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Abstract: Numerous studies on climate change and variability have revealed that these phenomena
have noticeable influence on the epidemiology of dengue fever, and such relationships are complex
due to the role of the vector—the Aedes mosquitoes. By undertaking a step-by-step approach, the
present study examined the effects of climatic factors on vector abundance and subsequent effects on
dengue cases of Dhaka city, Bangladesh. Here, we first analyzed the time-series of Stegomyia indices
for Aedes mosquitoes in relation to temperature, rainfall and relative humidity for 2002–2013, and then
in relation to reported dengue cases in Dhaka. These data were analyzed at three sequential stages
using the generalized linear model (GLM) and generalized additive model (GAM). Results revealed
strong evidence that an increase in Aedes abundance is associated with the rise in temperature, relative
humidity, and rainfall during the monsoon months, that turns into subsequent increases in dengue
incidence. Further we found that (i) the mean rainfall and the lag mean rainfall were significantly
related to Container Index, and (ii) the Breteau Index was significantly related to the mean relative
humidity and mean rainfall. The relationships of dengue cases with Stegomyia indices and with the
mean relative humidity, and the lag mean rainfall were highly significant. In examining longitudinal
(2001–2013) data, we found significant evidence of time lag between mean rainfall and dengue cases.

Keywords: climate variability; seasonality; dengue fever; vector; rainfall; Bangladesh

1. Introduction

The potential impacts of climate change on the human environment and infectious
diseases are significant and alarming. Dengue/Severe Dengue Fever (DF/SDF) is one of
the most rapidly growing arboviral diseases in the tropics, for which there is currently no
universally accepted cure or vaccine. The rapid spread of both the dengue virus (DENV)
and its mosquito vector (mostly Aedes aegypti and Aedes albopictus) in the past four decades
poses an enormous risk to public health in tropical regions. The Halstead [1] and Gubler [2]
studies suggested that the projected emergence will place around 2.5–3.0 billion people at
risk of acute illness every year as tropical diseases spread to new areas, such as Europe and
North America [3]. As well, Aedes albopictus plays a noticeable role in dengue transmission
in the USA and Europe, whereas, in Asia, Aedes aegypti is more dominant in spreading
dengue. Presently, populations of 129 countries worldwide are vulnerable with the risk of
dengue infection—caused by both kinds of Aedes mosquitoes—of which, 70% of the actual
disease burden exist in Asia. About 5.2 million dengue cases were recorded by the WHO
in 2019 with an annual death count of 4032 people. Apart from dengue, these mosquitoes
are also vectors of chikungunya, yellow fever and Zika viruses [4].

While some scholars account for climatic factors in their analysis of arboviral disease
epidemiology [5,6], climatic factors and/or climate change are generally considered a
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discrete and separate entity in explaining disease dynamics. In clarifying dengue disease
epidemiology, some quarters consider climatic aspects as unrelated factors [7]. Several
investigations in Asian and Latin American countries, namely in Vietnam [8], Taiwan [9],
and Ecuador [10], have confirmed a positive association between Stegomyia indices and
Aedes abundance. We argue that climatic factors should therefore be considered as one of
the principal determinants of the epidemiological complex that includes vector ecology,
pathogen biology, disease transmission, disease occurrence and prevalence, and disease
control, prevention, and cure. Such an improved understanding of emerging infectious
diseases, including dengue, would enable us to more comprehensively map the process of
disease occurrence and spread. This is especially vital for diseases like dengue for which
risk assessment, prevention, and control are the only countermeasures available worldwide.

The relationship between climatic conditions and DF/SDF incidence is complex. A
meta-analysis of the literature has revealed that rainfall, temperature and humidity are
the most important explanatory variables in the transmission of dengue virus (DENV)
through the means of vectors (Aedes aegypti and Aedes albopictus) and human hosts [11–13].
However, the specifics of these interactions vary widely from region to region and remain
largely inconclusive in the current literature. In addition, several empirical studies in
Asia and Latin America cautioned that the relationship between precipitation and dengue
incidence may not be linear, as excess rainfall can negatively impact vector breeding [14,15].
Additionally, the Aedes mosquito—especially Aedes aegypti—is a type of vector that breeds
in clean water and mostly found in different types and sizes of water containers. The role
of artificial water containers, especially in urban areas, is therefore very important in Aedes
mosquito breeding and dengue incidence. The artificial water containers, especially in the
urban areas, thus play a pivotal role in dengue transmission through mosquito breeding,
their life cycle, and by infecting people with DENV [16].

By addressing some of the major gaps in previous studies (elaborated on in the fol-
lowing section), our investigation attempts to make a novel contribution by considering
the climate–vector–disease nexus in an integrated manner for understanding dengue
transmission dynamics. It attempts to determine the effects of the main climate variables
(temperature, relative humidity, rainfall, and seasonality) on dengue vector abundance
and dengue disease occurrence in the city of Dhaka, Bangladesh. The specific objectives of
the study are (1) to examine the relationship between the main climatic factors (temper-
ature, relative humidity, and rainfall) and dengue vector abundance; (2) to examine the
relationship between DF/SDF cases and vector abundance; (3) to examine the relationship
between climatic factors and DF/SDF cases; (4) to map the patterns in seasonality and
climate anomaly, along with their effects on DF/SDF cases.

This paper starts with an overview of the climate factors, specifically temperature,
rainfall, relative humidity and dengue relationships, followed by an analysis of the trend
in DF/SDF in Bangladesh and a critical review of the relevant studies in the country. The
materials and methods are presented in Section 2, followed by the results in Section 3, and
an analytical discussion in Section 4, with brief conclusions in Section 5.

1.1. Climate Factors and Dengue Relationships: An Overview
1.1.1. Temperature and Dengue

The relationship between DENV infection, DF and SDF incidence and temperature
follows a complex, nonlinear trend. Most studies on dengue have been conducted in
tropical areas where the annual temperature patterns are similar and disease transmission
occurs at an optimal temperature range of 20–35 ◦C [17–19].

However, vector breeding and disease transmission are dependent on many other
socioeconomic and human behavioral factors. It is also critical to distinguish between
outside and ambient temperature when examining dengue vector breeding conditions. For
example, in sub-tropical regions, breeding can still occur at sub-optimal outside tempera-
tures (i.e., during winter) if the ambient (indoor) temperature is higher and heating and
standing water are available [17]. Conversely, even if the outside temperature is optimal, if
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the ambient temperature in buildings is lower due to air conditioning, the vector may not
breed or multiply sufficiently to cause an outbreak. The breeding patterns of Ae. aegypti—
the major vector for dengue—may not necessarily correlate with outdoor temperature,
rather they may be associated with ambient temperature.

