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Abstract: Flood risk assessment and mapping is required for management and mitigation of flood in
mountain cities. However, the specific characteristics of population, society, economy, environment,
transportation and other disaster-bearing bodies in various regions of mountain cities are significantly
different, which increases the uncertainty of risk assessment index weight and risk assessment
accuracy. To overcome these problems, the triangular fuzzy number-based analytical hierarchy
process (TFN-AHP) was employed to determine the weights of eleven indexes influencing flooding.
Further, the geographic information system (GIS) spatial statistics technique was introduced to
investigate global regional risk pattern, as well as to identify local risk hot spots. Experiments
were conducted using open data of Chongqing, China. From the results, it was observed that the
TFN-AHP has a higher efficiency in flood risk assessment on mountain cities than the AHP method.
The dynamically changing risk pattern and risk hot spots were explored, and the results are generally
consistent with seasonal characteristics of precipitation. Lastly, sensitivity analysis of assessment
factors’ weights was conducted. The comparative consequences indicate that TFN-AHP can better
assess the flooding risk and can be successfully applied to urban development policy.

Keywords: flood risk assessment; TFN-AHP; GIS; spatio-temporal analysis; mountain cities

1. Introduction

Floods are one of the most devastating natural disasters with considerable damage
and significant socio-economic impact on different sectors that occur across the world [1].
The increase in the frequency of flooding can be associated with the impacts of climate
change and rapid urbanization. Statistics revealed that flood accounts for 34% and 40% of
all global natural disasters in quantity and in losses, respectively [2,3]. In China, more than
2000 floods have ravaged since the dawn of the 20th century, resulting in massive loss of
life and finance that equates to an average year of 1254 deaths and 2 billion USD lost [4].
Therefore, there is an urgent need to conduct flooding risk assessment for risk reduction
and disaster management purposes.

In recent years, a growing body of studies on flood risk assessment and analysis have
been carried out in different regions and cities, such as plain cities and coastal cities [5].
For example, researchers used remote sensing (RS), GIS and open data (such as social
media data, volunteer geographic information) to study the flood risk in Wuhan, coastal
Mainland China and Europe [6–8]. However, comparatively little investigation has been
performed on mountain cities. It is widely recognized that mountain cities are sensitive
to sudden and defensive floods on account of large elevation disparity and other specific
factors [9]. Just as Thaler et al. stated that different countries respond to flood disaster from
different angels, Sakamoto et al. aimed to test the ability of forests in flood from a time-
series perspective in the Cambodia and the Vietnamese Mekong Delta [10]. Williams et al.
considered physical infrastructures and social conditions to measure the adaptive capacity
of Alaskan communities in flood events [11]. Fan et al. employed population, flood arrival
time, flood level, evacuation time and local GDP (Gross Domestic Product) to explore the
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flood quantitatively [12]. This problem stands out in China, with 33% mountainous land
areas. For instance, on 20 June 2020, floods in Chongqing affected more than 150,000 people,
causing direct economic losses of 29,977,000 USD Flood is the most dynamic natural disaster
that cannot be absolutely prevented, but with flood risk assessment, its occurrence can be
forecasted, and the damage can be alleviated.

To date, the use of GIS and RS, along with multi-criteria decision-making techniques,
such as the analytic hierarchy process (AHP), have been explored in flood risk assessment
of mountain cities [13,14]. Although previous approaches have gained great achievements
in the field, they do not pay much attention to uncertainty of floods caused by specific
environmental characteristics of mountain cities [15]. Take Chongqing as a case, there
is significant variation on environment (such as elevation difference, surface coverage),
socio-economic (such as population, built environment) and disaster-bearing bodies (such
as transportation, facilities) in various regions [16]. These features greatly decrease the
robustness of the risk assessment method, and further reduce the certainty of the weight of
the assessment index and the accuracy of the assessment result. In flood risk assessment,
the uncertainty of the AHP cannot be eliminated, but it can be mitigated with a proper
flood predictive system. Thus, establishing a flood risk assessment method for mountain
cities with minor uncertainty of the evaluation index weight as far as possible is an effective
way to address the mentioned problems.

To diminish the damage caused by floods, several approaches have been applied in
flood risk assessment. Generally speaking, the related research can be mainly divided
into the following four categories [2]: The first is the historical data statistics method [17].
This method is applied to estimate flood risk through analyzing historical flood events’
data. However, it is difficult to have enough data to support long time-series and dynamic
change analysis [18]. Second is the index system method [19]. This approach, such as the
multi-criteria decision-making technique, considers the flood risk assessment as the result
of comprehensive action of several assessment factors. However, the determination of risk
assessment indicators primarily depends on judgements of experts with distinct favors [20].
Thereby, more accuracy problems are caused when exploring the spatial distribution of
flood risk. The third category is the coupling of GIS and the RS method. This approach has
been widely used in flood assessment and mapping [21]. The last category is the scenario
simulation method [22]. This approach needs detailed topography and geomorphology
data, and it is commonly applied in the prediction of flood risk in small regions [23].
Accordingly, the application of this method is limited owing to the fact that the floods
usually occur at a large regional scale.

In the mentioned methods, the index-based methods with intelligence techniques are
more appropriate to consider the uncertainties of natural disasters, where AHP is one of
the approaches widely employed [24]. AHP can subdivide flood risk into special factors
suitable for zones with various characteristics, which imposes obvious effects on practica-
bility enhancement. Despite that AHP has been criticized for the high subjectivity inherent
in experts’ judgments, it has been optimized by combining with several mathematical
approaches, such as fuzzy logic methodology. Its integration with AHP has been used in
flood risk evaluation, such as trapezoidal fuzzy AHP and TFN-AHP, among which TFN-
AHP is the most efficient in that quite a few experts with a high variation of preferences
are involved in complicated situations [25].

