
atmosphere

Article

Urban Resilience of Shenzhen City under Climate Change

Weiwei Shao 1 , Xin Su 1, Jie Lu 2, Jiahong Liu 1,* , Zhiyong Yang 1, Chao Mei 1, Chuang Liu 1 and Jiahui Lu 1

����������
�������

Citation: Shao, W.; Su, X.; Lu, J.; Liu,

J.; Yang, Z.; Mei, C.; Liu, C.; Lu, J.

Urban Resilience of Shenzhen City

under Climate Change. Atmosphere

2021, 12, 537. https://doi.org/

10.3390/atmos12050537

Academic Editors: Hideki

Takebayashi and Jihui Yuan

Received: 20 March 2021

Accepted: 18 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water
Resources and Hydropower Research, Beijing 100038, China; shaoww@iwhr.com (W.S.);
suxin199109@gmail.com (X.S.); yangzy@iwhr.com (Z.Y.); meichao@iwhr.com (C.M.);
liuchuang1619@gmail.com (C.L.); lujiahui1215@gmail.com (J.L.)

2 School of Geographical Sciences, Liaoning Normal University, Dalian 116029, China; lj895232175@gmail.com
* Correspondence: liujh@iwhr.com

Abstract: The Chinese government attaches great importance to climate change adaptation and has
issued relevant strategies and policies. Overall, China’s action to adapt to climate change remains in
its infancy, and relevant research needs to be further deepened. In this paper, we study the future
adaptive countermeasures of Shenzhen city in the Pearl River Delta in terms of climate change,
especially urban flood risk resilience. Based on the background investigation of urban flood risk
in Shenzhen, this paper calculates the annual precipitation frequency of Shenzhen from 1953 to
2020, and uses the extreme precipitation index as a quantitative indicator to analyze the changes in
historical precipitation and the impact of major flood disasters in Shenzhen city in previous decades.
Based on the six kinds of model data of the scenario Model Inter-comparison Project (MIP) in the
sixth phase of the Coupled Model Inter-comparison Project (CMIP6), uses the Taylor diagram and
MR comprehensive evaluation method to evaluate the ability of different climate models to simulate
extreme precipitation in Shenzhen, and the selected models are aggregated and averaged to predict
the climate change trend of Shenzhen from 2020 to 2100. The prediction results show that Shenzhen
will face more severe threats from rainstorms and floods in the future. Therefore, this paper proposes
a resilience strategy for the city to cope with the threat of flood in the future, including constructing a
smart water management system and promoting the development of a sponge city. Moreover, to a
certain extent, it is necessary to realize risk transfer by promoting a flood insurance system.

Keywords: extreme precipitation; temporal change; CMIP6; prediction; urban resilience; sponge city

1. Introduction

Climate change is currently a global issue that affects human survival and sustainable
societal development. In the past 100 years, the global climate has been characterized
by warming [1]. The Fifth Assessment Report of the International Intergovernmental
Panel on Climate Change (IPCC) states that the average global temperature increased by
0.65–1.06 ◦C from 1880 to 2012, and that the global temperature will continue to increase
in the future [2,3]. In the context of continued global warming, changes in climate vari-
ability (such as monsoon, precipitation, and atmospheric circulation) will not only have
significant regional hydrothermal impacts but will also further increase the risk of extreme
climate events [4,5]. Although extreme climate events are low probability events, they are
extremely sudden and destructive, and are difficult to predict [6]. In recent years, with the
development of urbanization, problems have arisen that are associated with the increase in
the area of hardened urban subsurfaces, the proliferation of impervious facilities, imper-
fect construction of drainage networks and other infrastructure, and the uncoordinated
development of cities themselves. Among the challenges, heavy rainfall and flooding
caused by extreme precipitation tend to result in internal flooding in cities with insuffi-
cient drainage capacity, increasing the frequency and risk of urban natural disasters and
affecting regional infrastructure and economic development [7]. Therefore, the quantitative
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evaluation description, simulation, and early warning assessment of extreme precipitation
events in cities has become a current research hotspot in the field of climate change and
urban construction.

Domestic and international scholars have carried out a considerable amount of re-
search on extreme climate change, simulation prediction, and urban response [8–10], mainly
focusing on three aspects. Firstly, the quantitative research on extreme climate change,
including the characterization definition, spatial and temporal evolution patterns, and the
causes of extreme climate indices [11,12]. The Expert Team on Climate Change Detection
and Indices (ETCCDI) of the World Meteorological Organization (WMO) has defined 27 ex-
treme climate indices in terms of intensity, frequency, and duration using statistical methods
such as the percentage method and threshold determination. These indices are widely used
in the quantitative analysis of extreme climate change [13–16]. Secondly, the application
of global climate model data to simulate and predict future extreme climate indices. The
World Climate Research Program has developed the Coupled Model Inter-comparison
Project (CMIP) as a database for making such predictions [17]. The latest version of the cur-
rent CMIP series is CMIP6, which presents new prognostic scenarios using six integrated
assessment models (IAMs), based on different shared socioeconomic pathways (SSPs) and
the latest anthropogenic emission trends. The new scenarios not only include future social
and economic changes (such as population, economic development, ecosystems, resources,
systems, and social factors), but also future efforts to mitigate, adapt, and respond to
climate change, with better resolution [18–20]. Many scholars have attempted to use the
CMIP6 outputs to evaluate the characteristics of extreme rainfall under different scenarios
in the future [21–23]. The result showed that extreme temperature and precipitation have
shown increasing trends in this century overall, and these changes are more obvious in the
CMIP6 simulation than in the CMIP5 simulation. However, not all models exhibit a better
performance in a certain region. Therefore, the best choice is an optimal model prediction
that can better reduce the uncertainty of the simulation. With the application of global
climate model data, a large number of researchers have found that a multi-model ensemble
(MME) has better evaluation performance than a single model [24,25]. The third aspect
is that many scholars are committed to proposing an effective measure to enable cities to
better cope with extreme climate change [26–29]. Therefore, many new concepts have been
proposed, such as sponge city, Smart Water Management (SWM), flood insurance, etc.