1.1.2. Rainfall and Dengue

The relationship between dengue incidence and rainfall is dependent on numerous
complex, interlinked factors. The dengue epidemiology literature reveals that dengue
outbreaks in most countries coincide with the wet season and increased precipitation in
general [12,13,19]. In this regard, Kuno [17] noticed a positive association between rainfall
and larval density and dengue incidence that has since been documented in many tropical
countries. However, this causal pathway cannot be universally generalized, as dengue
outbreaks follow different climatic patterns in certain regions. Moreover, excess rainfall
can negatively impact vector breeding [14,15] by washing off the vector breeding sites and
thus can affect dengue outbreaks.

1.1.3. Relative Humidity and Dengue

Despite great interest within the research community in the association between
climatic factors and dengue incidence, research on relative humidity as an important
climatic factor has been relatively scant. Furthermore, the results of the few studies have
also been inconsistent and inconclusive. An Indonesian study revealed that the most
important predictive factor for dengue outbreaks in that country was relative humidity,
with a 3–4-month lag time [14]. This research revealed that low relative humidity during
September and October is usually followed by a dengue outbreak early the following year.
It is thus highly probable that if seasonal conditions (average temperature and humidity)
are shifted due to climate change, seasonal incidences of dengue would be shifted as well.

1.1.4. Dengue Studies in Bangladesh

Bangladesh is situated in the tropical monsoon climate zone. Dhaka—the capital
city—and other major urban centers experience a hot, wet and humid tropical climate.
Bangladesh has a country-wide monsoon mean temperature of about 29 ◦C [20], which
falls within the optimal range for both mosquito breeding and dengue transmission [17–19].
The major cities of Bangladesh (a country with a population of about 160 million in an area
of 143,000 km2) have experienced a major resurgence of dengue since 2000 [21,22].

The first epidemic of SDF occurred in 2000 in the cities of Dhaka, Chittagong and
Khulna. During this dengue epidemic, a total of 5551 infections were reported and 93
patients died [23]. Since then, serious concern has been expressed regarding the lack of
understanding of the dynamics of dengue transmission and the urgent need for improved
disease management. According to Sharmin et al. [24], the 2000 outbreak resulted from
a virus strain originating in Thailand, located to the east of the country. They also added
that dengue cases have remained underreported in Bangladesh as rural people only visit
hospitals in the most severe cases. Rahman et al.’s [25] research indicated some degree of
correlation between the DF/SDF outbreak in 2000 and monsoon seasonal conditions as
the outbreak started in late June 2000, peaked in September (during the rainy season) and
decreased in the dry winter season of the same year.

DF/SDF or similar fever is not a new disease in the country. For example, Hossain
et al. [22], after analyzing samples from febrile patients between 1996 and 1997, suggested
that dengue transmission was ongoing in the country well before 1996. The Sharmin
et al. [24] and Morales et al. [26] studies further noted that dengue could be traced back to
1964 in Bangladesh (then East Pakistan)—much earlier than the major outbreak in 2000.

Mortality rates have decreased significantly since the outbreak of 2000; however, a
sizeable population is still infected with DENV every year (Figure 1). The distribution of
dengue cases and deaths over the period of 2001–2019 in Dhaka is illustrated in Figure 1.
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Due to data unavailability for the year 2000 for Dhaka, both the reported cases and
number of fatalities were excluded. Though the dengue incidences have decreased over
the years until 2015, it has followed cyclical and fluctuating patterns since 2001. It is
evident that the number of deaths has decreased dramatically—from 44 deaths in 2001 and
58 deaths in 2002 to no deaths in 2014. (Figure 1). It then started increasing, resulting in
41 deaths in 2018 and an estimated number of 87 deaths in 2019. There was a large increase
in reported dengue cases and number of deaths in 2019. A total of 80,040 dengue cases
were reported officially between 1 January and 13 September 2019 with a total of 60 deaths
due to SDF and shock syndrome [27]. According to the existing literature, all four DENV
serotypes prevail in the city of Dhaka, with DENV-3 being the dominant one [29]. During
the 2002 major outbreak, DEN-3 predominated, and subsequently other serotypes were
also found to be in circulation.

Studies on the relationship between climate and dengue transmission in Bangladesh
have primarily focused on patients in hospitals and clinics [22,24,25,30], and only a few
investigations have hitherto been carried out in the country [31–33]. Paul et al. [34] studied
the effects of climatic factors on Aedes abundance in the city of Dhaka, Bangladesh, limiting
their study only to climate factors and vector abundance relationships. They concluded
that rainfall, temperature, and relative humidity significantly affected the mean abundance
of mosquitoes.

In a rare study on climate–dengue case relationships in Bangladesh, Hashizume et al. [31]
conducted a time-series analysis of the trend between hydro-climatological variability and
DF cases, and found a positive association between DF cases with high as well as very
low river levels with varying weekly time lags of 0–19 weeks. Islam et al.’s [35] recent
study of the city of Dhaka inferred that dengue incidence is significantly associated with
the monthly mean temperature, total rainfall, and mean humidity. The study established a
linear relationship of the climatic factors and the dengue incidence, while not accounting
for the aspects of seasonality and the vector relationships.

Karim et al. [32] examined the influence of climatic factors on dengue cases in the city
of Dhaka, and found that rainfall, maximum temperature, and relative humidity could
explain 61% of the variability in reported dengue cases with a two-month lag period. The
study revealed that the arrival of the monsoon season, with a peak in August, was sufficient
to explain most of the reported dengue cases. However, the role of vector mosquitoes in
dengue transmission was not considered. An investigation in the city of Dhaka revealed



Atmosphere 2021, 12, 905 5 of 21

that both Ae. aegypti and Ae. albopictus larval populations peaked in July at the height of
the monsoon [36].

In studies on dengue in Bangladesh, we argue that the focus has generally been on
bivariate relationships either between climate factors and vector abundance or between
vector abundance and dengue cases [24,32,33]. In Bangladesh studies, the climate–vector–
disease nexus under one research framework has not yet been explored. We therefore
assert that considerable gaps still exist in our understanding of the complex climate–vector–
disease nexus and how these relationships are being affected by confounding factors such as
urbanization and human behavior. As there is not yet a cure or universally available vaccine
for dengue, it is vital to improve our understanding of risk factors in order to effectively
control and prevent the spread of the disease in developing countries like Bangladesh.