During the application of traditional AHP for flood risk assessment of mountain cities,
which stand at an average elevation of 400 m with respect to sea level, the uncertainty
that exists in human judgments and the pairwise comparisons of assessment factors are
unavoidable [24]. Meanwhile, the specific environmental characteristics of mountain cities
also contribute to uncertainty. Additionally, hazard, exposure and disaster resistance
indicators have been less considered in previous studies [9]. Accordingly, TFN-AHP
can not only inherit strengths of AHP to integrate assorted assessment indexes, but can
minimize uncertainty through fuzzy numbers, which could prevent flood risk in mountain
cities or at least minimize harmful influences.
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Although we can get a sense of the overall regional flood risk distribution by mapping
them, it is difficult for us to draw conclusions or find explicit answers directly from the flood
risk maps, causing failures of present flood prevention action [26]. Hence, understanding
the evolving characteristics of flood risk spatio-temporal pattern and risk clusters is key
for risk effects reduction strategies for decision-making. In this context, some emerging
questions, such as “where are the flood risk hot zones?” and “how is the flood risk spatio-
temporal pattern?” should be first answered from a spatio-temporal perspective [27].
Thereby, not only analyzing the global risk distribution pattern, but also identifying risk
hot spots from local scale and multiple time scales are indispensable for comprehensive
flooding management [28].

Recently, in addition to flood risk mapping, risk classification [14], sensitivity analy-
sis [1] and spatio-temporal model analysis [29] have been investigated in related research.
For instance, with respect to time-series analysis, some works used the time-series method
and GIS technology to explore the risk temporal pattern under the scales of year [30],
season, month [31], week, daily and hourly. For the spatial patterns’ research scales, quite a
few techniques have been employed in multidimensional investigation on different spatial
scales [32,33]. Overall, the GIS spatial statistics technique (such as Moran’s I, LISA) is
the most commonly adopted one to identify heterogeneity and agglomeration at diverse
spatial scales.

Considering that TFN-AHP can enhance accuracy and GIS is useful in investigating
spatial pattern, their utility has already been applied in disaster evaluation such as floods.
In this paper, we incorporate the triangular fuzzy function into the original AHP method
to weaken the uncertainty in the determination of risk index weights. Moreover, we
apply the GIS spatial statistics technique in the spatio-temporal pattern. Three areas are
explored: (i) the TFN-AHP method is introduced to cope with the uncertainty of flood risk
assessment, (ii) the flood risk spatio-temporal distribution pattern is analyzed through the
GIS spatial statistics technique and (iii) Chongqing is taken as an example to validate the
efficiency of the TFN-AHP method and accurately identify flood-prone areas.

2. Materials and Methods
2.1. Study Area and Data

Chongqing is known as a mountain city, where mountains and hills account for 94%
of land areas. Situated in the Middle-Lower Yangtze Plain, it belongs to the subtropical
monsoon humid climate zone with profuse rainfall, and the annual precipitation in most
areas ranges from 1000 to 1350 mm (Figure 1). The Yangtze River, Jialing River and
Wujiang river flow through Chongqing, with an average annual total water resources of
about 50 billion cubic meters [34]. In terms of each season, the precipitation in spring and
autumn is generally above 100 mm, the precipitation in summer can reach 400 mm and the
precipitation in winter is about 50 mm. In the summer from June to August, the river flow
reaches the flood season, which increases the pressure on flood control. In other seasons,
the river flow is below the water level warning line, which is not easy to cause flood
disasters [35]. The topography inclines from the north and south, with a large elevation
disparity in various districts. The northwest and middle are dominated by hills and low
mountains, and the southeast is mainly high mountains. Generally, the mountain area
accounts for 76%, and the hilly area accounts for 22%. The altitude ranges from 168 to 400 m,
with 6000 kinds of plants and 20.49% forest coverage (Figure 1). Additionally, as China’s
largest direct-controlled municipality, the permanent population in 2020 was 31,243,200,
an increase of 225,300 over the previous year. Among them, the urbanization rate of the
permanent population is 66.8%. Its rapid urbanization contributes to serious destruction of
ecological environment and vegetation cover. Hence, in 1981, Chongqing suffered from
the biggest flood since the beginning of the 20th century. Also, 2020 witnessed the second
largest flood after 1981 in Chongqing. Just like statistics of Chongqing’s flood disasters in
the past 50 years, the climate and terrain have resulted in frequent and long-term floods,
coupling with massive destruction and losses. Up until now, Chongqing has built 2681 km
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of embankment revetment, with a compliance rate of nearly 90%. The revetment has
successfully dealt with 5 floods caused by the Yangtze River, 2 floods caused by Jialing
River and 1 flood caused by Wujiang River in 2020. In addition, the “water safety assurance
plan for the fourteenth five year plan” formulated by Chongqing Municipality specifies
that 298 key flood control risk points will be basically eliminated, and the construction of
flood control and revetment projects focusing on “one trunk and eighteen branches” will
be accelerated in the following five years [36].

Figure 1. Location of the study area: (a) China, (b) Chongqing.

The multi-criteria analysis approach was performed with three indicators, hazard,
exposure and vulnerability, which were made possible by three data sources of Chongqing,
China, as listed in Table 1. The average annual precipitation in counties’ data derives from
2000 to 2018. The population density and average area GDP are from 2010, due to the latest
data of the website being until 2010. The rest of the data are from 2018.

Table 1. Data sources.

Data Name Data Type Source

Climate data
Average annual precipitation in counties China Meteorological Data Network

(http://data.cma.cn/, accessed on 11 May 2021)Rainstorm frequency, annual precipitation

Terrain data The Digital Elevation Model (DEM) Geospatial Data Cloud (http://www.gscloud.cn/,
accessed on 11 May 2021)

Socio-economic data

Population density, average area GDP

the Global Change Scientific Research Data
Publishing System

(http://www.geodoi.ac.cn/WebCn/Default.aspx,
accessed on 11 May 2021)

Per capita disposable income Chongqing Statistical Yearbook
(http://data.tjj.cq.gov.cn/, accessed on 11 May 2021)

Land cover types

the National Geographic Information Directory
Service System (http:

//www.webmap.cn/main.do?method=index
accessed on 17 April 2021)

Road and river network
OpenStreetMap

(https://www.openstreetmap.org/ accessed on
17 April 2021)

http://data.cma.cn/
http://www.gscloud.cn/
http://www.geodoi.ac.cn/WebCn/Default.aspx
http://data.tjj.cq.gov.cn/
http://www.webmap.cn/main.do?method=index
http://www.webmap.cn/main.do?method=index
https://www.openstreetmap.org/
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2.2. Research Framework

The flowchart of the flood risk assessment for Chongqing in this paper is depicted in
three stages (Figure 2): (1) multi-indexes determination, (2) flood risk assessment experi-
ments based on AHP and TFN-AHP methods and (3) flood risk spatio-temporal pattern
analysis using GIS.