Shenzhen is one of the most innovative cities with the highest degree of marketization,
the most perfect market system and the most important economy in China. It plays an
irreplaceable role in promoting the rapid development of the national economy. In recent
years, with the acceleration of urban modernization and the continuous improvement of
urban function positioning, Shenzhen has become increasingly sensitive to flooding disas-
ters, and climate risks have also increased. However, the meteorological disasters caused
by extreme rainfall cause serious loss of life and property almost every year, which greatly
restricts economic and social development. For example, the 2008 typhoon “Fengshen”
was the strongest typhoon encountered in Shenzhen. There were more than 90 waterlogged
sites in the city, and at least 18 sites with water depths of more than 1 m; traffic jams in
many road sections in the city were serious; in addition, the heavy rain caused landslides
in 10 places in the city, the most serious being on the side of the Buji River. The slope of
Shenhui Road collapsed more than 70 m, and nearly one million people were affected by
the heavy rain in the city, causing a direct economic loss of about 490 million yuan [30].
Improving our understanding of the characteristics of flood disasters and optimizing flood
control and disaster reduction countermeasures is the main subject and overall goal of
Shenzhen’s future urban flood control work.

At present, there is a lack of research using the CMIP6 outputs to predict extreme pre-
cipitation changes at the urban scale [31]. Meanwhile, there is a lack of systematic measures
and suggestions on how cities should deal with climate change. Therefore, based on the
simulation capabilities of different CMIP6 outputs, this paper reveals the evolutionary laws
and characteristics of extreme climate events, and proposes countermeasures to manage
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extreme precipitation and urban waterlogging, with a view to minimizing disaster losses
and improving the city ability to deal with climate risks.

2. Literature Review
2.1. Resilient City

As a complex giant system, cities are becoming more and more powerful at the same
time they are becoming more and more vulnerable, such as floods caused by extreme
climates. Therefore, how a city can respond to various changes and maintain its own
vitality in the face of numerous challenges and crises has become an important issue that
needs to be resolved.

The concept of elasticity originated from ecology and was put forward by the Amer-
ican scholar Holling in the 1970s [32]. With the development of research, the concept of
resilience began to be combined with disciplines other than ecology. In the field of urban
planning, Albert [33] proposed the concept of “resilient city”, which is defined as the ability
and degree of a city to dissolve and absorb changes before structural and process restructur-
ing changes. The Resilience Alliance defines a resilient city as: the ability of a city or urban
system to absorb and absorb external disturbances and maintain the original main features,
structure, and key functions [34]. However, in fact, a resilient city includes not only the
ability of the city system to adjust itself to respond to various negative uncertainties and
sudden attacks, but also the ability to effectively transform those positive opportunities
into capital [35].

2.2. Resilient Strategies

Frequent water disasters have caused people to reflect on whether the single-target
engineering resistance strategy is reasonable, such as raising flood dikes and diverting
water, and actively looking for other solutions. In this context, resilient strategies have
received attention and development [36]. Resilient strategies are more resilient than resis-
tance strategy and more adaptable to various uncertain changes [37]. Resilience strategies
include structural measures and non-structural measures [38]. Structural measures include
river net flow management, flood adaptation, hanging water and construction measures,
while non-structural measures are reflected in flood policies and management.

China’s 13th Five-Year Plan proposes that “sponge cities” are an important direction
for the development of new urbanization. “Sponge city” is a new generation of urban
stormwater management concept [39]. It means that the city can be like a sponge and
has good flexibility in adapting to environmental changes and coping with natural disas-
ters caused by rainwater. It can also be called a “water resilient city” [40]. The “sponge
city” has the flexibility to adapt to environmental changes and respond to rain and flood
disasters. The construction of “sponge city” will help solve the problem of urban water-
logging, improve the urban ecological environment, and improve the quality of life of the
people [41].

At present, it is also a hot issue to promote smart water management with the help of
emerging information technologies such as the Internet, cloud computing, big data, and
artificial intelligence [42,43]. The urban flood control system mainly consists of a source
monitoring system, a river management system, a flood forecasting system, an alarm
system, a flood risk assessment system, and a flood-related database. The source flood
level and flow are monitored through the source monitoring system, and then the flood
level is forecasted through the flood forecasting system. The flood was assessed through
the flood risk assessment system. Through these non-engineering measures, flood attacks
can be avoided, prevented, or reduced, adapt to changes in various types of floods, and
better utilize the benefits of flood control projects, thereby reducing flood losses [44].

In addition, in many developed countries, flood insurance is often an important part
of disaster prevention laws, and catastrophe insurance plays a vital role in disaster relief
and protection of people’s lives and property [45,46]. In the 20th century, although the
American flood insurance measures were unable to restrain the upward trend of flood
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losses, they effectively reduced the ratio of flood losses to GNP and restricted flood risks
to acceptable limits [47]. As an important non-engineering measure for flood control, will
play an increasingly important role in transferring flood risk [48].

3. Materials and Methods
3.1. Study Area

Shenzhen is located between 113◦43′–114◦38′E and 22◦24′–22◦52′N (Figure 1). It is
a coastal city in the south of China with an area of 1997.47 km2. Shenzhen experiences a
southern subtropical monsoon climate with variable weather in spring, prevailing easterly
winds, a long summer, and a short winter. The climate is mild, with mean annual tempera-
ture of 22.4 ◦C. Shenzhen is rich in precipitation resources. Annual rainfall of 1933.3 mm
occurs during the rainy season from April to September each year. The prevailing winds
are southeasterly and easterly, with an influence from tropical cyclones 4–5 times per year
on average [49].
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Figure 1. Study area location and rainfall characteristics. (a) Location of Guangdong Province;
(b) spatial distribution of the mean annual rainfall in Guangdong Province from 2000 to 2019;
(c) distribution map of maximum 1 h rainfall in Shenzhen from 19–22 May 2020; (d) distribution
of accumulated rainfall in Shenzhen throughout 2019; (e) maximum 30 min rainfall distribution
in Shenzhen from 21:00 to 23:00 on 11 April 2019. Where (c–e) were derived from the Shenzhen
Climate Bulletin.