2. Materials and Methods
2.1. Study Area and Design

The city of Dhaka is the largest urban center of Bangladesh. Considering its socioe-
conomic, political and demographic significance, pivotal standing in terms of population
health risk to infectious diseases, and recurring number of dengue cases, the Dhaka City
Corporation (DCC) was chosen as the study area for this investigation (Figure 2). Located
on the banks of the Buriganga River, Dhaka has an area of 126.34 square kilometers (census
2011) [37] and ranks 11th among global mega-cities with a population of 18.2 million [38].
The city experiences a hot, wet, and humid tropical climate and a distinct monsoon season,
with an annual average temperature of 28 ◦C (82 ◦F) and monthly means varying between
20 ◦C (68 ◦F) in January and 32 ◦C (90 ◦F) in May. Nearly 80% of the annual average rainfall
of 1854 mm (73 in) occurs between May and September [39].

2.2. Data Collection Techniques

First, the meteorological data required for the study included temperature, relative
humidity and rainfall on daily, monthly and yearly time scales. These data were obtained
from the Bangladesh Meteorological Department (BMD) in Dhaka for the 1985–2014 period.
A near standard 29-year period (1985–2014) was used as the climate baseline to calculate
climate anomalies in relation to dengue cases [40]. We could use only 29 years of data
instead of 30 years as data prior to 1985 were not available from the BMD. The data
collection method was different before 1985 and therefore data were not compatible with
data available from 1985 onwards. The data were obtained from a single observatory
located at the Dhaka Airport (Old) (Figure 2). Monthly averages were calculated from the
daily data for trend and seasonality analysis of the selected variables (temperature, rainfall
and humidity) in relation to dengue cases.

Notably, we could not use daily data since daily data were not available for the Aedes
mosquito or dengue cases. The data were homogeneous according to the BMD for the
period mentioned. Second, the data for the House Index (HI), Breteau Index (BI) and the
Container Index (CI) for Ae. aegypti larvae for the city of Dhaka were obtained from the
Directorate General of Health and Services (DGHS) of the Government of Bangladesh for
the 2002–2013 period. There were two limitations: (i) continuous time series data were not
available as entomological surveys were conducted with interruptions, and (ii) there were
common as well as uncommon surveyed areas in the sequential surveys. Therefore, the
larval data from entomological surveys were available only for seven years: 2002, 2003,
2004, 2005, 2009, 2012 and 2013. These surveys were carried out during the same period
(monsoon season) of each year, namely during June–October months.
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However, as noted above, the geographic areas surveyed by the DGHS had common
as well as varied areas from year to year. In order to maintain consistency, ensure com-
parability and reduce possible biases, we selected only the common areas within which
data collection was repeated for at least five years. We re-calculated all indices (HI, BI and
CI) for the city of Dhaka based on DGHS datasets. As no data were available for 2006,
2007, 2008, 2010, and 2011 from any sources in Bangladesh to conduct a field-data based
time-series analysis, these missing data were denoted as “missing at random”. Following
Little and Rubin [41] and Weerasinghe [42], these missing data were imputed by applying
the Spline Interpolation Method (see R-package “imputTS”) [43,44] and the regression
imputation method [45]. Third, the dengue case data (2002–2013) were also obtained from
the DGHS. All statistical analyses were performed using Microsoft Excel and the statistical
software R [46].

2.3. Statistical Analyses

We applied various statistical techniques to identify interactions within the climate–
vector–disease nexus. To the best of our knowledge, this relationship has not been previ-
ously studied to a significant extent, especially in the South Asian context, and thus the
constituent dynamics are not understood well. Our initial approach is to analyze the effects
of climatic variables on vector abundance, then subsequently analyze the effect of vector
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abundance on dengue incidence, conceptualizing this pathway as a step-by-step process.
In addition, we also analyzed seasonality factors that may affect disease patterns over the
years. To implement the above, the following data analyses were performed based on the
collected meteorological, entomological and dengue case data:

Analysis of climate factors vs. vector indices: first, we calculated the monthly mean
temperature (MT), mean relative humidity (MH), mean rainfall (MR), and lag mean rainfall
(LMR) of one-month lag. We then attempted to find relationships between each of the
indices (CI, BI and HI) and the climate factors (MT, MH, MR, and LMR) for the period of
2002–2013. Linear regression model assumes a fixed parametric form of the relationship
between vector indices and climate factors. The generalized additive model (GAM) [47]
does not assume any specific form of this relationship and can be used to reveal and
estimate nonlinear effects of the climate factors on the vector indices. To implement this
relation, the following GAM was used:

Indexit = β0 + f(MTt) + f(MHt) + f(MRt) + f(LMRt) + errort (1)

where β0 is the intercept; i is HI, CI or BI; t is time; f is the unknown smooth functions of
climatic factors which are determined by the data.

We used an autocorrelation of lag 1 to measure the relationship between one month’s
temperature (Yt) and the previous month’s temperature (Yt−1) (same for humidity, rainfall
and lag mean rainfall). The values of the autocorrelation function (ACF) and partial
autocorrelation function (ACF) helped us to identify the autoregressive order and moving
average order, respectively. Next, we estimated the GAM model parameters after adjusting
the order in the estimation procedure.

Analysis of vector abundance vs. dengue case incidence: here, we emphasized to
examine the relationship between vector abundance (by using HI/BI/CI) and dengue cases
for the period of 2002–2013. Since our response (dengue cases) was counts, the following
Poisson regression model was used to model vector abundance vs. dengue case incidence:

log(µt) = β0 + β1HIt + β2BIt + β3 CIt (2)

where µt is the mean case count with respect to time t.
Analysis of climate factors vs. dengue case incidence: we examined the relationship

between dengue cases and climatic factors for specific months over the 12-year study
period (2002–2013), using the Poisson regression model. In statistics, when modeling count
data (number of dengue cases, in our study), the Poisson regression model is used.

The relationship among the climate–vector–dengue nexus was established based on
the above modeling approaches. However, we could not consider seasonality effects in this
analysis because appropriate vector data for seasonality were unavailable. For seasonality
analysis, we used a different dataset which has monthly average temperature, rainfall and
relative humidity data for the period of 2001–2013. A relationship of climatic factors and
dengue cases was established after adjusting the seasonality effect.