Figure 2. Flowchart of the flood risk assessment for Chongqing. Note: DR means the daily rainfall of counties and GDP is
Gross Domestic Product of each county in Chongqing.

2.3. Flood Risk Assessment Method
2.3.1. Analytical Hierarchy Process (AHP)

The AHP separates a complicated issue to a form an object layer, index layer and
sub-index layer. In this field, the object layer is used to represent the risk, and the other
layers consist of detailed assessment indicators. According to the Analytic Hierarchy
Process proposed by Lin, Kairong, et al. [13], integer numbers of 1–9 compose pairwise
comparative scales. Number 1 refers to identical significance between index A and B, and
number 9 means A outweighs B significantly for the risk. The consistent judgment matrix
can be constructed after determining the importance of assessment indexes. Ultimately,
based on the largest eigenvalue, vectors are calculated for consistency verification using
Equations (1)–(3):

λmax =
n

∑
i=1

(Aw)i
nwi

(1)

C.I =
λmax − n

n− 1
(2)

C.R =
C.I
R.I

(3)
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where λ max is maximum eigenvalue, (Aw)i is the ith factor of (Aw) of the vector, C.I is the
consistency index and R.I is the random consistency index. If the C.R value is less than or
equal to 0.1, it demonstrates that the matrix meets the verification conditions. Otherwise,
the scale values of i and j need to be reassigned to check the matrix.

2.3.2. Triangular Fuzzy Number-Based Analytical Hierarchy Process (TFN-AHP)

The TFN-AHP is the combination of the original AHP and triangular fuzzy numbers.
The traditional AHP is often represented as the importance degree between factors by crisp
numbers, while this method uses triangular fuzzy numbers instead. That is to say, using the
expression of a triangular fuzzy number, P = (l, m, µ), to replace a crisp number with others
remaining unchanged, where l, m and µ are the minimal, most probable and maximum
risk value, respectively. The key of the approach is using l and µ to measure the value of m,
depicted in Figure 3 according to its principals [37]. In this way, TFN-AHP determines the
probable importance degree between two numbers regarding their influences on flood risk,
rather than definite degree of crisp numbers. Then, the extended value range of importance
degree increases the accuracy of the weights of assessment factors. Table 2 demonstrates
the meaning of triangular fuzzy numbers, which stands for their importance in flood risk
assessment. For instance, the number 1 in the comparison result of H1 and H2 means that
the two indicators have the same impact on flood risk. If the number is 7, it means that
H1 exerts a significantly greater impact on flood risk than that of H2. The relationship of
two triangular fuzzy numbers is calculated through TFN-AHP. The detailed theory can be
found in [24].

Figure 3. Triangular membership function.

Table 2. Quantitative scale of triangular fuzzy number in TFN-AHP.

Linguistic Terms Fuzzy Number Triangular Fuzzy Scale Reciprocal Triangular Fuzzy Number

Equally important 1 (1, 1, 1) (1, 1, 1)

Almost equally important 1′ (1, 1, 3) (1/3, 1, 1)

Intermediate value 2′ (1, 2, 4) (1/4, 1/2, 1)

Moderately more important 3′ (1, 3, 5) (1/5, 1/3, 1)

Intermediate value 4′ (2, 4, 6) (1/6, 1/4, 1/2)

Strongly more important 5′ (3, 5, 7) (1/7, 1/5, 1/3)

Intermediate value 6′ (4, 6, 8) (1/8, 1/6, 1/4)

Very strongly more important 7′ (5, 7, 9) (1/9, 1/7, 1/5)

Intermediate value 8′ (6, 8, 10) (1/10, 1/8, 1/6)

Extremely more important 9′ (7, 9, 11) (1/11, 1/9, 1/7)
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2.3.3. Incorporation of AHP and TFN-AHP into GIS

Flooding is the consequence of comprehensive effects of hazard, exposure and vul-
nerability. Each index contains several risk indicators, and the expression of flood risk is
defined as Equation (4):

FR = wH

(
n

∑
i=1

wi Hi

)
+ wE

(
n

∑
j=1

wjEj

)
+ wv

(
n

∑
k=1

wkVk

)
(4)

where wH, wE and wV are the weights of hazard, exposure and vulnerability respectively,
wi, wj and wk are the weights of each factor and Hi, Ej and Vk are the normalized indicators.
Based on weights from AHP and TFN-AHP of input GIS 10.2, Equation (4) is calculated
using the fuzzy classification function in GIS to obtain flood risk.

2.4. Assessment Indexes

As shown in the flowchart of Figure 2, the flood risk is defined as hazard, exposure
and vulnerability, according to the fifth appraisal report of the Intergovernmental Panel on
Climate Change (IPCC). Thus, a flood risk assessment model was established on the basis of
the principal of AHP, consisting of an object layer, an index layer and a sub-index layer [38].
There are diverse factors in each layer, weights of which were calculated using AHP and
TFN-AHP, and then processed in GIS. Many indicators can contribute to flooding increase.
Based on literature reviews, eleven flooding influencing factors were selected to investigate
floodplains, which are average annual precipitation, average daily rainfall, elevation, slope,
river network proximity, river network density, population density, average area GDP, per
capital disposable income, road network density and land use type.

2.4.1. Hazard Index

Here, hazard chiefly refers to meteorological factors such as typhoons and rain-
storm [39]. As an inland city, rainstorm is the primary meteorological index triggering
floods in Chongqing. The average annual precipitation in each county reflects the precipi-
tation intensity of the current year. The frequency of rainstorm, the average daily rainfall
exceeding 50 mm, is the source of floods. This paper adopts the above two meteorological
indicators, frequency of rainstorm (H1) and average annual precipitation of counties (H2),
to measure the hazard of flooding, which can be expressed as:

H = wH

(
n

∑
i=1

wi Hi

)
(5)

The above data can be processed by Kriging interpolation in GIS to prepare precipita-
tion maps, and the concrete information can be found in [24].