As of the end of 2019, the city had a built-up area of 927.96 km2, an urban population of
13.438 million, and an urbanization rate of 100%. It is the first fully urbanized city in China.
Recently, Shenzhen has become a national economic center and a national innovation
city with rapid urban development. However, due to its unique geographical location,
population density, and social conditions, severe weather such as strong convection, low
temperature and rainfall, tropical cyclones, thunderstorms, and heavy rain frequently
occur, causing serious economic losses.

As a result of climate change, the rainfall pattern in Shenzhen has changed consid-
erably, the frequency of heavy rainfall has increased, and multiple climate risks such as
heavy rains, floods, and typhoons have been superimposed, which will increase the risk
of future urban floods. In 2019, the temporal and spatial distribution of precipitation is
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extremely uneven, the precipitation is concentrated in stages, and the rain is strong. The
city’s annual average rainfall is 1882.9 mm. Figure 1c,d respectively display two typical
rainstorm events. The heavy rain on 11 April 2019, lasted just one hour and 42 min, with a
maximum rainfall of 65.5 mm. The maximum one-hour rainfall on 22 May 2020 reached
153.7 mm, setting a new record [30]. Shenzhen is a typical and representative city, so it was
selected as a study area for assessment of flood risk impacts under climate change, which
will be of great reference significance for other cities in China to cope with climate change.

3.2. Data Sources

CMIP6 is the sixth stage of CMIP. It has the largest number of experimental models,
the most complete experimental design, and the largest amount of data simulation since
the implementation of the CMIP plan [50]. This study used six global climate models
from ScenarioMIP, i.e., the scenario model comparison program of CMIP6 (Table 1), with
different spatial resolutions for each model; more details can be found at https://esgf-
node.llnl.gov/search/cmip6/, accessed on 20 April 2021.

Table 1. Global climate model information.

Serial Number Model Name Country Institution Resolution

1 BCC-CSM2-MR China Beijing Climate Center (BCC) 1.125◦ × 1.125◦

2 CanESM5 Canada Canadian Centre for Climate modelling and
analysis (CCCma) 2.81◦ × 2.81◦

3 CMCC-CM2-SR5 Italy Euro-Mediterranean Center on Climate
Change (CMCC) Foundation 1◦ × 1◦

4 FGOALS-g3 China Chinese Academy of Sciences (CAS) 2.3◦ × 2◦

5 IPSL-CM6A-LR France Institut Pierre Simon Laplace (IPSL) 1.26◦ × 2.5◦

6 MPI-ESM1-2-LR Germany Max Planck Institute for Meteorology
(MPI-M) 1.5◦ × 1.5◦

The data in this study were historical experimental data from 1953 to 2014 and simu-
lated data from 2020 to 2100 under four combined scenarios (SSP1-2.6, SSP2-4, SSP3-7.0,
and SSP5-8.5), where SSP1-2.6 was the updated CMIP5 RCP2.6 scenario in CMIP6, which
represents the combined effects of low vulnerability, low mitigation pressure, and low ra-
diative forcing; SSP2-4.5 is the updated CMIP5 RCP4.5 scenario in CMIP6, which represents
a combination of moderate social vulnerability and moderate radiative forcing. SSP3-7.0
was a new radiative forcing scenario in CMIP6, representing a combination of high social
vulnerability and relatively high anthropogenic radiative forcing, which is important for
IAM and climate change impact, mitigation, and adaptation (IAV) studies; SSP5-8.5 is
the updated CMIP5 RCP8.5 scenario in CMIP6 and was the only shared socioeconomic
pathway to achieve an anthropogenic radiative forcing of 8.5 W/m2 by 2100.

In order to assess the simulation capability of climate variables output from the
climate model for the historical reference period (1953–2014), the measured daily-scale
precipitation data of Shenzhen Station from 1953 to 2020, which were derived from the
China Meteorological Data Network (http://data.cma.cn/site/index.html, accessed on
20 April 2021), were used as the benchmark in this study.

3.3. Analysis Method
3.3.1. Extreme Precipitation Index Method

We selected 11 of the 15 extreme precipitation index indexes determined by the Expert
Team on Climate Change Detection and Indices (ETCCDI) [51] (http://etccdi.pacificclimate.
org/docs/ETCCDMIndicesComparison1.pdf, accessed on 20 April 2021), which are de-
scribed in detail in Table 2. The extreme precipitation index was calculated based on the
RclimDex 1.0 model, and the linear trend analysis method and the P test method were used
to calculate the inter-annual change trends and to determine the significance of each index,
the change characteristics of the extreme climate index were then analyzed.

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
http://data.cma.cn/site/index.html
http://etccdi.pacificclimate.org/docs/ETCCDMIndicesComparison1.pdf
http://etccdi.pacificclimate.org/docs/ETCCDMIndicesComparison1.pdf
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Table 2. Definitions and classifications of extreme precipitation indicators.