Analysis of seasonality vs. dengue cases: dengue case data for Dhaka city were plotted
against the climate data variables (temperature, rainfall and relative humidity) from the
BMD for the period of 2001–2013 in order to map seasonal variations in dengue cases. We
then determined the relationship between dengue cases (which is again count response)
and climatic factors (MT, MH, and MR), using the following Poisson regression model:

Log(µt) = β0 + β1MTt + β2MHt + β3 MRt (3)

where µt is the mean case count with respect to time t. After establishing the climate–
vector–dengue nexus for specific months over 2002–2013 and the seasonal variation of
dengue while determining the effects of climatic factors on dengue, it is important to
examine the variation in dengue cases based on climate anomalies (of annual temperature
and rainfall over the period of 2001–2013). To implement this, we calculated the annual
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mean of temperature and rainfall for the period 1985–2013 to act as the climate normal
baseline for the study. The annual anomaly was found by subtracting the climate mean of
temperature, relative humidity and rainfall from the data for each individual year. This
can be expressed as:

annual anomaly(2001-2013) = annual mean(2001-2013) − climate normal(1985-2013) (4)

The data obtained from relation (4) were then plotted to show the annual anomaly
over the 2001–2013 period. This depicted the changes in dengue disease occurrence in
association with the annual anomaly over the years for the 2001–2013 period.

Notably, prior to a major dengue outbreak in 2000, case data collection by the public
health agencies was sporadic and limited to clinical data. Large scale (population-based)
dengue case data collection began only after the outbreak in 2000. Subsequent to the
2000 dengue outbreak, large scale entomological data collection was also initiated and
were available from 2002 onward. Limited by data unavailability, we used the 13-year
period (2001–2013) for examining the relationships between seasonality and dengue cases,
and a 12-year period (2002–2013) for examining the relationship between entomological
data-based vector abundance with dengue cases, and the climate variables. These time
frames are graphically shown in Figure 3 for clarity.
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This research was approved by the Bangladesh Medical Research Council (Bangladesh)
and the Joint Faculty Research Ethics Board of the University of Manitoba (Canada). Admin-
istrative permission was granted by the Government of Bangladesh to access and use the
meteorological data from the Bangladesh Meteorological Department, and entomological
and dengue case data from the Directorate of Public Health and Services.

3. Results

In this section we provide the data analysis results based on the sequence of analyses
discussed in the previous section.

3.1. Analysis of Climate Factors vs. Vector Indices

We examined the effects of climatic factors on each of the Stegomyia indices (CI, BI
and HI) for the city of Dhaka over the 2002–2013 period, based on observed (by BMD and
DGHS) and our imputed meteorological and entomological data (Table 1).
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Table 1. Vector indices and climatic variables for specific months (2002–2013) in the city of Dhaka, Bangladesh.

Years Months %CI %BI %HI MT (◦C) MH (%) MR (mm) LMR (mm)

2002 Aug. 7.49 15.28 14.25 28.6 81 8.77 14.39
2003 Aug. 16.31 16.84 8.74 29.4 78 6.52 6.16
2004 Jun. 29.91 32.54 14.04 28.5 81 15.87 5.23
2005 Sep. 15.7 13.91 10.47 28.9 81 17.13 11.65
2006 Aug. 8.11 14.69 8.49 29.1 77 5.39 10.68
2007 Aug. 13.61 39.14 10.73 29.1 80 16.29 24.29
2008 Aug. 26.46 71.07 15.58 28.8 81 10.29 18.16
2009 Jun. 40.91 94.29 21.43 30.2 74 5.67 5.42
2010 Aug. 51.56 96.59 26.65 29.5 78 10.97 5.39
2011 Aug. 54.36 81.7 29.45 28.5 82 13.19 11.48
2012 Sep. 45.6 57.33 28.01 29 79 2.70 9.10
2013 Oct. 21.47 30 20.53 27.2 78 4.23 5.73

Note: The specific months in this study were used because data were available only for these months as collected and provided by
the DGHS.

Results of our univariate analysis revealed that there is a nonlinear relationship
between CI and mean rainfall (MR) or lag mean rainfall (LMR). We used a smoothing
method based on cubic splines to estimate the functional effect of climate factors on the
vector indices GAM (1).

The results of the fitted model (1) showed that neither mean temperature (MT) nor
mean relative humidity (MH) were significantly associated with CI. However, MR was
found to be positively associated with CI (Table 2). The adjusted R2 = 0.79 means that the
fitted model can explain 79% of the variability in CI due to MR.

Table 2. Association between the Stegomyia indices and climate variables, dengue cases with the Stegomyia indices and
dengue cases with climate variables.

Association of Stegomyia Indices with Climate Variables

Association with CI Association with BI Association with HI

Variables MT MH MR LMR MT MH MR LMR MT MH MR LMR
p-value 0.294 0.360 0.0372 * 0.0762 0.7976 0.0208 * 0.0186 * 0.8572 0.448 0.259 0.197 0.678
R2 (adj) 0.79 0.72

Association of dengue cases with Stegomyia Indices

Variables HI BI CI
p-value 0.005 * <0.001 * <0.001 *
R2 (adj) 0.49

Association of dengue cases with climate variables

Variables LMR MH

p-value 0.0279
* 0.0463 *

R2 (adj) 0.93

Note: * significant at 0.05. HI = No. of positive HHs/no. of HHs visited, CI = No. of positive containers/No. of wet containers, BI = No. of
positive containers/No. of HHs visited. MR = mean rainfall, MH = mean humidity, LMR = lag mean rainfall for one month.

To check the normality of the error term in the fitted model (1), we drew the auto-
correlation (ACF) and partial autocorrelation plots (PACF) of residuals. The PACF plot
(Figure S1) indicated that the residuals in the fitted model were uncorrelated with mean
zero and constant variance.

We fitted the same model (1) when the response was BI. Both MT and LMR showed
positive relationships with BI but were not significant. However, the results indicated that
BI was significantly related to MH and MR (Table 2). The MH was negatively related to BI,
meaning that as MH increases, BI—and thus vector density—decreases. The adjusted
R2 value = 0.72 means that the fitted model can explain 72% of the variability in BI
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associated with MH (Table 2). We checked the model assumption using ACF and PACF
plots, which revealed that the residuals were uncorrelated with mean zero and constant
variance (Figure S2).

