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Abstract: Exposure to toxic particles from smoke generated either from bush fire, stable burning, or
direct smoking is very harmful to our health. The tiny particles easily penetrate deep into the lungs
after exposure and damage the airways. Tobacco smoking causes the direct emission of 2.6 million
tons of CO2 and 5.2 million tons of methane annually into the atmosphere. Nevertheless, it is one of
the significant contributors to various respiratory diseases leading to lung cancer. These particles’
deposition in the human airway is computed in the present article for refining our understanding
of the adverse health effects due to smoke particle inhalation, especially cigarette smoke. Until
recently, little work has been reported to account for the transient flow pattern of cigarette smoking.
Consideration of transient flow may change the deposition pattern of the particle. A high-resolution
CT scan image of the respiratory tract model consisting of the oral cavity, throat, trachea, and first to
sixth generations of the lungs helps predict cigarette smoke particle (CSP) deposition. With the same
scan, a realistic geometric model of the human airways of an adult subject is used to simulate the
transport of air and particle. The CSP deposition is determined at different locations from the oral
cavity to the sixth generation of the bronchi. In addition, an unsteady breathing curve indicative of
realistic smoking behavior is utilized to represent the breathing conditions accurately. The discrete
phase model (DPM) technique is used to determine smoke particle deposition in the human airways.
It is found that the deposition increases with the size of the smoke particle. Particles tend to deposit
in the oral cavity around the bifurcation junction of the airways. The deposition fraction of CSP with
the realistic waveform of smoking is found to be smaller compared to that during the stable flow
condition. It is also observed that the fine particles (0.1–1.0 micron) escape to lower generations,
leading to higher deposition of fine particles in the deeper airways. The outcome of the study is
helpful for understanding smoke-related pulmonary complications.

Keywords: toxic particles; cigarette smoke particulate (CSP); human respiratory tract (HRT); puffing
pattern; deposition fraction

1. Introduction

Smoke is often considered visible evidence of air pollution, which is a collection
of airborne particles and gases. Several sources generate smoke and hence contribute
to air pollution, such as stationary sources (thermal power plants, petroleum refiner-
ies, factories), mobile sources (all kinds of vehicle that run on fossil fuels), area sources
(biomass/stubble/garbage burning, bushfire), natural sources (dust-laden wind, volcanic
eruption), tobacco smoking, etc. The significant health hazard that arises from smoke is
due to fine particles (0.1–1.0 micron). These tiny micron-sized particles can propagate in the
distal regions of the lungs and trigger several diseases from itchy eyes or allergic rhinitis to
chronic cardio-pulmonary diseases. Prolonged exposure to such microscopic particles may
even cause premature death. Cigarette smoke particles (CSP) have very harmful effects on
human airways [1,2]. Tobacco smoking leads directly to the emission of 2.6 million tons of
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carbon dioxide and about 5.2 million tons of methane [3]. Around 7000 chemicals have
been identified in cigarettes and other tobacco products, 250 of which are poisonous and
70 of which are carcinogenic to humans [4], causing mutagenesis of the epithelial cells
leading to biologically induced cancers [5]. Globally, smoking remains a leading risk factor
for death and disability. Knowledge of CSP deposition is essential in understanding the
origin of tobacco-induced cancer [6].

Hinds et al. [7] studied the respiratory deposition of cigarette smoke using a novel
measurement system that involved volunteers. The results showed that the smoking style
heavily influences the dose of smoke and hence, the deposition pattern in the human
respiratory tract (HRT). They also revealed that due to this smoking style, the deposition of
cigarette smoke particulate (CSP) in the HRT is often much greater than the deposition of
air pollutants during normal inhalation. Martonen [8] investigated the aerosol dynamics
of cigarette smoke in a simplified HRT model and revealed that the particle-cloud motion
is predominant in the HRT, which is independent of the aerodynamic size characteristics
of the smoke particles. This motion is intensified by the vapor-gas phase of the smoke.
Subsequently, Phalen [9], Phalen et al. [10], Bernstein [11], Baker and Dixon [12], Gower
and Hammond [13], and Kleinstreuer and Feng [14] discussed various aspects of CSP
deposition in the HRT viz. the colligative effects of smoke particles, concentrated effects of
smoke, retention of tobacco smoke particles, and the effects of ventilated cigarette filters.
These researchers had not used the basic HRT model without any physiological intricacies
in their experimentation. Many of them had not even considered a realistic smoking
pattern while conducting the experiments. Hence, the results of these experiments did
not always match the practical data. Of late, more sophisticated measurement techniques,
such as differential mobility spectrometry (DMS), are used to collect real-time data on
particles and aerosols travelling in the HRT. Mikheev et al. [15] applied DMS coupled with
an electrical low-pressure impactor to evaluate the aerosol deposition from an electronic
cigarette emission. Puffing topography refers to the behavior of the inhalation of smoke
puff by the smoker and it varies with the inhalation time and inhaled volume of puff. The
experiment revealed that the puffing topography influenced particle size emitted from
the e-cigarette. Li et al. [16] compared the aerosol deposition from the emissions of a
conventional cigarette, e-cigarette, and heat-not-burn cigarette using DMS. They found that
the total deposition fraction of the aerosol from e-cigarette and heat-not-burn cigarette are
higher than the conventional cigarette, while the finer aerosols emitted from the e-cigarette
are readily deposited in the HRT.