2.4.2. Exposure Index

The exposure aspect contains elevation (E1), slope (E2), river network proximity (E3)
and river network density (E4), expressed in Equation (6). Elevation and steeper slope
indicate a topographic impact on flooding. We use river network proximity and its density
to speculate river conditions, since river existence is one genesis of flooding.

E = wE

(
n

∑
j=1

wjEj

)
(6)

The elevation and slope are extracted using the surface analysis of 3D Analyst. Eu-
clidean distance is applied to prepare the river proximity layer. The river network density
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is the ratio of the average river length to the average adjacent area, which can be acquired
through linear density. The basic theory is expressed as:

Di =
Rij

Ai
(7)

in which Di, Ai and Rij are the river density, the area and the length of the jth river of the
ith pixel, respectively.

2.4.3. Vulnerability Index

As for vulnerability, the resistance of disasters, in Equation (8), we choose population
density (V1), average area GDP (V2), per capital disposable income (V3), road network
density (V4) and land use type (V5) as assessment indicators. The influence of floods
on people’s lives is examined by population density. The average area GDP, per capita
disposable income and road network density are representatives of asset vulnerability and
recovery capability. The impact on local agriculture is identified by land-use type.

V = wv

(
n

∑
k=1

wkVk

)
(8)

The expression of road network density is similar to the formula of river network density.
After the above data processing, risk raster format maps with a pixel size of 98 × 98

were obtained using Raster Calculation of GIS. However, as all indicators have different
dimensions, it is necessary to normalize them for uniform comparisons. Thereby, the value
needs to be converted into a unified [0, 1] range by the fuzzy classification in the GIS. In
the model, the assessment indexes have been divided into positive and negative factors
(Equations (9) and (10)), as they have adverse impacts on flood risk:

x =
mi −mmax

mmax −mmin
(9)

x =
mmax −mi

mmax −mmin
(10)

where x is the normalized value, mmax and mmin are the maximum and minimum values
respectively, and mi is the original value.

2.5. Weight Calibration
2.5.1. AHP Weight

The judgment matrix of the index layer was obtained on the foundation of pairwise
comparison, as demonstrated in Equation (11). Based on the Equations (1)–(3), the consis-
tency ratio of judgment matrix, Findex, was determined as 0.008, which was less than 0.1, so
the consistency of the judgment matrixes was satisfied. Similarly, the weights of sub-index
layers can be calibrated, as tabulated in Table 3.

Findex =


H E V

H 1 3 2
E 1/3 1 1/2
V 1/2 2 1

 (11)
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Table 3. AHP and TFN-AHP process weight.

IndexLayer AHP (W0) Pi TFN-AHP (W0) AHP (Wb) Pi TFN-AHP (Wb)

H 0.540 (0.132, 0.25, 0.732) 0.454
H1 0.667 (0.250, 0.750, 1.875) 0.574

H2 0.333 (0.150, 0.250, 0.625) 0.426

E 0.163 (0.093, 0.25, 0.439) 0.233

E1 0.278 (0.113, 0.327, 1.042) 0.318

E2 0.160 (0.122, 0.420, 1.042) 0.157

E3 0.095 (0.069, 0.132, 0.481) 0.194

E4 0.467 (0.048, 0.121, 0.280) 0.332

V 0.297 (0.176, 0.5, 1.318) 0.313

V1 0.354 (0.073, 0.249, 0.764) 0.3

V2 0.269 (0.092, 0.283, 0.764) 0.291

V3 0.188 (0.094, 0.240, 0.623) 0.27

V4 0.112 (0.082, 0.179, 0.462) 0.076

V5 0.078 (0.025, 0.048, 0.124) 0.063

2.5.2. FN-AHP Weight

The consistent judgment matrixes of AHP can be substituted by triangular fuzzy
numbers to gain the fuzzy judgment matrix of each layer. The weight calibration process
of TFN-AHP is illustrated using the judgment matrix of the index layer as an example.
According to the fuzzy judgment matrix of the index layer listed in Table 3, the fuzzy
synthetic extent (Pi) was calculated, which is drawn as triangles in Figure 4. Based on that,
the triangular fuzzy affiliation of the index layer was obtained.

Figure 4. Triangular fuzzy affiliation of indicators.

The affiliation of hazard and exposure was computed as follows:

µ (PH ≥ PE) = 1, µ (PE ≥ PH) = 1 (12)

The affiliation of exposure and vulnerability was calibrated as follows:

µ (PE ≥ PV) = 0.512, µ (PV ≥ PE) = 1 (13)

The affiliation of hazard and vulnerability was reckoned as follows:

µ (PH ≥ PV) = 0.690, µ (PV ≥ PH) = 1 (14)

According to TFN-AHP theory, the original weight of each factor was calibrated:
W0 = (1, 0.512, 0.690).

After standardization, the weights of the index layer were: Wb = (0.454, 0.313, 0.233).
As the triangular fuzzy judgment matrix of the hazard, exposure and vulnerability

indexes given in Tables 4–7, similarly, the weight of each sub-index layer can be computed
following the above procedure.
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Table 4. Index layer weights determined by TFN-AHP.

Index Layer H E V Pi

H (1, 1, 1) (1, 1, 3) (0.25, 0.5, 1) (0.033, 0.057, 0.201)

E (0.33, 1, 1) (1, 1, 1) (0.25, 0.5, 1) (0.023, 0.057, 0.121)

V (1, 2, 4) (1, 2, 4) (1, 1, 1) (0.044, 0.113, 0.362)

Table 5. Hazard layer weights determined by TFN-AHP.

Sub-Index Layer H1 H2 Pi

H1 (1, 1, 1) (1, 3, 5) (0.250, 0.750, 1.875)

H2 (0.2, 0.33, 1) (1, 1, 1) (0.150, 0.250, 0.625)

Table 6. Exposure layer weights determined by TFN-AHP.