We fitted the same model (1) again when the response was HI, revealing that there
were positive relationships between HI and MT, MR and LMR, and a negative relationship
with MH. None of the climatic factors were significantly related to HI (Table 2). The
above findings reveal how dengue vector abundance and distribution are impacted by
temperature, rainfall, and relative humidity. As the vector is a means rather than a final
phenomenon in terms of dengue disease, it is critical to extend our examination to the
relationship between dengue and the Stegomyia indices.

3.2. Analysis of Vector Abundance vs. Dengue Case Incidence

We fitted the Poisson regression model (2) of dengue cases with each of the indices HI,
BI, and CI. The results indicated that there were highly significant relationships between
dengue cases and the indices (HI, BI and CI) (Table 2). It is evident from the results that
both BI and CI were highly significant variables among the three indices. The adjusted R2

value of 0.489 showed that the model could explain about 49% of the variability in dengue
cases accounted for by the indices (Table 2). We examined the ACF and PACF plots of
standardized Pearson residuals of the fitted model (2), which revealed that the residuals
behaved as uncorrelated with mean zero and constant variance.

3.3. Analysis of Climate Factors vs. Dengue Case Incidence

We fitted the Poisson regression model (2) of dengue cases with each of the climatic
factors MT, MH, MR, and LMR. We present below the results from the estimated model,
which reveal the relationships between dengue cases and climatic factors for the study
period (i.e., 2002–2013) for specific monsoon months, encompassing June to August.

Results from the fitted model (2) indicate that there are significant relationships
between dengue cases and each of MH, and LMR (Table 2). It is evident from these
results that MH and LMR are significantly related to dengue cases. The adjusted R2 = 0.93
means that the model can explain about 93% of the variability in dengue cases resulting
from climatic factors (Table 2). We examined the ACF and PACF plots of standardized
Pearson residuals for the fitted model (2), which indicated that the residuals behaved as
uncorrelated with mean zero and constant variance.

3.4. Analysis of Seasonality vs. Dengue Cases

After analyzing the relationship among the climate–vector–dengue nexus above based
on the available DGHS data only during monsoon season, we considered another dataset;
because the previous dataset only had data for monsoon seasons, and for seasonality
analysis, we needed monthly data for all the climatic variables for the period considered
under the study. This was used to analyze seasonal variability of dengue cases versus
monthly average temperature, rainfall and relative humidity for the 2001–2013 period.
Here, we analyzed the seasonality in terms of dengue cases only and determined the
relationship of climatic factors and dengue cases while taking the seasonality in account.

First, the monthly time series of temperature, relative humidity and rainfall data
along with dengue cases were plotted in Figure 4 to view the patterns in their distribution
over a 13-year period (2001–2013). Figure 4a indicates that dengue cases follow a peak
returning pattern, with a sharp rise (of more than 3000) in the second year of the study
(2002) and peak every other year until 2008, after which the peaks occurred every two
years. Figure 4b reveals that temperature followed a similar pattern over the same 13-year
period, with a peak of 30 ◦C (monthly average temperature) during months of July/August
of most of the years and a low of 16 ◦C (monthly average temperature) in early 2003.
Figure 4c shows the monthly average relative humidity pattern over the 13-year study
period, which was cyclical with a consistent yearly peak of 80–85%. Finally, Figure 4d also
depicts a yearly cyclical and seasonal pattern of rainfall. The average monthly rainfall for



Atmosphere 2021, 12, 905 11 of 21

the aforementioned period varies between 100 and 150 mm with occasional departures; for
example, the peaks in 2004, 2006, 2007 and 2009 with highest peak in 2004 having more
than 250 mm monthly average rainfall.
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from year 2001 to year 2013. Thus, months 0–12 = year 2001, months 12–24 = year 2002, months 24–36 = year
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months 84–96 = year 2008, months 96–108 = year 2009, months 108–120 = year 2010, months 120–132 = year 2011, months
132–144 = year 2012, months 144–156 = year 2013.

Overall, all of the climatic factors show a yearly cyclical pattern in average monthly
temperature, relative humidity, and rainfall, as shown in Figure 4b–d, respectively. Figure 4a
shows that dengue cases also follow a seasonal pattern, with incidences being highest
during the monsoon season and lowest during the pre-monsoon season (January–April) in
alternating years.

The autocorrelation and partial autocorrelation plots of dengue cases, monthly average
temperature, monthly average relative humidity and monthly average rainfall for the
13-year period are shown in Figure S3. ACF gives us values of autocorrelation of any series
(such as, temperature) with its lagged values. As depicted in Figure S3 there is a significant
correlation at lags 1 and 2 followed by correlations that are not significant. This pattern
indicates a moving average (MA) process of order 2. Other Figures clearly indicate the
seasonal behavior of the monthly temperature, relative humidity and rainfall.

Second, when we checked the ACF and PACF plots of the residuals for the 13-year
period to determine seasonal variations in the climatic parameters (Figure S4), we found
an autoregressive pattern of order 1. To account for this, we fitted the Poisson regression
model (3) using the R-function tsglm from the tscount R-package.

From the fitted model output, the estimated coefficient and its standard error for
temperature were found to be 0.10 and 0.003, respectively. The confidence interval for
the coefficient of temperature is (0.10, 0.11) which did not include zero. This means that
the temperature is significant at a 5% level; that is, temperature plays a significant role
in the number of dengue cases in the city of Dhaka. Since the estimate is positive, the
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number of dengue cases increases as the temperature increases, while adjusting for relative
humidity and rainfall. For relative humidity, the estimate is 0.23 and the standard error is
0.002. The confidence interval for the coefficient of relative humidity is (0.22, 0.24) which
did not include zero. This means that relative humidity is also significant at the 5% level
and plays a significant role in the number of dengue cases in the city of Dhaka. As the
estimate is positive, the number of dengue cases increases as relative humidity increases,
while adjusting for temperature and rainfall. For rainfall, the estimate is −0.10 and the
standard error is 0.002. The confidence interval for the coefficient of rainfall is (−0.10,
−0.09) which does not include zero. This means that rainfall is significant at the 5% level;
that is, rainfall plays a significant role in the number of dengue cases in the city of Dhaka.
As the estimate was negative, the dengue cases decrease as the rainfall increases, while
adjusting for temperature and relative humidity.