Type Index Code Index Name Definition Unit

Intensity Index

R95p Very wet days Annual total PRCP when RR > 95th
percentile Mm

R99p Extremely wet days Annual total PRCP when RR > 99th
percentile mm

RX1day Max 1-day precipitation amount Monthly maximum 1-day
precipitation Mm

Rx5day Max 5-day precipitation amount Monthly maximum consecutive
5-day precipitation Mm

PRCPTOT Annual total wet-day
precipitation

Annual total PRCP in wet days
(RR ≥ 1 mm) mm

SDII Simple daily intensity index
Annual total precipitation divided

by the number of wet days (defined
as PRCP ≥ 1.0 mm) in the year

Mm/day

Duration Index
CDD Consecutive dry days Maximum number of consecutive

days with RR < 1 mm Days

CWD Consecutive wet days Maximum number of consecutive
days with RR ≥ 1 mm Days

Frequency Index

R10 Number of heavy precipitation
days

Annual count of days when
PRCP ≥ 10 mm Days

R20 Number of very heavy
precipitation days

Annual count of days when
PRCP ≥ 20 mm Days

R25 Number of days above 25 mm
Annual count of days when

PRCP ≥ 25 mm, 25 is user defined
threshold

Days

3.3.2. Evaluation of Climate Model Simulation Results

Taylor graph method [52]: The Taylor graph method is a method proposed by Taylor
et al. to evaluate the similarity between two datasets. It also considers the correlation
coefficient (COR), relative standard deviation (RSTD), and standard root mean square
error (RMSD) between the two datasets. Furthermore, because these three values have
a mathematical transformation relationship, they can be comprehensively displayed in
the same graph, so as to compare the similarity between the two datasets more intuitively.
In this paper, the simulation capabilities of different climate models were described by
the Taylor diagram. For the set of simulated climate variables, X, and the set of observed
climate variables, Y, the calculation methods of each statistic are as follows.

COR(X, Y) =
∑ n

i=1
(
X− X

)(
Y−Y

)√
∑ n

i=1

(
X− X

)2
∑ n

i=1

(
Y−Y

)2
(1)

RSTD(X, Y) =

√√√√ n

∑
i=1

(
X− X

)2(
Y−Y

)2 (2)

RMSD(X, Y) =
√

RSTD(X, Y)− 2× RSTD(X, Y)× COR(X, Y) + 1 (3)

If the RSTD of simulated and observed values of climate variables is smaller and
the COR is larger, the RMSD is smaller, thereby indicating a better fitting ability of the
climate model.

MR (Metrics Rating) comprehensive evaluation [53]: In order to further evaluate the
comprehensive simulation capability of each climate model, the COR, RSTD, and RMSD
of the simulated and observed values of each extreme precipitation index were counted
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separately, with a total of 33 indicators, and the calculated comprehensive simulation
capability of each climate model was ranked.

MRj = rank
(

1−
∑ n

i=1ri j

n×m

)
(4)

Here, rij is the descending ranking of the simulation ability of climate models for
individual indicators; m is the number of models (taken as 26); n is the number of evaluation
indicators (taken as 18); and rank is the descending ranking of the comprehensive simulation
ability of climate models. Note that the higher the ranking, the stronger the comprehensive
simulation ability of extreme precipitation indices.

Comprehensive simulation scoring [54]: Based on the comprehensive evaluation
results of climate models, the optimal MME average method was adopted to reduce the
uncertainty of the simulation results of a single climate model. In order to determine the
optimal number of models, a comprehensive simulation scoring index (CSS) that also
considers the COR and RSTD between the simulated and observed extreme precipitation
index values was adopted. The formula is as follows.

CSS =
(1 + COR)2(

RSTD + 1
RSTD

)2 (5)

The larger the CSS, the better the performance of the climate model, and vice versa.
In summary, based on the background investigation of the urban flood risk in Shen-

zhen, this paper analyzed the changes in historical precipitation and the impacts of major
floods in Shenzhen during the past 68 years. In addition, based on CMIP6 data, we com-
prehensively evaluated the simulation capability of different climate models for extreme
precipitation in Shenzhen. On this basis, we preferably selected models for ensemble
averaging, predicted the change characteristics of extreme precipitation in Shenzhen in the
21st century (2020-2100), and proposed a resilience strategy for integrated urban flood risk
management. Figure 2 presents the technical roadmap of this paper.

Figure 2. Overall research framework (see Table 2 for definitions and classifications of extreme
precipitation indicators).
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4. Results and Discussion
4.1. Analysis of Historical Precipitation Evolution in Shenzhen
4.1.1. Changes in Measured Precipitation in Shenzhen

Based on the measured precipitation data of the Shenzhen Station, annual and monthly
precipitation in Shenzhen from 1953 to 2020 were determined. The change in precipitation
is shown in Figure 3. The redder the color, the more rainfall, and the bluer the color, the
less rainfall. The mean monthly rainfall in Shenzhen was 160.8 mm, and the maximum
monthly rainfall was 1395.3 mm, with rainfall mainly concentrated in April-September
(accounting for 85.11% of the annual rainfall). Extreme rainfall mainly occurred in June.

Figure 3. Interannual variation of precipitation in Shenzhen.

To better understand the evolutionary characteristics of extreme precipitation in
Shenzhen, the annual precipitation in Shenzhen from 1953 to 2020 was calculated by
ranking frequency, as shown in Figure 4. Statistically, 50% of the extremely wet and
extremely dry years (i.e., years with an empirical frequency < 10% and an empirical
frequency > 90%, respectively) occurred after 2000, indicating that extreme precipitation
events have not only intensified in recent years but that their frequency has also increased
and humans are facing more extreme climate challenges. In addition, three typical years
were selected according to the cumulative frequency, namely, dry, normal, and humid
years, which were 1963, 2002, and 2001 (empirical frequencies were 98.55%, 50.0%, and
1.45%, respectively). The accumulated precipitation in a drought year was 911.9 mm (i.e.,
51.58% less than a normal year) and the lowest precipitation occurred in winter. Therefore,
attention should be paid to the prevention and control of winter droughts. The cumulative
precipitation in the wet year was 2747 mm (i.e., 45.9% more than in a normal year) and the
highest daily precipitation in 2001 occurred on 27 June. Due to the influence of the low
pressure trough in June, as of 27 June 2001, the cumulative rainfall in Shenzhen in June had
reached 925.2 mm, breaking not only the 50-year historical record of 790.9 mm in June, but
also the 50-year historical record of 826.2 mm of cumulative rainfall in a single month, with
repeated heavy rainfall events [55].