Sub-Index Layer E1 E2 E3 E4 Pi

E1 (1, 1, 1) (1, 1, 3) (1, 2, 4) (1, 3, 5) (0.113, 0.327, 1.042)

E2 (0.33, 1, 1) (1, 1, 1) (1, 3, 5) (2, 4, 6) (0.122, 0.420, 1.042)

E3 (0.25, 0.5, 1) (0.2, 0.33, 1) (1, 1, 1) (1, 1, 3) (0.069, 0.132, 0.481)

E4 (0.2, 0.33, 1) (0.17, 0.25, 0.5) (0.33, 1, 1) (1, 1, 1) (0.048, 0.121, 0.280)

Table 7. Vulnerability layer weights determined by TFN-AHP.

Sub-Index Layer V1 V2 V3 V4 V5 Pi

V1 (1, 1, 1) (1, 2, 4) (1, 3, 5) (1, 3, 5) (1, 2, 4) (0.073, 0.249, 0.764)

V2 (0.25, 0.5, 1) (1, 1, 1) (2, 4, 6) (1, 3, 5) (2, 4, 6) (0.092, 0.283, 0.764)

V3 (0.2, 0.33, 1) (0.17, 0.25, 0.5) (1, 1, 1) (2, 4, 6) (3, 5, 7) (0.094, 0.240, 0.623)

V4 (0.2, 0.33, 1) (0.2, 0.33, 1) (0.17, 0.25, 0.5) (1, 1, 1) (4, 6, 8) (0.082, 0.179, 0.462)

V5 (0.25, 0.5, 1) (0.17, 0.25, 0.5) (0.14, 0.2, 0.33) (0.125, 0.17, 0.25) (1, 1, 1) (0.025, 0.048, 0.124)

2.6. Spatio-Temporal Analysis Method

The overall spatial autocorrelation of regional risk is regularly measured by Global
Moran’s I index, due to its simple operation and judgment ability. In detail, this method
can judge whether there is agglomeration or outlier, which can be used as the basis for
further analysis of spatial autocorrelation distribution. Its value, ranging from −1 to 1, is
an inferential reflection of negative and positive spatial correlation, respectively [27]:

I =

n
∑

i−1,j−1
Wij(xi − x)(xj − x)[

n
∑

i=1
(xi − x)2/n

]
n
∑

i−1,j−1
Wij

(15)

where n represents the total number of spatial units, x is the inundation risk of unit, i and j
are the candidate unit and neighboring unit, x is the average value of the flood risk of all
units and Wij denotes the spatial weight matrix.

Global spatial correlations are not consistent with local clustering, and they are two
spatial autocorrelation analysis methods from global and local aspects. Thus, Anselin Local
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Moran’s I is adopted to evaluate the spatial clustering types between spatial units. The
formula is expressed as follows [40]:

Ii =
xi − x

n
∑

i=1
(xi − x)2/(n− 1)

n

∑
i−1,j 6=i

Wij(xi − x) (16)

in which x, x and Wij are the same as in Equation (15).

3. Results
3.1. Comparative Analysis of Flood Risk of AHP and TFN-AHP Methods

After the data processing according to Section 2.4, including standardization and
weights calculation, all sub-indexes were overlaid through the Raster Calculator of GIS.
Then, based on the Equations (4)–(8), AHP and TFN-AHP approaches were used to map
the index layers, hazard, exposure and vulnerability. This work uses fuzzy terms of high
and low to represent the level of risk, rather than accurate classification.

3.1.1. Hazard Results

It is well-known that rainfall varies from one year to another. Compared to the annual
precipitation of 2000 to 2018 in Chongqing, the precipitation in 2018 was higher than before
2014. Considering data availability, daily precipitation of 2018 was chosen as the hazard
sub-index, which is representative rather than haphazard. Subsequently, according to
the weights listed in Table 3 and Equation (1), the spatial distribution maps of hazard in
Chongqing from the two methods were obtained, as shown in Figure 5. Visually, the results
of the two approaches are dissimilar in four seasons. That is to say that their maps during
spring and autumn have almost identical trends, and consequences from TFN-AHP are
less hazardous than AHP in summer and winter, especially in the central area. This is
likely on account of the comparison where TFN-AHP determined lower weight of daily
precipitation and higher weight of annual precipitation than those from AHP. For the
same precipitation data, in the summer season with high daily precipitation, the larger the
weight of daily precipitation is, the greater its impact on hazard. The difference of winter
precipitation remains to be explored, while the difference between the two weights will be
relatively small in seasons with little daily precipitation. Consequently, results from the
two methods in spring and autumn represent no abrupt difference, and the variation of the
weight of H1 is expanded in summer and winter, leading to distribution divergence.

Figure 5. Cont.
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Figure 5. Spatial distribution map of flood hazard in four seasons during 2018: (a) Spring—AHP, (b) Spring—TFN-AHP,
(c) Summer—AHP, (d) Summer—TFN-AHP, (e) Fall—AHP, (f) Fall—TFN-AHP, (g) Winter—AHP, (h) Winter—TFN-AHP.
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Floods are not only determined by the precipitation of a season, but also closely related
to the precipitation of the whole year. This is because precipitation is generally cyclical.
The precipitation decreases from northeast to west in spring, from southeast to north in
summer and from west to east in autumn and winter. The precipitation in one season may
change in its cycle due to climate change, which may lead to the advancement or delay
of the rainy season, which may affect the precipitation in other seasons [41]. The annual
precipitation is used as an auxiliary evaluation factor, in order to decrease the possibility of
this phenomenon. Thus, TFN-AHP can improve the accuracy of the results by increasing
the weight of annual precipitation.

3.1.2. Exposure Results

With respect to exposure, the weights followed in Table 3 and Equation (2) were
combined to map the spatial distribution of exposure using the above two methods, as
shown in Figure 6. It should be noted that exposure indexes are negative indicators, mani-
festing that the lower value of which stands for the higher exposure. A clear divergence
of consequences from the two approaches is visible in that the result from AHP is more
exposed than that from TFN-AHP, owing to the higher weight of H3 from TFN-AHP. The
integrated effect of increased weights of negative factors and negative value minimizes the
overall exposure, just like maps of TFN-AHP.

Figure 6. Spatial distribution map of flood exposure: (a) AHP, (b) TFN-AHP.