3.5. Analysis of Climate Anomaly vs. Dengue Cases

After the seasonality analysis for dengue cases, we aspired to test the effects of climate
anomalies on dengue cases. For this, we calculated the temperature anomaly using the
relation (4) and plotted it in Figure 5 against dengue cases for the period of 2001–2013.
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Figure 5. Distribution of temperature anomaly vs. dengue cases in the city of Dhaka, Bangladesh for
the 13-year study period (2001–2013).

As shown in Figure 5, when the temperature anomaly was −0.1 ◦C (average yearly
temperature 25.9 ◦C for years 2001, 2004 and 2008), or the anomaly was −0.2 ◦C (average
yearly temperature 25.8 ◦C in 2002, 2003 and 2011), the number of dengue cases was
higher than the number of dengue cases when the climate average temperature (26 ◦C)
(1985–2013) occurs.

We also observed that at higher anomalies of 0.1–0.6◦ C (temperatures rise to 26.1–26.6 ◦C
in years 2005, 2006, 2009, 2010, 2012 and 2013), the dengue cases were lower than the
dengue cases in an average climate temperature (26 ◦C). Thus, the number of dengue cases
in the city of Dhaka declined when the average yearly temperature was 26 ◦C and higher.

We calculated the rainfall anomaly using the relation (4) and plotted it against dengue
cases in Figure 6 for the 2001–2013 period. The dengue cases tended to be higher for the
years with a rainfall anomaly of −38.18 (annual average rainfall of 133 mm in 2013) and
−10.76 anomaly (160 mm rainfall in 2006) as compared with the number of dengue cases
for the average rainfall of 170 mm during the 29-year period of 1985–2013.
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Figure 6. Distribution of rainfall anomaly vs. dengue cases in the city of Dhaka, Bangladesh for the
13-year study period (2001–2013).

We also observed that at higher rainfall anomalies, such as +69.74 in 2007 (rainfall
of 240 mm), the dengue cases tended to be lower than the number of dengue cases for
the average rainfall. Based on the data collected, we infer that with an increase in the
amount of rainfall (more than annual average of 200 mm), the number of dengue cases
tend to decline.

4. Discussion

Departing from conventional bivariate analytical approaches, in this study we un-
dertook a step-by-step approach to determine the relationships between climatic factors
(i.e., temperature, relative humidity and rainfall) and Stegomyia indices [9,10,48,49], and
subsequently between Stegomyia indices and dengue cases in the city of Dhaka, Bangladesh.
Besides analyzing the effects of seasonal variability and climate anomalies on dengue
cases, our study sought to develop a more complete understanding of the effects of climate
on dengue cases by viewing the climate–vector–disease nexus as a sequential, step-by-
step process.

In designing our study, we drew from Githeko’s [50] study in Bangladesh. Githeko [50]
observed that most previous studies on dengue only considered climatic or biological ef-
fects in isolation and emphasized that since climatic factors directly influence the breeding
and prevalence of dengue vector mosquitos (e.g., Ae. aegypti), it was vital to study the
effect of climate on the biological domain in order to fully understand the dynamics of
dengue outbreaks. Following this recommendation, we attempted to determine the rela-
tionships within the climate–vector–dengue nexus, with the aim of meeting the objectives
of this study.

In regard to the first objective, the results of our study provide evidence that overall
dengue vector abundance is significantly influenced by climatic factors, though the signifi-
cance of this relationship varies for each index and pair of factors. We found that mean
rainfall (MR) and lag mean rainfall (LMR) at one month were positively and significantly
related to Container Index (CI), i.e., an overwhelming majority (i.e., 79%) of the variability
in CI could be explained by MR and LMR. The mean rainfall contributes to the develop-
ment of the Ae. aegypti when the daily or weekly mean rainfall is adequate for creating the
breeding site as well as retaining the water for the growth of Ae. aegypti larvae and pupae.
The lag mean rainfall indicates how much time needs to be passed after the actual rainfall
to create the breeding site and having actual larval and pupal growth in the site. The mean
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relative humidity (MH) and mean rainfall (MR) were also found to be significantly related
to the Breteau Index (BI), although MH was negatively associated with BI.

The regression model reveals that climatic factors account for about 72% of the vari-
ability in BI, which aligns with conclusions drawn by several other studies conducted in
tropical regions [8,9,13,48,51]. However, while previous studies made the link between
rainfall, water levels in indoor and outdoor containers, and the consequent increase in
vector breeding and density and dengue prevalence, our findings and that of several other
studies revealed that the dynamics of dengue spread are not so straightforward, and that
the effects of temperature and relative humidity were also significant and complex.

Several comparable studies in Vietnam, Ecuador, Taiwan, Thailand, and China, which
investigated the relationships between Stegomyia indices and Aedes abundance, provide
useful insight into the impact of weather conditions on mosquito ecology. Pham et al.’s [8]
study in the central high province of Vietnam confirmed a positive association between
HI, BI, and CI and elevated temperatures, high humidity and rainfall, and a negative
association with hours of sunlight [8]. Stewart-Ibarra et al. [10], in an empirical investi-
gation of Ae. aegypti in Ecuador, confirmed that mosquito oviposition (egg-laying) was
significantly driven by rainfall and minimum temperature. Tseng et al. [9] in their study
of Taiwan found that temperature, lagged rainfall, and lagged density levels had positive
and significant effects on the density of the mosquito population. Similar to these studies,
the results of the present study in the city of Dhaka, Bangladesh revealed positive and
significant relation of Stegomyia indices and the Aedes abundance.

Both Nakhapakorn and Tripathi [52] and Naish et al. [13] found that in Thailand,
humidity is a crucial variable in the spread of dengue as high humidity—along with high
temperatures and the presence of stagnant water—creates ideal breeding conditions for Ae.
aegypti. Cheng et al. [51] examined the climate–vector abundance relationship in terms of
the risk of dengue outbreak in Guangzhou, China, and found that that high precipitation
during the monsoon increases vector abundance, but early and more frequent intervention
and less vertical transmission can reduce the risk of dengue outbreak in successive time
periods. Our study also corroborates these inferences by showing significant relationship
between Stegomyia indices and the climate variables.

The second objective of our study was to determine the relationship between DF/SDF
cases and vector abundance, as established by the parameters of the Stegomyia indices—
a common epidemiological research framework that has been widely used in tropical
areas [9,10,48,49]. Our empirical investigation in the city of Dhaka, Bangladesh has revealed
that dengue cases in the city are significantly related to Stegomyia indices. We also found
that CI is the most significant index, associated with dengue incidence, accounting for 49%
of the variability in dengue cases.