Multiple path particle dosimetry (MPPD) is a computational model used for calcu-
lating the particle deposition in all the airways of the lungs, which is helpful for toxicity
risk and drug delivery assessment. Various empirical relationships are used in this com-
putational model to calculate the deposition efficiency of the particles in the lungs [17].
Researchers like Sahu et al. [18] and Sosnowski and Kramek-Romanowska [19] used the
MPPD model for cigarette smoke and electronic cigarette smoke particle deposition, respec-
tively. Further, Kane et al. [20] used the MPPD model for finding out the particle deposition
from the mainstream cigarette smoke (MCS) that was broadly matched with the smoke
retention measurement data when the cloud effect is considered. Asgharian et al. [21],
however, stressed the need for accurate input parameters in the MPPD model to ensure ac-
curate predictions. Nevertheless, being a one-dimensional model, the MPPD model cannot
predict the deposition concentration zone (hot spots) precisely, and rather indicates general
regions like the throat, and tracheobronchial passages [22]. Moreover, the geometrical
complexities of the airways in the absence of a realistic HRT scan cannot be included, along
with many other factors influencing particle deposition in the lungs in this model [23].

With the progress in the flow computation, the researchers used realistic computa-
tional fluid dynamics (CFD) simulation of particle-laden airflow in the CT-scan based HRT
model to predict the deposition of particles [24] and viruses [25] in the lungs utilizing
arobust numerical scheme. However, the generation of three-dimensional CAD geom-
etry of a whole lung model featuring the morphological details up to distal generation
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and the subsequent CFD simulation of particle-laden airflow in it is a daunting task in
terms of computational power and time involved. CFD simulation still has some advan-
tages over the MPPD model, like intricate lung geometry [26], unsteady and transient
flow, turbulence [27], particle dispersion, change of particle size [28], growth of obstacles
(lesions/tumors) in the airways [29–31], fluid-wall interactions [32], spray, and the atom-
ization of aerosolized drugs [33] can be incorporated, leading to better prediction of airflow
and particle deposition in the lungs.

Muller et al. [34] conducted CFD simulation to find out CSP deposition in a Weibel
(simplified) lung model up to sixth generation under steady inhalation and exhalation
conditions. It was found that the concentration of particle deposition in the central airway
surface is independent of inhalation pattern and the airway geometry, indicating that
the CSP deposition cannot be significantly reduced by changing the cigarette inhalation
pattern. Robinson et al. [35] conducted both experiments and a CFD simulation to inves-
tigate the deposition of mainstream and side-stream carcinogenic particles in a realistic
tracheobronchial airway up to the sixth generation. The study did not consider the upper
airway and imposed idealized boundary conditions at the inlet of the airway. However, the
CFD results showed a close match with the experimental one. Steffens [36], on the other
hand, used the human airway from oral to third generation and computed the cigarette
smoke particle deposition efficiency for various particle sizes on constant puffing and post
puffing with timing 1.7 s and 3 s, respectively. It was found that the deposition of small
particles ismore likely deeper in the airway, so they concluded that cigarette smoking is
very harmful because it contains ultra-fine particles. They also observed that the formation
of the laryngeal jet affects the deposition in the trachea due to inertial impaction.