The effectiveness of the two approaches can be explained from two perspectives. First,
in the typical mountain city Chongqing, elevation and slope are the main differences,
as well as the key factors affecting floods in different districts. Comparing the Figure 6
and elevation and slope in Figure 7, we can easily find that their trends are very similar.
The northeast and southeast have higher altitude and larger slope, which is due to the
Daba Mountain in the north, Wushan mountain in the East and Wuling Mountain in the
southeast. Whereas the sum weights of elevation and slope from TFN-AHP are greater
than those from AHP, resulting in the trend of exposure from TFN-AHP relatively similar
to that of elevation and slope maps in Figure 7. Secondly, the counties closer to the river
are inclined to trigger water levels rising to flooding level, without which, there will be
no flooding no matter how dense the river network. Since rivers flow through almost all
districts in Chongqing (Figure 7), such as Yangtze River running through the city, Jialing
River and Wujiang River, and so forth, the influence of H4 should be minimized. Thereby,
the weight of H3 is enhanced to stand out as important. In summary, the impact of elevation
and river network proximity can be more accurate and match well with the actual situation
using TFN-AHP.
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Figure 7. Spatial distribution map of normalized exposure data: (a) elevation, (b) slope, (c) river network proximity, (d) river
network density.

3.1.3. Vulnerability Results

In view of vulnerability, according to references [42,43] and the Delphi method, the
vulnerability values of each land use were obtained through scoring 0–1 to the vulnerability
of land use types. The thresholds in Figure 8e are the average value of vulnerability to
flood risk of each land use. Then, integrated with the weights in Table 3 and Equation (3),
the spatial distribution maps of rainstorm vulnerability from two approaches are presented
in Figure 9. The vulnerability results from the two approaches follow the same distribution.
These are understandable from two aspects. One is the impact of the identical weights of
V1, V2 and V3. Just as a multitude of works assert, economy and population are closely
related to disaster resistance. This is due to the fact that the economy is the sign of detailed
planning of preventive measures, multi-fund recovery and reconstruction, and people are
the primary disaster-bearing body. Hence, consequences of either approach will follow the
trend of the three factors in the Midwest, remaining high in V1, V2 and V3 indexes and
vulnerability, as shown in Figures 8 and 9. The other is that, though weights from the two
approaches of V4 and V5 are varied, the sum accounts for a small proportion compared to
other indicators. Thus, the variation imposes a slight impact on vulnerability. However,
the lower weight of V4 from TFN-AHP is noteworthy. For Chongqing, with much area
with a less dense road network, V4 should weaken its proportion to minimize the role of
road network and make the weight structure more reliable. Thereby, weight determination
is handled better with the use of TFN-AHP, especially for V4.
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Figure 8. Spatial distribution map of normalized vulnerability data: (a) population density, (b) average GDP, (c) per capita
disposable income, (d) road network density, (e) land use type.
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Figure 9. Spatial distribution map of flood vulnerability: (a) AHP, (b) TFN-AHP.

3.1.4. Flood Risk Results

The above index-layer consequences were weighted and integrated to obtain the
comprehensive risk of floods, as shown in Figure 10. Visually, the main difference is
that the risk of AHP in the northeast and southeast is higher than that of TFN-AHP.
Two reasons are responsible for this phenomenon. First, considering the aforementioned
analysis, the exposure of TFN-AHP is lower than that of AHP, reducing the risk of areas
corresponding to the lower value in the exposure map from TFN-AHP, and the difference
of flood risk is mostly distributed in the northeast and southeast, which is the same as
exposure maps. Additionally, the exposure and vulnerability estimated by TFN-AHP
have comparably greater weights by comparison of the two methods. The increased
exposure weight multiplies the lower value, which brought about a drop of risk level
derived from TFN-AHP. The flooding statistics of 2018 demonstrated that the southeast,
such as Xiukou county, underwent few flooding disasters, and the zones evaluated by
TFN-AHP are observed to be lower risk compared with those by AHP, indicating that
TFN-AHP performs better in flooding risk assessment. Therefore, TFN-AHP is employed
in the work.

Figure 10. Cont.
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Figure 10. Spatial distribution of the flood risk in four seasons of Chongqing: (a) flood risk in spring—AHP, (b) flood risk
in spring—TFN-AHP, (c) flood risk in summer—AHP, (d) flood risk in summer—TFN-AHP, (e) flood risk in fall—AHP,
(f) flood risk in fall—TFN-AHP, (g) flood risk in winter—AHP, (h) flood risk in winter—TFN-AHP.
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3.2. Temporal-Spatial Analysis of Flooding Risk
3.2.1. Seasonal Difference of Flooding Risk

Notably, as shown in Figure 10, the differences in four seasons lie in low–medium-
risk areas, distributed over most parts of Chongqing. This can be interpreted by the
role of hazard factors. To be clear, frequency of precipitation, the decisive hazard factor,
experiences dramatic changes in diverse seasons. In all seasons, the comprehensive effects
of high exposure and high vulnerability are attributed to urban areas and the areas along
the Yangtze River, assessed as the most-risky locations.

3.2.2. Spatial Analysis of Flooding Risk

Based on the spatial technology in ArcGIS, the Global Moran’s I, Anselin Local Moran’s
I and the corresponding Z and P value of Chongqing’s flood risk were obtained as presented
in Table 8. Z(I) is greater than 1.96 and P is less than 0.05, both satisfying the critical value
of normal distribution function at the 0.05 level. As such, the global autocorrelation
outcomes can be thought of as significant. Moreover, Anselin Local Moran’s I is a requisite
for further spatial clustering exploration under three considerations, hazard, exposure
and vulnerability.

Table 8. Global Moran’s I analysis on the risk level of heavy rain and flood in Chongqing.

