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Abstract: The long-range correlations associated with the presence of persistence are investigated
by applying the detrended fluctuation analysis (DFA) on three different proxies of long-term solar
activity. The considered datasets are a sunspot number reconstruction (SNR04) obtained from the
atmospheric activity of the cosmogenic isotope 14C derived from tree rings, a total solar irradiance
reconstruction (TSIR12) obtained from several 10Be ice core records from Greenland and Antarctica
in combination with the global record of 14C in tree rings and a new multi-proxy sunspot number
reconstruction (SNR18), also derived from 10Be datasets and the global 14C production series. The
DFA scaling exponents found for the three time series are similar (lying in the range between 0.70
and 0.77) and the scaling ranges are comparable. These results indicate the presence of long-range
correlations with persistence, in substantial agreement with the findings of previous studies carried
out on other solar activity indices and proxies.
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1. Introduction

Solar activity phenomena are the manifestation of the magnetic dynamo process
occurring inside the Sun. The magnetic activity of the Sun is characterised by a time
variability which encompasses a wide range of scales and involves both quasi-periodic
changes and irregular fluctuations. Several indices have been proposed and utilised to
investigate these variations. The most commonly used ones are the indices based on the
observations of sunspots, which are dark regions emerging in the lower solar atmosphere
and associated with strong magnetic fields. For a long time, the Wolf sunspot number
has represented the main tool to quantify the time evolution of solar activity (see, e.g., [1]
and references therein). The group sunspot number dataset was produced by Hoyt and
Schatten [2] to the aim of improving the quality of sunspot number time series before
1850. A revision of the international sunspot number and group sunspot number series
has been released by WDC-SILSO (Royal Observatory of Belgium, Available online:
http://sidc.be/silso/home (accessed on 8 May 2021) [3,4].

One of the main properties of solar activity, discovered by Schwabe in 1844 [5] from
the analysis of sunspot numbers data, is its prominent quasi-periodicity with a period of
about 11 years (Schwabe cycle). The existence of a long-term modulation in the sunspot
number, with a mean period of about 80 years, was initially suggested by Gleissberg [6,7]
and later found also in auroral records [8–11]. It is now known that this modulation,
called the “Gleissberg cycle”, although strictly speaking it is not a cycle, occurs with a
timescale varying in the range of 60–130 y. This has been found from analyses of both sunspot
number indices (see, e.g., [12]) and solar activity proxies obtained from cosmogenic isotope
records [11,13–15]. Thanks to the length of the covered time intervals, solar activity proxy
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datasets have allowed to determine also other nearly cyclic behaviours, longer than the
Gleissberg cycle, namely the Suess-de Vries cycle with a period of 200–210 years (see,
e.g., [14,16–20]) and the Halstatt cycle with a 2000–2400 year period (see, e.g., [14,16,21,22]).

In addition to the quasi-cyclic behaviour, solar activity is characterised by stochastic
fluctuations. In this context, the presence of long-term correlations in the Sun’s activity
indices and proxies has been investigated in several papers. The first method used to
this aim has been the rescaled range (R/S) analysis, which allows to quantify persistence
(memory) effects in time series through the determination of the Hurst exponent H. This
has been done for monthly averaged sunspot numbers [23], 14C data covering a ~8000
year interval [24], Doppler solar rotation data [25] and daily averaged intensity of optical
flares [26]. The Hurst exponent values found in all these works are significantly larger
than 0.5, indicating the presence of persistence in the solar activity time evolution, even
though slight differences between the scaling exponents reported in different studies have
been found. On the basis of an analysis of four-week binned sunspot areas performed by
means of the scale of fluctuation approach, it was pointed out in Ref. [27] that due to the
slow convergence to H = 0.5 related to the insufficient length of the datasets, it was not
possible to achieve an unquestionable confirmation of the presence of long-term memory
in solar activity. This problem was examined again more recently in Ref. [28] by applying
the detrended fluctuation analysis (DFA) method, in addition to the R/S analysis, both
to annual Wolf sunspot numbers obtained from observations and to two Wolf number
reconstructions extracted from proxy data. The author of this work points out that the DFA
method demonstrates more rapid convergence to the true value of the Hurst exponent
(see, e.g., [29]) and it is more suitable to the analysis of non-stationary datasets, being able
to discriminate between slow trends and long-range correlations. The results presented
in [28] support the presence of significant persistence in solar activity over a wide range of
timescales, from 25 to 3000 years.