The highest precipitation occurred in 2001 and 2008; however, the social and economic
losses from heavy rains and floods were quite different. The empirical frequency of
precipitation in 2001 was 1.45% and the second extremely wet year was 2008 with an
empirical frequency of 2.90%. Although slightly more precipitation fell in 2001 than in 2008,
flood damage was much greater in 2008 than in 2001, as shown in Table 3. From 13–14 June
2008, there was continuous heavy rainfall in Shenzhen. The rainfall was concentrated,
with a wide range and high intensity. The recurrence period of heavy rain exceeded 1-in-
100 years. More than 1000 waterlogging or flooding events of various degrees occurred
throughout the city. The heavy rain caused more than 70 houses to collapse, 5 people
were killed, 3 people went missing, and the direct economic loss equated to approximately
500 million yuan [56]. From 29–31 August 2008, there was an historically rare period of



Atmosphere 2021, 12, 537 9 of 21

three consecutive days of extremely heavy localized rainfall, during which the maximum
12 h rainfall (333.9 mm), the maximum 24 h rainfall (417.2 mm), and the maximum 48 h
rainfall (486.9 mm) all exceeded the previous August rainfall records. The city saw several
reservoirs exceeding the flood control limit, several severe waterlogging, many traffic and
power supply disruptions, landslides, and other dangerous situations [57]. This may be due
to the fact that more extreme precipitation events occurred in 2008 than in 2001, in addition
to the fact that the natural water circulation system was altered by the urbanization of
Shenzhen, resulting in poor drainage and the occurrence of urban flooding problems with
severe losses. This phenomenon also reflects the need to study extreme precipitation events.

Figure 4. Empirical frequency ranking of precipitation in Shenzhen (a) and daily and cumulative
precipitation in extreme dry, normal, and extreme wet years (b).

Table 3. Comparison of heavy rainfall disasters in Shenzhen in 2001 and 2008 [58].

Disasters Caused by Floods 2001 2008

Affected population/million people 0.050 37.873
Number of dead (missing) 1 21

Collapsed house/room 0 88
Direct economic loss/billion yuan 0.3050 12

4.1.2. Time Series Evaluation of Historical Extreme Precipitation Indices in Shenzhen

Based on the meteorological data of Shenzhen Station from 1953 to 2020, the extreme
precipitation index was calculated through RclimDex1.0 software using the least squares
and local weighted regression method to analyze the time series changes of 11 extreme
precipitation indices at Shenzhen Station in the past 68 years. As can be seen from Figure 5,
all indices showed similar fluctuation trends in the time series, with biases in the 1960s
and early 21st century. Among the 11 precipitation indices, PRCPTOT, SDII, CDD, R10,
and R20 showed increasing trends; however, these trends were not significant, indicating
that the extreme precipitation at Shenzhen Station did not change considerably during
1953–2020, and that precipitation showed a weakly increasing trend. Although the intensity
of precipitation decreased, the number of consistently dry days decreased, the number
of consistently wet days increased, and the frequencies of light and heavy rainfall also
increased, indicating that extreme wet events were became more frequent during the
68 years from 1953 to 2020, leading to urban flooding, flash floods, mudslides, inundation
of factory farmland, etc. The disasters caused by extremely heavy precipitation are often
severe, and the risk of flash flooding has further increased.



Atmosphere 2021, 12, 537 10 of 21

Figure 5. Linear trend and curve fitting of the extreme precipitation index (EPI) in Shenzhen. (a) R95p;
(b) R99p; (c) Rx1day; (d) Rx5day; (e) PRCPTOT; (f) SDII; (g) CDD; (h) CWD; (i) R10; (j) R20; and
(k) R25 (see Table 2 for definitions and classifications of extreme precipitation indicators).

4.2. Preferred Climate Model for Shenzhen and Prediction of Future Trend of Extreme
Precipitation Index
4.2.1. Taylor Diagram-Based Simulation Evaluation

In order to objectively evaluate the simulating capabilities of the six climate models
for Shenzhen’s extreme precipitation index, in this paper we counted the 11 extreme
precipitation indexes simulated by each climate model during the climate reference period
and compared them with actual observations. The horizontal and radian axes of the
figure indicate the RSTD and COR of the simulated values relative to the measured values,
respectively, while the concentric circles surrounded by green dashed lines indicate the
standard RMDS of the simulated values relative to the measured values, and the red dots
indicate the fitting ability of different climate models for extreme precipitation, respectively.

From Figure 6, it can be seen that in terms of fitting ability, all the models had poor
fitting ability for different extreme precipitation indices. Specifically, for the 11 extreme
precipitation indices, the temporal CORs of most of the models were less than 0.3. In terms
of RSTDs, the standard deviations and mean deviations of the six climate models were
relatively large, which indicates that the interannual fluctuations of the 11 extreme pre-
cipitation indices were overestimated to different degrees by the six climate models, thus
making the fitting deviations significantly larger. From the comparison of the fitting ability
of different models, BCC-CSM2-MR and MPI-ESM1-2-LR were superior for each index,
with relatively large CORs; however, the deviation of BCC-CSM2-MR remained large, and
CanESM5 had the smallest COR, a large RSTD, and the worst simulation effect. The fitting
ability of the other different models for each index was relatively close, at a medium level.
Considering that the average of MME simulations works more effectively for most of the
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individual model results, this study used MR ranking and MME averaging for model
preference for extreme temperature prediction, which has been widely accepted in other
related studies [59,60] and can further improve its fitting ability.

Figure 6. Taylor diagram of extreme precipitation index simulated by different climate models.
(a) R95p; (b) R99p; (c) Rx1day; (d) Rx5day; (e) PRCPTOT; (f) SDII; (g) CDD; (h) CWD; (i) R10; (j) R20;
and (k) R25 (see Table 2 for definitions and classifications of extreme precipitation indicators).