In the context of Dhaka, these findings underscore the pivotal role of rainfall and
stagnant water, relative to temperature and relative humidity, in affecting vector abundance
and dengue incidence, as CI reflects the percentage of water-holding containers infected
with larvae and/or pupae. These results are supported by Stewart-Ibarra et al.’s [10]
study in Ecuador, that found mosquito oviposition was significantly driven by rainfall
and minimum temperature, and that areas with large numbers of water storage contain-
ers played a major role for pupal development—the single most significant predictor of
dengue outbreaks.

Previous studies on vector–dengue incidence have put forward two main philosophies
regarding disease prevention and management. One school of thought argues that since
dengue incidence is mainly driven by higher vector breeding associated with high temper-
ature and rainfall, the policy focus should be on vector control. Pham et al. [8], for example,
observed that in Vietnam the incidence of dengue fever is significantly and positively
associated with Stegomyia indices. They argued that because higher vector abundance leads
to higher rates of dengue infection, it is of utmost importance to control mosquitos during
periods of high temperature and rainfall to reduce the risk of any outbreak. Similarly, the
Barrera, Amador and MacKay’s [48] study in San Juan, Puerto Rico, asserted that although
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both weather and anthropogenic activities are responsible for the abundance of Ae. aegypti,
it is oviposition which is significantly correlated with dengue incidence, and which requires
immediate attention.

Another school of thought asserts that Stegomyia indices, especially larval indices,
are not sufficient to explain the vector–disease incidence relationship. Bowman et al. [49]
reviewed the evidence systematically and concluded that the association between Stegomyia
indices and dengue transmission was insufficient to predict an outbreak and called for the
use of standardized study design and routine adult mosquito sampling in order to better
understand vector ecology. In their study of the city of Kaohsiung, Taiwan, Chang et al. [53]
came to a similar conclusion and argued that there may be different outbreak thresholds
for different regions, local ecologies and herd immunity levels. As our findings revealed
the relationship between vector abundance and dengue cases to account for only 49% of
the variability in dengue incidence in the city of Dhaka, this study leaves room for other
factors such as differences in adult mosquito numbers, infection rate of the adult mosquito,
extrinsic incubation period, herd immunity, and population density, to be integrated into
future epidemiological models for dengue.

The third objective of our study was to determine the relationship between climatic
factors and DF/SDF cases. As the majority of studies on the climatic dimensions of dengue
emergence ignored the entomological dimension, we pursued a longitudinal study of the
city of Dhaka in order to more fully understand the disease propagation complex. The
results of our generalized linear model reveal that, when the relationships between dengue
cases and climatic factors during monsoon months over a 12-year period are tested, mean
relative humidity and lag mean rainfall (i.e., rainfall at one-month lag) were found to be
significant. The model explains 93% of the variability in dengue cases while considering
climatic factors. As noted earlier, Karim et al.’s [32] study in Dhaka confirmed that rainfall,
maximum temperature and relative humidity can explain 61% of the variability in reported
dengue cases at a two-month lag. The study also found that the monsoon season, with a
peak in August, was highly predictive of most reported dengue cases in Dhaka.

It is evident from both Karim et al.’s [32] and our findings that out of all climatic
factors, rainfall has the most influence on dengue incidence in Dhaka. Arcari et al. [54]
in Indonesia and Johansson et al. [55] in Puerto Rico also observed a strong positive
relationship between rainfall and dengue incidence. Nonetheless, several investigations in
Asia and Latin America concluded that the relationship between precipitation and dengue
incidence may not be linear, as excess rainfall can negatively impact vector breeding [14,15].
Similar effects were predicted in Dhaka, where continuous heavy rainfall has the potential
to flood Aedes breeding sites and wash larvae out into fast-flowing rivers, killing them.
A significant negative observed association between rainfall and dengue cases, which is
reflected in the confidence interval for the co-efficient of rainfall, confirms—albeit indirectly
—the negative effects of rainfall on vector abundance and dengue cases. The confidence
interval for the coefficients of temperature and relative humidity were positively and
significantly associated with dengue cases in Dhaka.

Both short (<5 weeks) and long lag times between climatic factors and increasing
dengue incidence have previously been confirmed by studies in Bangladesh [31,32,56] and
in Sri Lanka. In Dhaka, Hashizume et al. [31] explain that dengue incidence rarely rises
immediately following heavy rainfall. The lag time between rainfall and emerging dengue
cases, however, can vary due to several factors. The typical short (<5 week) lag results
directly from the life cycle of Aedes mosquitos. Heavy rainfall may leave stagnant pools
of water on the ground or in objects such as discarded tires, which are ideal habitats for
mosquito breeding. The lag time of one month that we found in the present study reflects
a relatively more straightforward model of causation—water is required for breeding.
Longer models, however, require a different explanation, that is, longer lag times indicate
that weather can occur in cycles, and these longer lag times are an artefact solely of the
relationship between weather events, rather than between weather events and the thriving
of vectors.
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Deviations from this standard lag time, however, can emerge from variation in geo-
graphic location, elevation, humidity, temperature, infection rate of mosquitoes and other
environmental factors. For instance, while in Bangladesh we mostly observed a short lag
time (<5 weeks), in our case it was one month, in Sri Lanka, Ehelepola et al. [57] observed
an average 5–7-week lag, positively correlated with rainfall, temperature, humidity and
hours of sunshine (but negatively correlated with wind). Based on an investigation of
dengue incidence in Hanoi, Vietnam, Do et al. [58] distinguished between lag times caused
by temperature and rainfall (8–10 weeks lag) and by relative humidity (18 weeks).

The final objective of our study was to determine the pattern of seasonality and climate
anomalies and their effects on DF/SDF cases. To this end, we undertook a longitudinal
study covering a 13-year period (2001–2013) and assessing temperature, rainfall and relative
humidity. Considering significant relationships of dengue incidence with climatic factors,
longitudinal studies in terms of seasonality in dengue cases and their variation inter-
annually has only recently received wider attention [9,59,60]. In our study, dengue cases
exhibited a yearly cyclical pattern, with higher incidence beginning in the monsoon season
(June–October), reaching a peak in August and minimum in the pre-monsoon period of
January–April in alternate years.