Zhang and his co-researchers worked on size-change [37] and vapor deposition [38]
during cigarette smoking in a subject-specific human airway. Most of the CSP deposition
was seen in the upper airways with 13–22% deposition fraction between the oral cavity
and the larynx and 40–57% in the tracheobronchial airways. Results also showed that
vapor deposition was dominated by the puffing behavior as the retention of the smoke in
the oral and tracheobronchial cavity was mostly governed by the inhalation waveform.
Similar work on CSP deposition in the oral-tracheal airways at various breathing profiles
was reported by Li [39], Saber and Heydari [40], and Schroeter et al. [41]. Moreover,
Pichelstorfer et al. [42] studied the effect of coagulation and deposition within the HRT and
found its impact on CSP deposition. Kolanjiyil and Kleinstreuer [43] conducted a transient
particle simulation in a whole-lung airway model (WLAM). They found that a large
number of particles are deposited in the alveolar region as compared to the upper airways.
Although WLAM can be employed for computing local, regional, and total deposition in
toxic and drug particles, the use of WLAM coupled with transient simulation demands
excessive memory and computational time. Feng et al. [44] computationally investigated
the deposition of smoke particles emitted from electronic cigarettes in an idealized human
upper airway geometry from mouth to third-generation using an Euler-Lagrangian method.
It was seen that the phase change from liquid to vapor caused hygroscopic growth in the
droplets, which considerably affected the deposition concentration of aerosols in the
airway. Haghnegahdar et al. [45] used the same Euler-Lagrangian scheme proposed by
Feng et al. [44] to compute the deposition and translocation of e-cigarettes and found that
the puff volume and the holding time during and after the inhalation of smoke from the
e-cigarette are responsible for the enhanced aerosol deposition in the lungs.

Most of the numerical works reported the effects of cigarette smoking on HRT are
based on idealized flow conditions of cigarette smoking, which does not depict the actual
smoking pattern, which is unsteady in nature. Work on cigarette smoke particle (CSP)
deposition in the realistic HRT model is also lacking in the literature. Only a handful of
researchers have investigated the effect of puffing waveform on CSP deposition in HRT.
However, none have considered inhalation and exhalation together in a single waveform.
Variation of puffing time and flow rate are also essential criteria that can alter the CSP
deposition in the HRT. Moreover, the possible location of CSP deposition (called ‘hot spot’)
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that increases the chances of tumor formation in the HRT should also be identified for
better diagnosis and prognosis.

Considering the knowledge gaps, we decided to compute the CSP deposition fraction
(in percentages) for different particle sizes at constant puffing and post-puffing in a CT
scan-based realistic HRT model. The airflow considered through an oral opening resembles
the realistic inhalation and exhalation pattern during smoking (called ’realistic puffing’).
Under this realistic cigarette puffing pattern, CSP deposition is computed in the HRT.
Moreover, the effects of the particle sizes on the CSP deposition are also investigated in the
present article.

2. Computational Methodology
2.1. Geometry

Reconstruction of the human respiratory tract (HRT) from CT-scan images are con-
cerned with three significant steps: identification of points of the inner wall of air passage
and construction of rings by joining inner wall points using MIMICS software (Materialise,
Leuven, Belgium). Next is to align the rings one over another at the distance at which
CT slices are taken. Finally, inner wall surfaces are created around the rings. The present
study considered a CT-scan-based realistic HRT model from the oral cavity to the sixth
generation of bronchi. A CAD model of the same scan was developed in SolidWorks
(Dassault Systems, Vélizy-Villacoublay, France) and is shown in Figure 1a. An HRT system
consists of the following parts:

• Oropharynx: This is the rear of the oral opening consisting of a portion of the tongue,
soft palate, part of the throat, and the tonsil glands. The opening (inlet) equal to the
diameter of a cigarette is provided in the HRT model.

• Larynx: This is known as the ’voice generation box’.
• Trachea: This is known as the windpipe.
• Bronchus: This is one of the two long airways connecting the trachea of the lungs.

The nomenclature of bronchial bifurcations (BiF) and generations (G) are shown in
Figure 1b.
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Figure 1. HRT model from the oral cavity to sixth-generation bronchi with bronchial bifurcations
and generations. (a) HRT Model; (b) Bronchial bifurcations (BiF) and Generations (G).
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2.2. Grid Generation