In the present work, the presence of long range correlations and persistence in the
Sun’s magnetic activity at long timescales (&100 y) are investigated by using the DFA
technique to analyse three different solar activity proxy datasets for which the persistence
analysis has not yet been performed, to the aim of further investigating this topic.

2. Data and Methods

For this study, we used three proxies of the solar activity. The first dataset, which
covers an interval of about 11,400 years with decadal resolution, is a sunspot number
reconstruction (hereafter denoted by SNR04) obtained by Solanki et al. [30] from the
atmospheric activity of the cosmogenic isotope 14C derived from the analysis of tree rings.
The second dataset, covering a time interval of about 9400 years with a 22 year resolution, is
a total solar irradiance reconstruction (denoted by TSIR12) derived by Steinhilber et al. [31]
from a combination, through principal component analysis, of several 10Be ice core records
from Greenland and Antarctica with the global record of 14C in tree rings. The last dataset
is a reconstruction of the sunspot number, provided by Wu et al. [32] and denoted hereafter
by SNR18, spanning almost 9000 years with a 10 year resolution, and based, for the first
time, on a Bayesian approach applied on six 10Be time series of different lengths from
Greenland and Antarctica, and the official global 14C series. The three time series are
shown in Figure 1.

The long-term correlations and the possible presence of persistence are investigated
here by means of the DFA method, similarly to what was done in Ref. [28] on different solar
activity records. The DFA method was proposed in Refs. [33,34] and it is outlined below. We
denote the analysed time series by S(i) (i = 1, . . . , N), where N is the number of data points.
First of all, the cumulative time series y(k) = ∑k

i=1[S(i)− 〈S〉] is calculated, where 〈S〉 is
the time series average. The time series y(k) is then divided into nonoverlapping segments
of length n and in each segment a fit with a polynomial of order p is performed. We denote
the y values of the fitting polynomial by f (p)

n (k). The y(k) time series is detrended by
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subtracting the local trend f (p)
n (k) in each segment and the root mean square fluctuation of

the detrended series is calculated by

Fp(n) =

√√√√ 1
N

N

∑
k=1

[
y(k)− f (p)

n (k)
]2

. (1)

This calculation is repeated for all segment sizes (timescales), thus providing a relation
between the average fluctuation Fp(n) and the scale n. A power law relation

Fp(n) ∝ nαp , (2)

where αp is the DFA(p) exponent, indicates the presence of scaling. For a dataset in which
each given value is uncorrelated from the previous ones (e.g., white noise) αp = 0.5. On the
other hand, αp 6= 1 indicates the presence of long-range correlations. If 0.5 < αp < 1,
the time series is characterised by persistence, that is, if an increment with a given sign
occurs in the signal at a certain time step, the next increment is expected to have the same
sign. On the contrary, values 0 < αp < 0.5 indicate anti-persistence, that is, the increments
occurring at two successive time steps are typically expected to have opposite signs.
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Figure 1. (Top panel) Sunspot number reconstruction (SNR04), reprinted from Solanki et al. [30]
from dendrochronologically dated radiocarbon concentrations in tree rings. (Middle panel) Total
solar irradiance reconstruction (TSIR12), reprinted from Steinhilber et al. [31] from a combination
of several 10Be ice core records from Greenland and Antarctica with the global record of 14C in tree
rings. (Bottom panel) Sunspot number reconstruction (SNR18), reprinted from Wu et al. [32] using a
Bayesian approach applied on six 10Be time series from Greenland and Antarctica, and the global 14C
series. For all the plots, time is given as years before present (BP), where present refers to 1950 AD.