The findings of our longitudinal study revealed that in Dhaka, temperature has a
profound effect on vector breeding and DENV spread. The plot of calculated temperature
anomalies vs. dengue cases for 2001–2013 exhibits that when the average yearly temper-
ature was 25.9 ◦C (−0.1 ◦C anomaly) or 25.8 ◦C (−0.2 ◦C anomaly), dengue cases were
higher than the average. Contrary to our findings, Beebe et al.’s [61] study in Australia
offers an explanation for such effects: higher temperatures in summer months force resi-
dents to store water in open containers in their homes, providing ideal breeding sites for
Aedes mosquitos.

A number of studies worldwide showed strong direct association between temper-
ature and Aedes abundance. For example, a study in Brazil revealed that the seasonal
pattern of abundance of the Aedes mosquito is visible while having the temperature as a
parameter at the city level [62]. In Thailand, Chavez et al. [63] observed that Aedes mosquito
abundance changes considerably with temperature change. Contrary to these findings,
an Australian study showed that the development of the immature Aedes mosquito was
inversely associated with temperature [64]. Conforming with these, the present study
in the city of Dhaka, Bangladesh, the mosquito abundance and dengue incidence were
observed to be strongly associated with temperature changes. In Dhaka, when annual
average temperatures reached 26.1−26.6 ◦C, dengue incidence was lower than the dengue
incidence during “normal” temperatures (26 ◦C). Overall, our study revealed that dengue
incidence rises with annual average temperature up to 26 ◦C, after which it begins to
drop off.

In a study conducted in Bangladesh, Banu et al. [65] found a highly significant asso-
ciation between local climate variables (temperature and rainfall) and dengue incidence.
However, when they studied the association between ENSO, IOD and dengue incidence,
they observed that the extent of the association was very weak. They also reported that
the association between dengue incidence and ENSO or IOD were comparatively stronger
after an adjustment for local climate variables, seasonality and trend, when they applied
a distributed lag nonlinear model (DLNM). Thus, Banu et al. [64] revealed that stronger
effects of local climate variables propel the weak association between ENSO, IOD and
dengue incidence, making the local climate variables more important for dengue incidence
in Bangladesh.

Similar studies conducted in Puerto Rico, Thailand and Mexico by Johansson et al. [66] also
observed a weak association between dengue and ENSO. In an earlier study, Hales et al. [67]
found in the 14 island nations of the Pacific that dengue incidence was positively associated
with ENSO in 10 of these island countries. Other studies in Thailand and Mexico also
reported a positive association between dengue and ENSO [68,69]. Though the study of
association between ENSO, IOD and dengue incidence were beyond the scope our study, it
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is worth noting that the effects of local climatic variables, weather conditions, and other
factors regulating dengue dynamics indicate conformity with our study which revealed a
strong association of the main climatic variables (temperature, rainfall and humidity) with
dengue cases in the city of Dhaka, Bangladesh.

There are some limitations to this study. First, we were constrained by missing data as
continuous time series data on dengue cases for the study period were not available in the
government depository on dengue surveillance. To overcome this limitation and attain the
best possible ‘close approximation’, the missing data were denoted as “missing at random”.
Following Little and Rubin [41] and Weerasinghe [42], these missing data were imputed
by applying the Spline Interpolation Method (see R-package “imputTS”) [43,44] and the
regression imputation method [45]. Thus, the data limitation would not pose any serious
constraint to the generalizability and future study directions. Second, the entomological
surveys that collected data on Aedes larvae from households in Dhaka did not cover the
same areas throughout the study period. We therefore relied on adjusted data for specific
areas which were covered repeatedly by all survey periods over a 5-year period. Third,
the entomological data did not cover adult Aedes mosquitoes, so, we could not estimate
the extrinsic incubation period and the infection rate. Fourth, due to the unavailability
of time-series data on other variables, we were unable to incorporate other contributing
factors such as household water-use, vector control measures, and land-use changes into
our models. Further empirical research on longitudinal trends in seasonality and its effects
upon dengue vector breeding will assist with improved understanding of dengue disease
transformation.

5. Conclusions

Recognizing that only nominal attempts have thus far been made to empirically
examine the dynamic causal relationships within the climate–vector–disease nexus, the
present study applied an innovative step-by-step approach to determine the causal rela-
tionships between climatic factors, dengue vector abundance, and dengue cases/incidence
in the city of Dhaka, Bangladesh. Some of our results are similar to those of other studies,
confirming that there is a significant correlation between climatic factors and vector abun-
dance [9,13,48,51], and between vector abundance and dengue incidence [9,10,50]. The
examination of climate–vector–disease nexus of our study under one conceptual frame-
work is a unique attempt and thus makes a novel contribution to this research domain
concerning dengue disease transmission.

The integration of climate and entomological data into climate–vector–disease nexus
to produce predictive models has not yet been fully realized [31]. In this regard, the
present study provides evidence of a strong relationship amongst climatic factors, vector
and dengue via a step-by-step process—revealing their significance in dengue vector
abundance and dengue disease occurrence.

We found that an increase in Aedes abundance is associated with the rise in tempera-
ture, relative humidity, and rainfall during the monsoon months that in turn appear in the
subsequent increase in dengue incidence. The relationships of dengue cases with Stegomyia
indices as well as with the mean relative humidity and the lag mean rainfall were also
highly significant. This study thus lays a strong foundation for future work on dengue
forecasting and prevention, which may prove vital as the climate continues to change
and the range and seasonal dynamics of dengue and other diseases change with it. As
Wilder-Smith et al. [70] highlighted, the predictive models of the relationships between
climate variables and dengue transmission that we pursued in the present study can assist
in developing early warning systems. Based on the existing literature, we primarily focused
on associations between climate data and Aedes abundance for the monsoon months. Future
study should expand such entomological study for the non-monsoon months as well.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12070905/s1, Figure S1: ACF and PACF plots for CI in relation to the climatic parameters.
The PACF plot indicating that the residuals in the fitted model were uncorrelated with mean zero
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and constant variance; Figure S2: ACF and PACF plots for BI in relation to the climatic parameters.
The PACF plot indicating that the residuals in the fitted model were uncorrelated with mean zero
and constant variance; Figure S3. Autocorrelation and partial autocorrelation plots for the number
of dengue cases vs. climate factors by month for the 13-year study period (2001–2013): (a and b)
number of dengue cases: (c and d) average temperature; (e and f) average relative humidity; (g and
h) average rainfall; Figure S4. Autocorrelation and partial autocorrelation plot of residuals in the city
of Dhaka, Bangladesh for the 13-year study period (2001–2013).
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