4.2.2. Preferred Extreme Precipitation index Model in Shenzhen

Optimal MME averaging can improve the simulation capability of climate models
by offsetting the errors between different models and reducing the uncertainty of the
simulation results of individual climate models [61,62]. In order to determine the optimal
models set, this paper statistically ranked the scores of six climate models for different
extreme precipitation index time fitting abilities from 1953 to 2020 based on COR, RSTD,
and RMSD, and plotted the ranking results of different climate models, as shown in Figure 7
(note: For a certain extreme precipitation index, the COR, RSTD, and RMSD are indicated.)
The final ranking of the best to worst models for the integrated simulation of extreme
precipitation indices was BCC-CSM2-MR > PI-ESM1-2-LR > GOALS-g3 > PSL-CM6A-LR
> MCC-CM2-SR5 > CanESM5. In addition, despite the differing sets of better and worse
models for different indices, there remains a strong similarity, indicating that the assessment
results of the climate models obtained by the MR composite score can be applied to each
extreme precipitation index.

Finally, we used the comprehensive simulation scoring index (CSS) to confirm the
number of optimal modes to be selected for MME; the larger the comprehensive simulation
scoring index (CSS), the stronger the simulation ability. As can be seen from Figure 8, with
the increase in the number of models, the overall simulation ability of MME for different
extreme precipitation indices showed a trend of initially increasing and then decreasing.
Therefore, according to the ranking of the comprehensive simulation capabilities of each
model, we finally selected the optimal number of models for the arithmetic average, and
obtained the result of the MME average. That is, for one mode that performs well, we
selected the BCC-CSM2-MR modes for evaluation, such as R95p, R99p, Rx1day, Rx5day,
PRCPTOT, SDII, R10, R20, and R25 indices. For the three modes that performed well,
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we selected the pooled mean of the BCC-CSM2-MR, MPI-ESM1-2-LR, and FGOALS-g3
modes, such as the CDD and CWD indices from Table 4, and it can be seen that the MME
averaging results eventually improved the fitting ability of the extreme precipitation indices
to some extent.

Figure 7. MR score ranking of climate model simulated extreme precipitation index (see Table 2 for
definitions and classifications of extreme precipitation indicators).

Figure 8. Trend of fitting effect of MME average simulated extreme precipitation index (see Table 2
for definitions and classifications of extreme precipitation indicators). CSS—comprehensive simula-
tion scoring.

Table 4. Statistical characteristics of the fitting effect of the MME average simulated extreme precipitation index (see Table 2 for
definitions and classifications of extreme precipitation indicators).

R95p R99p Rx1day Rx5day PRCPTOT SDII CDD CWD R10 R20 R25

Correlation
coefficient 0.15 −0.04 0.20 * 0.26 * 0.30 * 0.26 * 0.05 0.16 0.30 * 0.31 * 0.33

Standard deviation 0.44 0.47 0.44 0.38 0.43 0.31 0.46 0.89 0.74 0.62 0.60
Standard root

mean square error 1.02 1.12 1.01 0.97 0.96 0.96 1.07 1.23 1.05 0.99 0.98

Note: * indicates that the data passed the p < 0.05 significance level test.

4.2.3. Trend Analysis of Future Extreme Precipitation Indices in Shenzhen

Figure 9 shows the relative changes of 11 extreme precipitation indices in Shenzhen
under different future scenarios. Relative to the mean value of the indices in the base
period of 1953–2020, very wet days (R95p) show a significant decreasing trend in the
future; however, the extremely wet days (R99p) increase by means of 17.24%, 15.01%,
25.18%, and 31.94%, under the four scenarios, respectively. The occurrence of flooding
is closely related to the precipitation intensity, and an increase in extremely wet days
(R99p) in the future is likely to lead to an increase in flood risk and geological hazards.
Among the 11 indexes, the maximum 1 d precipitation amount (Rx1day) and the maximum
5 d precipitation amount (Rx5day) have the largest increases, indicating that the extreme
precipitation values in the future reflect climate change most significantly. The relative
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changes in the three frequency indices show that R25 > R20 > R10, that the number of heavy
and stormy days will increase significantly in the future, and that the more concentrated
the precipitation, the greater the possibility that flooding will occur. In addition, both
CDD and CWD indices show insignificant trends in the future; however, they will increase
by 0.31% and 0.10%, respectively, under the ssp5-8.5 scenario, indicating that droughts
and floods may increase simultaneously in the future under the high discharge scenario.
In addition, the annual total wet-day precipitation and simple daily intensity index are
both positive, and the overall trend is weakly increasing. Comparing the relative rate
of change of each index under the four emission scenarios, the relative change increases
sequentially from SSP1-2.6 to SSP5-8.5. The increase of each index is larger in the high
emission scenario, and the risk of socio-economic disasters caused by extreme rainfall in
the future will increase accordingly.

Figure 9. Relative changes in the extreme precipitation indices in Shenzhen under different scenarios
(see Table 2 for definitions and classifications of extreme precipitation indicators).

Figure 10 shows the change series of 11 extreme precipitation indices under four
future scenarios. It can be seen that the extreme precipitation indices in Shenzhen will show
fluctuating changes in the future, among which the fluctuations in the number of extremely
wet days, maximum daily precipitation, and heavy rainstorm days are large, indicating
that extreme precipitation will tend to be unstable in the future. Unlike temperature, the
precipitation elements do not change significantly under different future scenarios. For
Shenzhen, R99p, Rx1day, Rx5day, R20, and R25 will be the most important influencing
factors for the occurrence of flooding events in the future, especially R99p, Rx1day, and
Rx5day, with maximum values of 1166.59 mm, 792.25 mm, and 992.53 mm, respectively.
The Rx1day peak does not necessarily correspond to the Rx5day peak. It indicates that the
impact of maximum 1 d precipitation amount on the overall maximum 5 d precipitation
amount total is small, and that the increased occurrence of heavy precipitation events
in the future and the short confluence time of floods caused by heavy precipitation will
likely trigger flash floods, damage roads, inundate farmland, and cause considerable
economic losses due to flooding. By the end of the 21st century, the numbers of days of
moderate and heavy rain under the SSP5-8.5 scenario will increase by 16.93% and 29.33%,
respectively, indicating that future rainfall will increase, mainly exhibiting increases in
moderate and heavy rain, and that the growth trend is more significant than the growth
trend of daily maximum precipitation. The extreme precipitation index does not change
significantly under the SSP2-4.5 scenario, while there is a more pronounced overall upward
trend relative to SSP5-8.5, indicating a greater likelihood of future extreme precipitation
events under this scenario. Although the CDD, CWD, PRCPTOT, and SDII indices do not
have a wide range of fluctuations, they all show overall increasing trends. In summary,
extreme precipitation events will increase in the future, and the possible precipitation risk
in Shenzhen will also increase. In this context, there is an urgent need to improve the flood
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warning system in Shenzhen to reduce flood risks and losses, to enable the city to better
cope with climate change.
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4.3. Main Measures to Cope with Climate Change Risks in Shenzhen