Figure 2a–c shows the close-up view of the computational grid in different parts of the
human respiratory tract model. The division of large computational domains into the small
sub-domains is called the mesh or grid. The quality of the mesh is a significant factor for
CFD analysis of any computational problem. The mesh should be fine where the flow area
is changed and where eddies/turbulence are formed. The quality of the mesh is identified
by the skewness; close to zero is better for CFD analysis, but Ansys-Fluent can solve up
to 0.95 skewness. The patch-independent method provided in the Ansys-Mesh Modeller
(Ansys Inc., Canonsburg, PA, USA) is adopted for grid generation, which uses a top-down
approach (i.e., generated mesh from volume to surface). Since the surface of the respiratory
tracts is curved, surface meshing is generated using triangular mesh, and volume grid is
generated using structured tetrahedral elements. In order to have a high-density mesh at
the bifurcations of the HRT model, the edges near the bifurcation have meshed with a layer
at a 1:1 growth ratio.
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Figure 2. Computational grid in the HRT model. (a) Close-up view of mesh at the trachea; (b) Close-up view of mesh at the
first bifurcation; (c) Close-up view of mesh at bronchus.

The grid independency test (GIT) is the process of selecting the optimum grid size. In
CFD analysis, the grid plays an important role. Before proceeding with the simulation, it is
necessary to choose the optimum grid size. It can be carried out by calculating the flow
phenomenon at different grids determining an increased number of nodes, and mapping
the resulting variables like velocity, pressure, and temperature. If the variable is constant to
some extent, itis assumed to be the optimum grid. Necessary GIT was carried out as shown
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in Table 1 for the present meshing scheme, and the solution is found to be grid-independent
at 3,536,776 elements.

Table 1. Grid independency test.

Scheme No. of Elements Maximum Skewness Average Velocity (m/s)

1 1,940,389 0.94 4.5742
2 2,864,974 0.86 4.5855
3 3,536,776 0.87 4.5948
4 5,157,626 0.94 4.5939

2.3. Governing Equations

CFD works on the fundamental governing equations of fluid mechanics, i.e., continuity,
momentum, and energy equations. These equations are the mathematical representation of
the flow physics involved in any fluid flow problem.

2.3.1. Continuity Equation

Since the flow during smoking is transient and incompressible, the continuity equation is:

∂ui
∂xj

= 0 (1)

The Momentum Equation is:

ρ
D
→
v

Dt
= ρ

→
g −∇p + µ∇2→v (2)

where:

µ = viscosity of fluid
ui, uj (i, j = 1, 2, 3) is the velocity component in x, y and z direction.
p = pressure
ρ = density of fluid.

2.3.2. Governing Equation for Particle Phase

Fluid flow involving cigarette smoke inhalation in the human respiratory tract is a
two-phase flow problem in which the governing equation for the gas phase and particle
phase are explained separately. In addition to the continuous phase equation, Ansys-Fluent
(Ansys Inc., USA) solves the discrete-phase model (DPM) equation for particle trajectory
calculation simultaneously. For particle deposition calculation, the DPM equation is used,
which is shown as follows.

Particle force balance equation: The force balance equates the particle inertia with
forces acting on the particles and is written as

∂up

∂t
= FD

(
u− up

)
+

gx
(
ρp − ρ

)
ρp

(3)

In the above equation, the first term on the right-hand side shows the drag force, and
the second term indicate the gravity force on the particle. FD is defined as follows:

FD =
18µ

ρpd2
p

CDRe
24

(4)
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u is the air velocity, up is the particle velocity, µ is the molecular viscosity of air, ρ is the air
density, ρp is the density of the particle, and dp is the particle diameter. Re is the relative
Reynolds number.

Re =
ρdp
∣∣up − u

∣∣
µ

(5)

The drag coefficient is calculated as:

CD = a1 +
a2

Re
+

a3

Re2 (6)

where a1, a2, and a3 are constants that apply to smooth spherical particles over several
ranges of Reynolds numbers.

2.3.3. LRN k−ω Turbulence Model

The Reynolds number in the human respiratory tract increases up to 522 at the larynx
region during the puffing of a cigarette. It is also found that the Reynolds number increases
up to 14,500 during inhalation of air. During exhalation, it can, however, increase to 23,285.
Hence, turbulence occurs in the human airways during smoking. Solving with continuity
and momentum equations, it is also, therefore, necessary to solve the turbulence closure
problem associated with the smoking phenomenon.