Variable Spring Summer Fall Winter

Z 38.28 54.34 34.69 49.62

P 0 0 0 0

It can be seen from Figure 11 that the distributions in four seasons are identical in
high-high clusters (HH). To be precise, the main urban area and areas along the Yangtze
River are outstanding as HH spots. It is critical to note that the exposure and vulnerability
of these zones are the highest, which are the main leading factors of hot spots. In detail,
as shown in Figure 11a, the main urban area has a high vulnerability due to advanced
economy as a flooding-bearing body. Along the Yangtze River area is sensitive to the
high exposure brought by river surge and low-lying areas (Figure 11b,c). It is easy from
Figure 11d to observe that some hot spots in southeast and mid zones are under the effect
of poor finance development, since their location is surrounded by mountains. In regard
to the differences of four seasons, most areas are low-high clusters (LH) in spring, not
significant clusters in summer and autumn and basically low-low clusters (LL) in winter.
This suggests that high-risk zones lack early warning and post-disaster reconstruction
capabilities and flooding control policies need to change from season to season.

Figure 11. Cont.
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Figure 11. Distribution map of local spatial autocorrelation: (a) Spring, (b) Summer, (c) Fall, (d) Winter. Note: Not significant
means that the representative flood risk has no significant spatial relationship in this area. High-high cluster and low-low
cluster are the identification of high- and low-risk spots. High-low outlier and low-high outlier are used to convey that the
hot spots and the cold spots are mixed with each other, which makes it impossible to identify the specific flood risk value in
this region.

3.2.3. Temporal-Spatial Analysis of Flooding Risk

According to the above analysis on the basis of data from 2018, it is easy to find the
changing and constant zones in all seasons of 2018, as seen in Figure 11. Overall, regions
changing with seasons are distributed in west and central zones. The results show that they
tend to be lower risk from spring to fall, with risk increasing in winter. It is evident that
hazard indicators play a critical role, since the distributions of exposure and vulnerability
are similar in these regions. In detail, the cold air masses of spring, together with the
rainy season in summer and autumn, lead to an increase of LL clusters accompanied with
decreasing HH clusters. In winter, there is a pronounced decrease in all clusters under the
influence of the southeast monsoon. With regard to the constant parts, main urban areas
and areas along the Yangtze River are always high-risk, with high values of both exposure
and vulnerability, and the southeast region is LL clusters, as shown in Figure 11.

3.3. Sensitivity Analysis of Assessment Factors’ Weights

According to relevant references, the results are highly sensitive to the weights of
assessment indicators. In this study, sensitivity analysis of assessment factors’ weights was
performed. The approach changes the weights of one indicator and keeps other indicators
fixed [44]. The range of weights’ deviations is set between−10% and +10% and the original
weight is set as the baseline. Each time, the change is two percent. This study selected
five indicators, which were H1, E2, E3, E4 and V4, covering almost all the weight values of
different levels. According to the principle of sensitivity analysis, even if the weight of an
indicator is altered, the sum weight of all indicators is always 1. Equation (14) is employed
to adjust the weights of other fixed factors:

wi′ = (1− wm′) ∗ wi/(1− wm) (17)

in which wm
′ and wm are the changed and original weight of factor m, wi is the original

weight of ith indicator and wi
′ is the corresponding adjusted weight.

This work calculated 50 simulations and drew risk maps for each simulation. Accord-
ing to their standardized risk value, all maps were classified into five levels, very low risk,
low risk, moderate risk, high risk and very high risk, as shown in Figure 12. The definitions
of these five levels are demonstrated in Table 9. The results can be divided into three types
based on the sensitivity. The first type is the most sensitive to weight alternation, such as
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V4. This type has a large fluctuation range in the whole range of change, for example, R1
shows an upward trend as a whole. The second type represents moderate sensitivity, just
as E2, E3 and E4, which causes indispensable risk class modification when the alternation
is −2% and +2%. Indicators such as H1 belong to the third type, with the lowest sensitivity.
There exist hardly any fluctuations as the weights change in this type. This phenomenon
demonstrates that indicators with lower weights are less sensitive, while indicators with
heavier weights are more sensitive. This may be due to the fact that hazard has fewer
indicators, and the overall indicator changes caused by weight changes are relatively small,
whereas exposure and vulnerability consist of a large number of indicators. One factor
change will cause other indicators to change, which will lead to a greater impact on the
final result.

Figure 12. Cont.
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Figure 12. Sensitivity analysis results: (a) H1, (b) E2, (c) E3, (d) E4, (e) V4. R1 = Very low risk, R2 = Low risk, R3 = Moderate
risk, R4 = High risk, R5 = Very high risk.

Table 9. The definitions of flood risk.

Level Flood Risk Value

Very low risk <0.1
Low risk 0.1–0.3

Moderate risk 0.3–0.7
High risk 0.7–0.9

Very high risk >0.9
The flood risk values are standardized in GIS before classification.

4. Discussion
4.1. Efficiency and Limitation

According to the assessment consequences, the urban areas and the Yangtze River
coastal regions were evaluated as high-risk. In the process, the assessment indexes are the
keys of risk. This work paid close attention to frequency of rainfall, river network density,
elevation and population density, which are effective in flood risk prediction.

Frequency of rainfall is the determinate factor in flood occurrence. Without abundant
precipitation, it is unlikely to result in flooding. Additionally, the weight of this index is
0.572, the largest value in all weights. By comparing the risk distribution map and hazard
maps evaluated through rainfall data, the trends are identical. This shows that the zones
with more rainfall are more prone to flooding. Observing Figures 5 and 10, the urban
regions and the Yangtze River coastal areas are at the highest risk, as well as having the
most frequent rainfall. This is in line with the weights from TFN-AHP, which have been
found in [45], which emphasized flood sensitivity to the rainfall. Therefore, choosing this
factor can confirm reliable flood risk assessment results.

Investigating the influence of river network density and elevation on flooding risk
showed that these two indicators affected the occurrence of flood the most. For one, it
is well-known that river existence is one of the keys to floods. In addition, the weight of
0.332 suggests its unneglected influence on flood. Under the influence of the two reasons,
the Yangtze River regions were taken as the highest risk, as demonstrated in Figure 10. For
the other, the runoff discharge pattern may cause less flooding in areas with more rainfall,
and relatively more floods in areas with less rainfall. For example, there are more heavy
rains in hills and mountains than plains, and the elevation difference between mountains
and hills aggravates the difficulty of stagnant water, making the probability of floods
lower [46]. This reveals that elevation is the supplement to the rainfall factor, which can
also be found through its weight of 0.318, ranking third in all weights. Thus, the stress on
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river network proximity and elevation can be proved using the high performance of these
two indicators.