With the intensification of climate change, extreme weather events will be more
frequent in the future. If Shenzhen is negatively affected by heavy rainfall and flooding
for a long time period, it will not only cause huge economic losses to the city, but will also
seriously threaten urban security. In the face of the increasingly serious flood situation,
especially in high-density urbanized areas, flood prevention and drainage should be further
applied as rigid constraints for urban construction based on the rigid water resource
constraints. The key to integrated urban flood risk management is sponge city construction
and urban resilience enhancement. In order to better cope with climate change and reduce
climate risks and flood losses, on the basis of systematic assessment of climate risks in
Shenzhen combined with the current situation of extreme precipitation risks and future
prediction results, we propose an integrated urban flood risk management resilience
strategy in terms of smart city construction, smart water utilities, sponge city construction,
and system improvements.

4.3.1. Strengthening Smart City and Smart Water Utilities Construction

From the predicted results of the extreme precipitation index in Shenzhen, it is ex-
pected that the intensity of heavy rainfall will continue to reach new maximum levels,
relying on natural ecological storage and purification methods is difficult to “absorb” the
rain. Urban construction in Shenzhen should take into account the whole process of the
natural-social water cycle. Not only can it effectively mitigate the impact of urban flood
disasters but it can also consider water ecological protection and flood resource reuse.
Spatial planning and land-use adjustment should enhance the spatial flood resilience of
the city and realize the resource utilization of rainwater [63].
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On 12 July 2018, the Shenzhen Municipal People’s Government approved and is-
sued the “Overall Plan for the Construction of a New Type of Smart City in Shenzhen”,
which specifies the working ideas and overall objectives, general framework, construction
principles, implementation mechanism, and key projects, and guarantee measures for the
construction of a smart city [64]. The Overall Plan states that Shenzhen should construct a
new integrated smart city and develop a new national type of smart city benchmark city of
world-class standard.

The construction of smart cities plays a crucial role in a cities’ response to climate
change [65–67]. In the face of urban flooding, digital means are used to empower urban
drainage situation management, comprehensive scheduling and control of road traffic, and
management of emergencies. This allows the realization of the prediction of crises, the
management of emergency scheduling, and the rapid formulation of response measures
to minimize disaster losses and improve a cities’ response to climate risks. Smart water
utilities can improve the lack of information perception in water security, build business
systems (such as smart basin management, smart reservoir area, water diversion project
management, whole process management of water projects, water administration and law
enforcement, and a joint scheduling model of multiple water sources, etc.). This will enable
realization of the intelligent support provided by information technology for water security
and other businesses in Shenzhen and provide information security for the completion of
key water services such as water quality control and river chief system management [68].

4.3.2. Promotion of Sponge City Construction

Due to the increased frequency of extreme precipitation events and the increased
risk of urban flooding in the future, urban construction in Shenzhen faces additional
requirements to cope with extreme weather. In view of this, the implementation of the
sponge concept and resilience strategy and the construction of a sponge city that integrates
water system management and flood control functions will greatly improve the current
waterlogging prone situation of urban flooding and the urban ecological environment [69].
Sponge cities is a new generation of urban rainwater management concept, and refers
to constructing cities to act like a sponge. This is achieved through strengthening urban
planning and construction management, make the building, road and green space, water
system and other ecosystems produce effect on rainwater absorption, storage, and slow
release, and effective control of rainwater runoff, to realize the natural accumulation,
infiltration and purification of rainfall in urban areas. Sponge cities are resilient in adapting
to environmental changes and responding to natural disasters caused by rainwater and
can also be referred to as “water-resilient cities” [70].

Shenzhen became one of the second batch of national sponge city pilot cities in 2016,
and in January 2019, the Shenzhen Planning and National Resources Committee released
the “Shenzhen Sponge City Construction Special Planning and Implementation Plan (Op-
timization)”. The plan specifies that the overall goal is to minimize the impact of urban
development and construction on the ecological environment through the construction of
sponge cities and the comprehensive adoption of measures such as “seepage, retention,
storage, purification, use, and discharge”. In this context, the use of the internet, cloud com-
puting, big database, artificial intelligence, and other emerging information technologies
can also promote information regarding sponge cities. On the basis of the existing various
types of water-related information management system, combining remote sensing big
data and a spatio-temporal intelligence model, which will be integrated into the wisdom of
the city cloud computing center, disaster risk warning, rainfall and flood storage, ecological
environment monitoring, and other multi-functional integration, play a comprehensive
and integrated ecological wisdom system services [71–73].

4.3.3. Engineering and Non-Engineering Measures

Cheng et al. conducted research in the Taihu Lake Basin and found that the urban
flood risk could, in theory, be mitigated by improving flood control and drainage standard,
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such as the construction of flood control projects [74]. However, there is a threshold of the
flood control and drainage standard, and when the standard is greater than this threshold,
the cost will increase significantly; however, the flood control benefit is lower than the
input cost [75,76]. Therefore, according to this feature, the present study proposes the
following two measures:

1. Flood standard ≤ once in 50 years: Risk control as the main measure.

Improving urban flood resilience must be achieved by taking engineering and non-
engineering measures to resist, absorb, and adapt to flood risks. Furthermore, in order
to maintain urban structure and function, engineering measures (such as strengthening
regional pumping capacity) and non-engineering measures (such as improving flood
control planning) must be taken to enhance the responsiveness of cities to resist, absorb,
and adapt to flood risks.