As the flow in the respiratory tract is of a low Reynolds number, the (LRN) k−ω model
is thought to be suitable. It is found that the LRN k−ω model is relatively better for the
modeling of laminar-transitional-turbulent airflows in the HRT system [46,47]. Thus, in
the present study, the LRN k−ω turbulence model was used to capture the turbulence
behavior during puffing and post-puffing of cigarette smoke. The transport equations for
k (turbulent kinetic energy) and ω (specific turbulent dissipation rate) in the LRN k−ω
turbulence model are described by the following:

uj
∂k
∂xj

= τij
∂ui
∂xj
− β∗kω +

∂

∂xj

[
(ν + σkνT)

∂k
∂xj

]
(7)

uj
∂ω

∂xj
= α

ω

k
τij

∂ui
∂xj
− βω2 +

∂

∂xj

[
(ν + σωνT)

∂ω

∂xj

]
(8)

ν, νT , and τij are kinetic molecular viscosity, turbulent viscosity, and Reynolds stress ten-
sor, respectively.

νT = Cµ fµ k/ω (9)

and function
fµ = exp

[
−3.4/(I + RT/50)2

]
(10)

with RT = k/µω and µ being dynamic molecular viscosity, model constants are:

Cµ = 0.09, α = 0.555, β = 0.8333, β∗ = 1, and σk = σω = 0.5 (11)

2.4. Boundary Conditions

Boundary conditions specify the flow and fluid properties on the computational flow
domain for solving any CFD problem. It is a critical component of the CFD solver, and it is
important that they must be specified appropriately. Different boundary conditions were
chosen for airflow and two-phase flow, which are briefly discussed here.

2.4.1. Airflow Boundary Condition

During smoking, smokers do not inhale the smoke directly into the lungs but instead
use the oral cavity as the staging area. When at rest, there is usually little air in the cavity of
the mouth, but the smokers can make an air pocket by keeping the lips closed and lowering
the jaw and positioning the tongue at the bottom. This allows around 20 cc of air in the
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oral cavity. After this, either of the two exercises is possible depending upon the liking of
the smokers. The first is to start inhalation through the nose that mixes air with the smoke
contained in the oral cavity, which subsequently goes down into the lungs. The second
option is to inhale air through the mouth, which is generally considered a harsher mode of
smoking where only smoke moves down to the lungs in the absence of air mixing. Hence,
cigarette smoking is considered a two-step inhalation process. In the first step, a puff of the
cigarette smoke is drawn into the mouth. Then, in the second step, smoke is inhaled into
the lung along with air inhalation, while some smokers inhale directly into the lung [38].

At the cigarette inlet, the velocity is given by the transient puffing and post puffing
waveform, and the equation is described as:

V = 1.016 sin(1.72t− 0.2312) + 13 sin(9.748t + 0.1202) + 12.98 sin(9.761t + 3.249) (12)

Figure 3 represents inlet air flow rate profile during puffing of the cigarette.
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The equation forpost-puffing inhalation and exhalation waveform is:

V = 288 sin(1.277t− 0.000137)− 265.4 sin(1.239t− 6.297) + 10.83 sin(3.309t− 3.165) + 6.314 sin(5.767t + 3.628) (13)

The air flow rate pattern during the inhalation and exhalation phases of the smoking
is shown in Figure 4.
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Other airway boundary conditions are shown in Table 2.

Table 2. Airflow boundary conditions.

Inlet Velocity Inlet Unsteady Velocity

Turbulence intensity I = u′
uavg.

= 0.16 (ReDH )
−1/8

Hydraulic diameter DH = 4A
P

Wall Stationary wall

No-slip

Roughness constant 0.5

Outlet pressure Zero gauge

2.4.2. DPM Boundary Conditions

The wall of the human respiratory tract is coated with a mucus layer due to the
presence of salvia. Therefore, it has a tendency to trap the solid or vapor particle. In order
to capture this phenomenon, the discrete phase model (DPM) requires the enabling of
boundary conditions like trap, reflect, and escape, as shown in Figure 5.
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The boundary conditions used for the DPM in the present article are shown in Table 3.

Table 3. Discrete phase model boundary conditions.

Inlet escape

Outlet escape

wall trap

Injection type surface

Mass flow rate 8.338 × 10−7 kg/s

Particle size micron

Coupling with continuous phase yes

Diameter distribution uniform

Turbulent dispersion Discrete random walk model

2.5. Smoke Particle Properties

Smoke particle from a cigarette contains 9.4 mg for the reference cigarette 3R4F in
the particulate phase [48,49]. In general, a cigarette takes six puffs to generate all the
smoke. Hence, the mass flow rate for a single puff is 8.33 × 10−7 kg/s. The density of
smoke particles, according to Lipwicz [50], is taken as 1120 ± 20 kg/m3. Table 4 shows the
material properties used for the present study.
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Table 4. Material properties.