Since the higher the population density is, the more serious the flooding in the zone
will be, there is a need to prevent the flooding through proper flood risk management. By
TFN-AHP, a population with a weight of 0.3 is vital in flood occurrence. The relationship
between population and flood risk can be seen using the results in Figures 8a and 10, where
the urban regions with high risk are populated places. So, the areas with more people are
more sensitive to flooding risk.

From the above analysis, we can confirm that the assessment factors perform well in
the prediction of flood risk. Then, an estimation of weight-determining methods verified
the accuracy of the results. The statistics of flood disaster reports in each county during
2018 were collected from Chongqing Emergency Management Bureau. Based on that,
the percentages of different risk levels of the two approaches and historical data were
obtained, as shown in Figure 13. The highest zones of AHP and TFN-AHP are 0.01% and
0.008%, respectively. Besides, the higher regions of AHP and TFN-AHP are 0.01% and
0.02% respectively, and the highest and higher percentages of historical data are 0.02%
and 0.13%. The comparison shows that TFN-AHP can yield more high-risk regions than
AHP. Even though on account of limited data, the model and historical data are not exactly
identical, the high-risk of all seasons from the model is relatively consistent with historical
data. In conclusion, the adoption of TFN-AHP can provide more accurate insight into flood
risk evaluation.

Figure 13. Percentages of flood risk of all levels.

From the results of sensitivity analysis, it can be seen that the weights of various factors
have different sensitivity, which highlights the importance of weight accuracy. For instance,
with regard to the most sensitive factor, V4, its weight is reduced by 20%, which leads to a
33% change in the final result. Therefore, the accuracy of the weights plays an indispensable
role in the accuracy of the evaluation results. The method of determining the weights
with lower accuracy may have larger errors in the assessment results, thereby affecting the
policies and decisions made by the decision-makers. Thus, the weights are necessary and
crucial to increase the accuracy in the model. In this paper, TFN-AHP uses triangular fuzzy
numbers to determine weights to reduce uncertainty. Its fundamental function is to employ
fuzzy theory to gain better performance in accuracy enhancement, and the outcomes are
consistent with the results of [24] and [25]. Although the TFN-AHP method is difficult
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to determine triangular fuzzy numbers, and this viewpoint is mainly subjective [47], the
TFN-AHP approach is able to enhance the accuracy of flood risk assessment results, which
is informative for decision-makers to efficiently manage flood risk.

The global regional risk pattern and local hot spots in Chongqing identified by GIS
techniques are similar to historical floods, which can provide information for the govern-
ment to formulate flood prevention and bank protection policies as a reference. Specifically,
the global regional risk pattern can grasp the flood risk situation of the entire city as a
whole, and hotspot risk areas can be employed as a supplement to focus on the prevention
and control of flood, which is consistent with the flood control policy of the 14th Five-Year
Plan formulated by Chongqing Municipality to focus on 298 key flood control risk points.
The application of global regional risk pattern and local hot spots identification by GIS can
be used in other mountain regions, such as Northern Fujian, mountain zones of Marginea
and so forth. Then, this can better analyze the spatial distribution characteristics of floods
in these mountain areas, and the visual advantage of GIS makes it easier to understand,
thus creating more accurate flood control actions.

4.2. Reflections and Suggestions

In recent years, with the rapid development of social economy and the rapid promo-
tion of the strategic position of Chongqing, flood risk management has become particularly
important, calling for the development of specific policy measures. On the one hand,
high-risk areas are principally distributed in the main urban areas and areas along the
Yangtze River. For the main urban area, approaches such as planning drainage systems
based on local conditions and promoting disaster data sharing and implementation of
research achievements [48] are practicable and useful. For Yangtze River coastal areas,
in addition to flood defense structures, the department should focus more attention on
construction in flood-prone zones [49]. On the other hand, the southeast and northeast
parts are low-risk areas. The power of the masses and specific environmental characteris-
tics of mountain cities can be given full play in disaster prevention, because the utility of
people and surroundings could benefit enhancing disaster-resilient capabilities [49]. Due
to the different altitudes and socio-economic conditions of various mountain cities, the
flood risk assessment results of Chongqing as an example are difficult to generalize to
other mountainous cities. Nevertheless, the flood risk assessment indicators and methods
used in this paper take into account some special topography and economic conditions
of mountain cities and improve the universal applicability of the evaluation methods
and indicators. Therefore, follow-up research needs to select the evaluation indicators as
appropriate according to the local conditions and focus on methods and indicators that are
generally applicable in all mountain cities.

5. Conclusions

The assessment method for mountain cities based on TFN-AHP and GIS was founded
from three dimensions—hazard, exposure and vulnerability—in this paper to reduce the
uncertain problem of risk assessment. For explicit flood risk management answers, the
method provided vital insights into the risk level and temporal-spatial pattern. In general,
the major conclusions are as follows:

1. The comparison between AHP and TFN-AHP demonstrated that TFN-AHP is more
effective with relatively higher accuracy, particularly in the hazard and exposure
layers. The flood-risk maps were consistent with flooding risk regions obtained from
historical data, especially for the high-risk regions.

2. The results of Global Moran’s I index showed that there exists a spatial autocorrelation
of flood risk in Chongqing. Further, the indication of Anselin Local Moran’s I was the
spatial distribution of hot spots, mainly located in main urban areas and areas along
the Yangtze River all year round in Chongqing.
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3. The results of the sensitivity analysis revealed three groups with various sensitivity
to weight changes. Indicators like V4 are the most sensitive, followed by factors such
as E2, E3 and E4, and indexes like H1.

Overall, it can be seen that some specific environmental characteristics of mountain
cities were fully considered through TFN-AHP. The experimental consequences indicate
that the proposed method can be employed in early prediction for mountain cities with
higher accuracy. Nonetheless, further investigations should be conducted to have impli-
cations for highly accurate evaluation. For instance, TFN-AHP should be combined with
other approaches in the future, such as the entropy weight method, to alleviate subjectiv-
ity. Additionally, the data of assessment factors should be extended to make evaluation
outcomes more consistent with the actual situations.
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