3. Results

The results obtained from the application of the DFA(1) analysis on the three consid-
ered datasets are shown in Figure 2.
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Figure 2. (Top panel) log F1(n) (circles) versus log n calculated through the DFA(1) method applied
to the sunspot number reconstruction (SNR04), reprinted from Solanki et al. [30]. The green solid line
represents a linear least squares fit with slope α1 = 0.767. (Middle panel) log F1(n) (circles) versus
log n calculated through from the DFA(1) method applied to the total solar irradiance reconstruction
(TSIR12), reprinted from Steinhilber et al. [31]. The green solid line represents a linear least squares
fit with slope α1 = 0.728. (Bottom panel) log F1(n) (circles) versus log n calculated through the
DFA(1) method applied to the sunspot number reconstruction (SNR18), reprinted from Wu et al. [32].
The green solid line represents a linear least squares fit with slope α1 = 0.701. In all the plots, the
timescale t in years is reported on the upper x-axis for clarity.

For the SNR04 dataset (Figure 2, upper panel), we perform a linear, least squares
fit of log F1(n) as a function of log n, where the fit interval is chosen to go from n = 15
(corresponding to a timescale 150 y), which is located more or less at the start of the nearly
linear region in the logarithmic plot, up to the maximum value nmax (corresponding to
2800 y) used for the DFA of this first dataset. A DFA(1) scaling exponent α1 = 0.767± 0.017
is obtained (where the uncertainty is that obtained from the fit). The robustness of the
obtained result can be assessed through a suitable statistical test [29,35]. To this aim, we
generated 1000 sequences by random shuffling of the original time series, applied the
DFA(1) method to all of them and produced the probability distribution of the α1 scaling
exponents of the randomised sequences. From the α1 probability distribution, we derived
the confidence interval corresponding to the 95% two-tailed significance level, obtaining
the interval [0.393, 0.626]. Since the scaling exponent estimated from the fit of log F1(n)
of the original time series lies out of this interval, we can conclude that the presence of
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long-range correlations with persistence is a significant result. For the TSIR12 dataset
(Figure 2, middle panel), the best linear fit of log F1(n) versus log n is performed between
n = 10 (timescale interval 220 y for the 22 y resolution of this dataset) and the maximum
value nmax (corresponding to 2200 y) used for the DFA of the second dataset. The DFA(1)
scaling exponent estimated for the TSIR12 time series is α1 = 0.728± 0.019. From the same
statistical test used for the first dataset, the obtained 95% α1 confidence interval of the
randomised sequences is [0.335, 0.681], therefore the presence of persistence appears to
be a robust result also for the second dataset. For the SNR18 dataset, the beginning of the
nearly linear range used for the fit is located at n = 20 (corresponding to a 200 y timescale)
and the fit is calculated, as in the previous cases, between this value and the maximum
value nmax (which corresponds to 2150 y) used for the SNR18 dataset. The DFA(1) scaling
exponent found for this last dataset is α1 = 0.701± 0.022. For this last dataset, the 95% α1
confidence interval of the randomised sequences is [0.359,0.641], and again the α1 exponent
of the original time series can be significantly attributed to the presence of persistence.

4. Discussion

The analysis of the solar activity proxies considered in the present work, carried out
through the DFA method, indicates that in all the cases the time series are characterised by
the presence of long range correlations with persistence. We also remark that, although the
three used solar activity reconstructions were obtained from different data and by means
of different procedures, the scaling exponents calculated in the different cases are close
between them and that the scaling ranges are comparable ([150 y, 2800 y] for SNR04,
[220 y, 2200 y] for TSIR12, and [200 y, 2150 y] for SNR18). Scaling exponents indicating
the existence of memory in solar activity were already found in previous works in which
different solar activity indices and proxies were analysed by means of the rescaled range
analysis [23–26] and DFA [28]. The use of different datasets has allowed to highlight the
occurrence of persistence at different timescales, covering the range from ≈20 days up to
≈3000 years. Therefore, there is now solid support to the idea that the irregular fluctuations
of solar activity are characterised by the presence of temporal correlations over a very wide
range of scales, even though slight differences between the scaling exponents reported in
different studies have been found.

The question about the possible physical mechanisms giving rise to these persis-
tent variations in solar activity still remains open. It has been suggested that this be-
haviour can be expected to be generated by persistent stochastic fluctuations in the dynamo
process [24,36]. However, detailed studies of scaling properties and temporal correlations
in solar dynamo models would be required to get a deeper understanding of this problem.
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