Air
Density 1.225 kg/m3

Viscosity 1.785 × 10−5

Smoke particle Density 1120 kg/m3

2.6. CFD Solver Settings

CFD solver settings used in the present simulation are shown in Table 5.

Table 5. Solution settings.

Solver Pressure Based, Incompressible,
Transient Flow

Pressure -velocity coupling SIMPLEC

Spatial Discretization

Momentum Quick

Pressure Standard

Gradient Green-Gauss node based

Turbulence kinetic energy QUICK

Specific dissipation rate QUICK

Transient formulation First-order implicit

3. Results and Discussion

The results obtained by simulating the particle deposition from cigarette smoking in a
human respiratory tract (HRT) model are presented in this section in the form of graphs on
deposition fraction, variable contours, vectors, and pathlines.

3.1. Deposition and Flow Pattern at Constant Velocity

The following sub-sections discuss the CSP deposition fraction percentage for different
particle sizes at constant puffing and post-puffing in a realistic HRT model.

3.1.1. Total Deposition Fraction of CSP at Constant Flow

The deposition of toxic cigarette smoke particulates (CSP) is computed for a variety
of particle sizes at a constant flow rate of 2.25 LPM. The value of deposition is shown
in Figure 6 in terms of total deposition fraction percentage, and the computed data is
compared with the data reported by Steffens [36]. An excellent agreement is observed for
particle sizes 1 and 10 µm, while little difference in the deposition fraction percentage is
noticed for 5 µm particles. Overall, the present data is validated by the published data.
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3.1.2. Puffing Velocity Contour

In the constant (steady) puffing condition, air velocity at the inlet of the oral cavity
should be 0.68 m/s according to a puffing flow rate of 2.25 LPM. No appreciable variation
in the velocity contour is seen in Figure 7a. After the puffing (i.e., post-puffing condition),
fresh air is inhaled by the smokers, which normally takes place at 30 LPM. Figure 7b shows
the velocity variation from the cigarette inlet located at the oral opening to the trachea. A
high velocity (~13 m/s) air stream is seen at the oral opening that gradually diffuses as it
progresses in the oropharyngeal cavity. However, a relatively high-velocity core exists in
the tracheal region, indicative of the influence of fresh air inhalation. A similar pattern was
also observed in Steffens [36].
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3.1.3. Velocity Contours at Transverse Planes at Constant Fresh Air Inhalation

Variation of velocity contour from the oral inlet up to the first bifurcation at constant
fresh air inhalation condition is described in Figure 8. A maximum velocity of 13 m/s is
observed at the oral inlet as shown in Figure 8a. Velocity is seen decreasing as the area of the
airway changes. Diffused velocity contour is observed at the larynx (Figure 8b). Tracheal
velocity is reduced further due to the flow diffusion and viscous losses, as evident in
Figure 8c. Further, Wall boundary condition fulfils no-slip condition as the contour velocity
is zero at the wall. Velocity contour becomes skewed just before the first bifurcation
(Figure 8d) with higher velocity in the posterior wall as compared to that of the anterior
wall that is attributed to geometrical irregularities and the curvature present in the airways.
The skewness of the velocity profile further increases as the flow reaches the first bifurcation
(Figure 8e) with the presence of a high-velocity gradient (and hence high shear stress) at
both anterior and posterior walls of the airways.
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3.1.4. Generation Wise CSP Deposition at a Constant Flow Rate

The CSP deposition pattern at different generations in the HRT model for various
particle sizes at the constant flow rate condition described in the preceding section is shown
in Figure 9. The deposition pattern of small-sized particles (1 and 5 µm) is found to be
similar at all generations of the HRT. However, the deposition pattern for larger particles
(10 µm) is revealed to be different as the inertial impaction is more predominant for larger
particles. Hence, larger CSP particles are deposited more at the lower generations (second
and third bifurcation regions).

Atmosphere 2021, 12, x FOR PEER REVIEW 12 of 22 
 

 

 

 
  

 

(a) (b) (c) 

  
(d) (e) 

Figure 8. Velocity contour at transverse planes with constant fresh air inhalation. (a) At oral inlet(b) At larynx(c) At tra-
chea(d) Pre-bifurcation(e) At first bifurcation. 

• Generation wise CSP deposition at a constant flow rate 
The CSP deposition pattern at different generations in the HRT model for various 

particle sizes at the constant flow rate condition described in the preceding section is 
shown in Figure 9. The deposition pattern of small-sized particles (1 and 5 µm) is found 
to be similar at all generations of the HRT. However, the deposition pattern for larger 
particles (10 µm) is revealed to be different as the inertial impaction is more predominant 
for larger particles. Hence, larger CSP particles are deposited more at the lower genera-
tions (second and third bifurcation regions). 