Engineering measures: These mainly rely on the construction or improvement of the
engineering standards of urban drainage systems and flood control and drainage systems
to treat and remove urban rainwater (mainly including urban rivers, municipal drainage
pipelines, drainage pumping stations, dikes, sluices, reservoirs, etc.). It is also possible to
increase the water storage capacity of cities by building sponge cities.

Non-engineering measures: These mainly include strengthening risk management,
improving forecasting and early warning capabilities, improving flood control standards
and related regulations, raising public awareness, and building smart water services and
smart cities. Among them, strengthening risk management requires governments at all
levels to improve the mechanism and system, and to improve the level of risk management
in terms of three aspects: (1) Strengthening the government’s comprehensive coordination
and command, promoting departmental collaboration and linkage, and encouraging social
forces to participate; (2) improving forecasting and early warning capabilities by estab-
lishing an independent flood forecasting and early warning system to forecast the flood
characteristics of urban rivers based on the rainfall and water conditions in the upstream
basin, and make scientific decisions; (3) improving flood control and drainage standards
and related laws and regulations, i.e., unifying urban drainage standards and water conser-
vancy drainage standards, and restricting and sanctioning economic and social activities
that are not conducive to flood control and disaster mitigation through mandatory codes
of conduct; (4) finally, the flood risk awareness and flood risk prevention capabilities of the
society should be improved, and public participation in flood risk management should
be strengthened. Redesigning the organizational structure enhances the flexibility and
adaptability of the organization, and improves the flexibility of the system to adapt to
various uncertain disturbances.

2. Flood standard > once in 50 years: Consider risk transfer.

There is a threshold value for engineering measures to reduce climate risk losses, and
the cost effectiveness of engineering measures decreases sharply when the standard of flood
control reaches > 50 years, which requires transferring flood risks through market-based
means such as catastrophic insurance (i.e., flood insurance). Although insurance itself
cannot reduce disaster losses, on the one hand it can relieve the government’s economic
pressure on flood relief, and on the other hand it can indirectly play a role in regulating
urban flood prevention and mitigation [77,78].

Urban flood insurance is one of the main measures of urban flood risk management.
The risks it bears mainly have three characteristics, as follows: (1) Non-eliminability—the
risk of flooding can be reduced at a limited cost, but the risk is not completely elimi-
nated; (2) relative predictability—compared with catastrophes such as earthquakes and
tsunamis, flood disasters occur with a certain frequency and are, therefore, more control-
lable; (3) catastrophic characteristics—although urban flood disasters themselves have
certain controllability, urban flood disasters still have the common characteristics of catas-
trophes with concentrated risk, high unpredictability, and huge losses [79].
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At the same time, urban flood insurance also has two major attributes [80]: Insura-
bility: region-specific and frequent flood risks are not strictly insurable risks. Therefore,
flood insurance must be based on the regional flood control facilities reaching certain
standards and ensuring a large insurance coverage in order to better comply with the
accomplishment of large numbers of insurance and have a strong insurability; quasi-public
product attributes: urban flood insurance is a product with obvious public welfare and high
social benefits, but which also has a private product nature, i.e., it is a quasi-public product.
This characteristic determines that flood insurance cannot be carried out by commercial
insurance companies alone, and that its implementation must implement a government-led
or government and market combined mechanism.

5. Conclusions

Based on the background investigation of the flood disaster risk in Shenzhen city, this
paper analyzed the historical precipitation changes and the impact of major flood disasters
in Shenzhen in recent decades. Using the six kinds of model data of the sixth stage scenario
MIP of the CMIP6, we predicted the climate change trend of Shenzhen from 2020 to 2100.
Further, on this basis, we proposed measures for cities to deal with future flood threats.
The main findings were as follows:

1. The mean monthly rainfall in Shenzhen is 160.8 mm, and the maximum monthly
rainfall is 1395.3 mm. Rainfall is mainly concentrated from April to September,
during which the rainfall in Shenzhen Station accounts for 85.11% of the annual
rainfall. Extreme rainfall mainly occurs in June. During the period from 1953 to
2020, extreme precipitation at Shenzhen Station changed insignificantly, and the total
amount of precipitation showed a weakly increasing trend. Although the intensity of
precipitation decreased, the number of persistently dry days decreased, the number
of persistently wet days increased (though not significantly), and the frequencies of
light and heavy rainfall increased. These results indicated that extreme wet events
were more frequent and that the risk of heavy rainfall and flooding increased from
1953 to 2020.

2. The MR composite score shows that the models with the best to worst ability to
simulate extreme precipitation indices in Shenzhen are BCC-CSM2-MR > PI-ESM1-
2-LR > GOALS-g3 > PSL-CM6A-L > MCC-CM2-SR5 > CanESM5. The series of
extreme precipitation index changes under the four scenarios indicate that future
precipitation will tend to be unstable. Except for the R95p index, which shows a
significant decrease in the future, other extreme precipitation indexes will generally
increase. R99p, Rx1day, Rx5day, R20, and R25 will be the most important factors
leading to flood events. In the future, extreme weather events will increase, and the
risk of precipitation in Shenzhen will also increase.

3. The causes of flooding in Shenzhen are multifaceted, complex, and comprehensive.
The weather process of short-duration heavy precipitation is the direct meteorological
factor triggering flooding in Shenzhen, and the drainage capacity is the key factor for
the occurrence of flooding. Specific resilience strategies for integrated urban flood risk
management include strengthening the construction of new smart cities, promoting
smart water utilities, and sponge city construction. In addition, risk control is the main
measure when the flood standard is ≤ once in 50 years. When the flood standard is
> once in 50 years, the main consideration is to transfer the flood risk by market-based
means such as catastrophic insurance.
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