April–September). These accord with the findings
of this study, which incorporates the whole area of the CR, although the summer half-year
was further divided herein into AMJ and JAS seasons and higher trends were found for
AMJ, while values for trends in JAS were roughly halved and were not statistically signifi-
cant in three of the MS1–MS4 setups. This is probably related to a statistically significant
decrease in AMJ precipitation compared to the increasing trend in JAS totals in the CR
during 1961–2019, as shown by Brázdil et al. [29].

AMJ had already been indicated as the season with the most significant increase
in drought frequency and/or decline in soil moisture by Trnka et al. [11]. However,
the data used for the Trnka study covered only the period up to 2012 and only one
SoilClim model setup (similar to MS1) was employed. They identified temperature and
precipitation as the most important factors influencing, among other things, the values
for soil-moisture/drought. While precipitation is the only source of water for the soil,
temperatures contribute directly to its reduction through evaporation; prolongation of the



Atmosphere 2021, 12, 913 16 of 20

vegetation season also contributes to higher transpiration and a shorter freezing period
leads to a reduction in the period of snow accumulation. In terms of linear trends, the mean
annual temperature in the CR exhibited a strong positive and statistically significant trend
(0.36 ◦C/10 years) in the 1961–2020 period, but a non-significant linear trend in annual
precipitation stood close to zero (−0.3 mm/10 years) (see also [29,30]).

5. Conclusions

From the analysis of 10th-percentile soil drought over the territory of the CR during
the 1961–2020 period based on five model setups, the following conclusions may be drawn:

(i) According to all SoilClim model setups (MS1–MS5), there is a strong, statistically
significant increase in the occurrence of 10th-percentile soil drought in AMJ. The increase
in JAS is statistically significant only for MS1, while OND and JFM exhibit statistically
non-significant trends.

(ii) MS1–MS2 and MS3–MS4 exhibit notable differences only for JFM and AMJ, a
result of more rapid mean AWR decrease in the 0–40-cm soil layer in MS3–MS4. This arises
largely out of more advanced approaches to estimation of evapotranspiration, calculation
of runoff and internal percolation, and consideration of the dynamic depth of roots in
the improved algorithm used in MS3–MS4. Different soil input data had less effect than
different modelling schemes.

(iii) Percentage agreement in the 10th-percentile soil drought episodes varied among
MS1–MS4 setups and individual seasons, providing similar patterns to those of the differ-
ences in soil drought frequency. The majority of the delimited episodes appeared in all
model setups.

(iv) The SoilClim model is able to depict the variability of soil drought occurrence
in greater detail than the widely-used PDSI, which tends to capture only the most severe
events.

(v) Deployment of the MS5 setup, developed with its major simplification of the model
grid for the use in global-scale drought modeling, still leads to an acceptable conformity of
results with MS4 with finer resolution. Some of the non-conformities may be explained by
substantial differences between meteorological inputs from the ERA5-Land dataset and
from gridded CHMI station data.

(vi) The MS4 setup can be considered as the best scenario of five versions of SoilClim
model for soil-drought modelling, particularly due to more accurate representation of soil
processes. Although, high consistency with setups MS1–MS3 does not change results of
soil-drought analyses significantly.
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Appendix A

Table A1. Basic features of the model setups MS1–MS5 employed for the calculation of the soil moisture. Abbreviations: AWR—relative soil saturation; CHMI—Czech Hydrometeorological
Institute; GCRI—Global Change Research Institute; GDD—growing degree days; Kcb—Basal crop coefficient; Ke—soil evaporation coefficient; LAI—Leaf area index.

MS1 MS2 MS3 MS4 MS5

Simulation Period

1961–2020 1961–2020 1961–2020 1961–2020 1981–2020

Meteorological Inputs

CHMI/GCRI CHMI/GCRI CHMI/GCRI CHMI/GCRI ERA5-Land [31]

Soil inputs

Soil type map after Tomášek [16] Research Institute for Soil and Water
Conservation [18] Soil type map after Tomášek [16] Research Institute for Soil and Water

Conservation [18] SoilGrids [27,28]

Land use

CORINE Land Cover 2012 v17 CORINE Land Cover 2012 v17 CORINE Land Cover 2012 v17 CORINE Land Cover 2012 v17 ERA5-Land: high and low
vegetation, bare ground

Terrain

Digital Elevation Model over
Europe (EU-DEM-3035)

Digital Elevation Model over
Europe (EU-DEM-3035)

Digital Elevation Model over
Europe (EU-DEM-3035)

Digital Elevation Model over
Europe (EU-DEM-3035) ERA5-Land

Leaf area index (LAI)

- - - - ERA5-Land

Model scheme
All the MSs feature:

reference evapotranspiration after Allen et al. [15]
snow submodule after Trnka et al. [32]

The MSs differ in:
vegetation submodule

single-crop coefficient changing
dynamically as a function of GDD

single-crop coefficient changing
dynamically as a function of GDD

dual-crop coefficient where Ke is
dependent on topsoil water balance
and Kcb changes dynamically as a

function of GDD

dual-crop coefficient where Ke is
dependent on topsoil water balance
and Kcb changes dynamically as a

function of GDD

dual-crop coefficient where Ke is
dependent on topsoil water balance
and Kcb changes dynamically as a

function of LAI
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Table A1. Cont.

MS1 MS2 MS3 MS4 MS5

canopy height growing dynamically
as a function of GDD

canopy height growing dynamically
as a function of GDD

canopy height growing dynamically
as a function of GDD up to a

crop-specific maximum

canopy height growing dynamically
as a function of GDD up to a

crop-specific maximum

canopy height growing dynamically
as a function of LAI

constant root depth
(1 m)

constant root depth
(1 m)

root depth growing dynamically as
a function of GDD up to a crop-

specific maximum or 1.6 m

root depth growing dynamically as
a function of GDD up to a

crop-specific maximum or 1.6 m

root depth growing dynamically as
a function of LAI up to a maximum

of 2 m

runoff submodule
fraction of precipitation (15% for

>2 mm precipitation)
fraction of precipitation (15% for

>2 mm precipitation) curve number approach curve number approach curve number approach

interception submodule

canopy precipitation interception
considered

canopy precipitation interception
considered

canopy precipitation interception
considered as part of evaporation

within dual-crop coefficient
approach

canopy precipitation interception
considered as part of evaporation

within dual-crop coefficient
approach

canopy precipitation interception
considered as part of evaporation

within dual-crop coefficient
approach

soil compartments, vertical stratification

0.0–0.4 and 0.4–1.0 m 0.0–0.4 and 0.4–1.0 m 0–0.1, 0.1–0.4, 0.4–1.0 and 1.0–3.0 m 0.0–0.1, 0.1–0.4, 0.4–1.0 and
1.0–3.0 m

0.0–0.1, 0.1–0.4, 0.4–1.0 and
1.0–2.0 m

internal drainage and macropore water flow

only if AWR > 0.5 only if AWR > 0.5 only if AWR > 0.5 and AWR of the
layer i-1 < AWR of the layer i

only if AWR > 0.5 and AWR of the
layer i-1 < AWR of the layer i

only if AWR > 0.5 and AWR of the
layer i-1 < AWR of the layer i
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29. Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming:
The Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 3881–3902. [CrossRef]
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