 
Figure 9. Generation wise deposition fraction of CSP. 

3.2. Results of Realistic Puffing Waveform 
Toxic particle-laden airflow (i.e., CSP) is simulated for realistic puffing (inhalation 

and exhalation) pattern in a CT-scan-based HRT model, and the results are discussed in 
the following sub-sections. 
• Velocity contours at transient puffing and post-puffing waveform 

In the transient puffing condition, an air-jet of (~1 m/s) is seen developing from the 
oral inlet, which gradually diffuses as it moves downstream of the airways (Figure 10a). 

Figure 9. Generation wise deposition fraction of CSP.

3.2. Results of Realistic Puffing Waveform

Toxic particle-laden airflow (i.e., CSP) is simulated for realistic puffing (inhalation and
exhalation) pattern in a CT-scan-based HRT model, and the results are discussed in the
following sub-sections.

3.2.1. Velocity Contours at Transient Puffing and Post-Puffing Waveform

In the transient puffing condition, an air-jet of (~1 m/s) is seen developing from the
oral inlet, which gradually diffuses as it moves downstream of the airways (Figure 10a).



Atmosphere 2021, 12, 912 13 of 22

After the puffing (i.e., post-puffing condition), smokers inhale fresh air at around 29 m/s
(Figure 10b). Afterward, the velocity of the laryngeal jet stream is reduced and maintained
at around to ~6 m/s in the tracheal region, as observed in Figure 10b.
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3.2.2. Airflow Vector with Realistic Puffing Waveform Showing Inhalation and Exhalation
during Smoking

During smoking, fresh air is inhaled after puffing. Subsequently, the lungs exhale
the air volume, and the same is shown in Figure 11 at different instants. Here, inhalation
takes place up to the t = 1.9 s; after that exhalation starts, it continues until t = 4.18 s as
per the waveform. The realistic waveform of inhalation and exhalation shows that the
exhalation velocity is higher than the inhalation velocity. Velocity reaches 28 m/s at the
time of inhalation (Figure 11b), but during exhalation, the air velocity reaches 44 m/s
(arrow showing at the oral opening in Figure 11e). The laryngeal jet is gradually weakened
and subsequently disappears due to the decrease in the inhalation velocity. As a result,
the break-up of the vortex structure in the form of small eddies is noticed inside the HRT
model just before the completion of the exhalation process (Figure 11f).
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used in Figure 11 is also applicable here. The inhalation phase is maintained up to t = 1.9 
s, whereas the exhalation continued until t = 4.1 s. Maximum velocity during exhalation 
(Figure 12e) is higher than that during the inhalation (Figure 12b). 
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Figure 11. Airflow vector with realistic puffing waveform showing inhalation and exhalation during smoking.
(a) At t = 0.55 s; (b) At t = 1.0 s; (c) At t = 1.5 s; (d) At t = 1.9 s; (e) At t = 2.5 s; (f) At t = 4.1 s.

3.2.3. Velocity Contours at Transverse Planes for Transient Conditions

The streamwise velocity contours at various transverse planes in the HRT model are
shown in Figure 12 at different instants. It is noteworthy that the color index for velocity
used in Figure 11 is also applicable here. The inhalation phase is maintained up to t = 1.9 s,
whereas the exhalation continued until t = 4.1 s. Maximum velocity during exhalation
(Figure 12e) is higher than that during the inhalation (Figure 12b).
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Figure 12. Velocity contour at different planes with time. (a) At t = 0.5 s; (b) At t = 1.0 s; (c) At t = 1.5 s; (d) At t = 1.9 s; (e) At
t = 2.5 s; (f) At t = 3 s; (g) At t = 4.1 s.

As the flow propagates downstream, higher wall shear is experienced near the anterior
and posterior walls for both the inhalation and exhalation phases. However, the magnitude
of wall shear is found to be higher during the exhalation phase.

3.2.4. Particle Propagation Pattern at Transient Conditions

The propagation of toxic particles from the oral opening to the distal airways of the
HRT model during the inhalation phase is shown in Figure 13a–f. The particles are shown
here magnified for the sake of visualization to the readers. It is seen from Figure 13a
that the inhaled toxic particles (CSP) formed a cone-shaped structure at the onset of
smoking cigarettes.

The bolus of particles, however, quickly expands as they enter the oral cavity (Figure 13b),
subsequently propagating through the oropharynx (Figure 13c) and reaching the tracheal
region (Figure 13d). The particles encounter the first bifurcation (Figure 13e), where many
particles are deposited due to inertial impaction and finally moved to the distal region of
the airways (Figure 13f). In this process, it is evident from Figure 12a to Figure 12f that the
velocity of the particles is seen reducing as it moves downstream due to impaction and
viscous losses.
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3.3. CSP Deposition at Different HRT Locations with Transient Smoking Waveform

In this section, deposition of cigarette smoke particulate (CSP) is computed for the
realistic flow pattern of smoking that is transient in nature. Particle sizes are varied at
0.1 µm, 0.5 µm, and 1 µm to investigate the effect of particle size on the regional deposition
pattern in the HRT model at various time instants.

3.3.1. CSP Deposition at Various Locations of the HRT

Figure 14a–e represents the deposition of toxic particles at different locations of the
HRT model at different instants during inhalation for various particle sizes. The deposition
is expressed in these graphs as deposition fraction (percentage). As the smokers started
to inhale, smaller-sized toxic particles (0.1 µm and 0.5 µm) are deposited rapidly in the
walls of the oropharynx and achieve a higher deposition fraction as compared to the larger
particles (1 µm) due to diffusion. As time elapsed, the trend reversed, and the highest
deposition fraction is computed (~37%) for 1 µm particles at the end of the inhalation phase
due to inertial impaction.
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The deposition fraction in the trachea during inhalation is, however, found to be less
(within 5%) for all particle sizes at all instants (Figure 14b), whereas the least deposition is
computed at the first bifurcation (Figure 14c). It is also worth noting that the deposition
fraction is higher in the right bronchus (Figure 14d) as compared to the left bronchus
(Figure 14e) because of the compression caused in the left bronchus due to the positioning
of the heart towards the left.

3.3.2. Generation-Wise CSP Deposition at Various Instants

The deposition fraction of the CSP is computed at various instants during the in-
halation phase and is expressed in percentage terms in Figure 15a–d. It is observed from
Figure 15a that at the onset of inhalation (t = 0.5 s), deposition fraction for 0.1 µm sized
particles is higher at the 0th generation as compared to that for 1 µm sized particles, signi-
fying that the particles are deposited mainly due to diffusion at low velocity. Hence, the
effect of inertial impaction is more negligible in the low-velocity range. As the velocity
increases with time, deposition for 1 µm particles increased at the 0th generation due to
inertial impaction as compared to the diffusion effect.
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3.3.3. Total Deposition Fraction for Different Particle Sizes

It is revealed from Figure 16 that the total deposition fraction percentage of cigarette
smoke particles (CSP) is at its maximum for particles sized 1 µm, while it is at its minimum
for particles sized 0.1 µm. It can also be seen from the figure that the CSP can be deposited
up to 54.8% with a single puff of a cigarette.
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4. Conclusions

A real smoking pattern with inhalation and exhalation is considered in the present
article that furnishes accurate information on the flow physics that occur inside the HRT
system during smoking. The deposition fraction percentage of cigarette smoke particle
is found less in the realistic waveform as compared to the constant flow rate condition.
For particles less than 1 micron, few are deposited in the oral cavity, but they are mostly
deposited in the distal lung region. Particle sizes of more than 1 micron are almost all
deposited in the oral wall due to inertial impaction and sedimentation. It is also observed
that the velocity during exhalation is greater compared to the inhalation velocity for a
particular instant during smoking.

In the present study, pressure at the outlet is assumed to be at an atmospheric level
(zero gauges), but in the actual case sub-atmospheric pressure occurs at the outlet of the
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HRT that may affect the flow. This HRT model considered in the current study was up
to the sixth generation. Adding a higher generation with an epiglottis to an HRT model
would help the researchers to see the fate of the CSP in the distal lung region. Moreover,
in the present computation, fresh air was inhaled from the mouth (oral cavity), but many
smokers ingest air from the nose during fresh air inhalation. Additional inhalation of fresh
air from the nasal opening would dilute the CSP, and hence the immediate physiological
effect of smoking could be less fatal. Moreover, variations in puffing, inhalation, and
exhalation time may also affect the deposition pattern of CSP. Interested researchers can
investigate these aspects in detail. Deposition patterns for less-harmful heat-not-burn
tobacco products [51] can also be investigated in the future.
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