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Abstract: The Typical meteorological year (TMY) database is often used to calculate air-conditioning
loads, and it directly affects the building energy savings design. Among four kinds of TMY databases
in China—including Chinese Typical Year Weather (CTYW), International Weather for Energy Calcu-
lations (IWEC), Solar Wind Energy Resource Assessment (SWERA) and Chinese Standard Weather
Data (CSWD)—only CSWD is measures solar radiation, and it is most used in China. However, the
solar radiation of CSWD is a measured daily value, and its hourly value is separated by models. It
is found that the cloud ratio (diffuse solar radiation divided by global solar radiation) of CSWD is
not realistic in months of May, June and July while compared to the other sets of TMY databases. In
order to obtain a more accurate cloud ratio of CSWD for air-conditioning load calculation, this study
aims to propose a method of refining the cloud ratio of CSWD in Shanghai, China, using observed
solar radiation and the Perez model which is a separation model of high accuracy. In addition, the
impact of cloud ratio on air-conditioning load has also been discussed in this paper. It is shown that
the cloud ratio can yield a significant impact on the air conditioning load.

Keywords: TMY database; CSWD; cloud ratio; observed solar radiation; perez model;
air-conditioning load

1. Introduction

The development of meteorological data for the air-conditioning load calculation is
currently a subject of study in many countries. Global emissions of carbon dioxide (CO2),
which is the main cause of global warming, had been increased by 0.6% in 2018, reaching an
all-time high of 36.8 billion ton in 2019. The growth of global emissions in 2019 was almost
entirely due to China, which increased its CO2 output by 0.26 Gt CO2 [1]. In China, as the
economy grows, the energy supply per person becomes scarce. According to the China
Climate Change Info-Net (CCCIN), it is known that China’s CO2 emissions accounted for
a relatively large proportion of the world’s CO2 emissions, about 30% in 2016 [2]. Carbon
emissions of building and construction industry in China reached 115 billion kg in 2012
and contributed 3.4% to the country’s emissions [3]. Therefore, it is important to estimate
the average annual energy consumption and CO2 emissions of buildings [4]. For this task,
many standard year weather data sources are used to be input into simulation software
such as EnergyPlus [5] that is used worldwide and New HASP/ACLD-β that is often
used in Japan [6]. Thus, the accuracy of those Standard Year Weather Data determines the
accuracy of the building energy consumption and CO2 emissions calculations.

Among the various parameters in meteorological databases, solar radiation is consid-
ered one of the most important for a classification of the sky conditions, which fluctuate
from clear to overcast sky, and establishing an appropriate radiance model from experimen-
tal data is often required. Thus, many models have been developed to analyze and separate
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the components of solar radiation in order to achieve the purpose of air-conditioning design
and energy savings. An equation of the sky radiance distribution from clear sky to overcast
sky, as functions of the cloud ratio and the atmospheric clearness index, was proposed by
Brunger and Hooper [7]. Moon and Spencer proposed a luminance distribution model of
overcast sky [8]. This overcast sky model was simplified and has been recommended as the
CIE standard overcast sky by CIE [9]. The homogeneous sky to show absolute values of
sky luminance distribution was proposed by Kittler [10]. This study suggested methods to
identify the indicatrix and gradation characteristics by specific trace circle measurements
on the sky vault, and it proposed provisional relations expressing their dependence on the
illumination turbidity factor of the atmosphere. Perraudeau classified sky conditions into
five categories and proposed an equation of sky luminance distribution [11]. Perez et al.
proposed the all-weather model as functions of sky clearness and sky brightness by which
all skies were classified into eight categories [12].

With calls for further reduction of CO2 emissions and energy conservation, the ac-
curacy of Standard Year Weather Data should be improved for air-conditioning load
calculation, which is directly related to energy conservation of buildings. Four kinds of typ-
ical meteorological year (TMY) database developed by different organizations are usually
used in China [13]: Chinese Typical Year Weather (CTYW), International Weather for En-
ergy Calculations (IWEC), Solar Wind Energy Resource Assessment (SWERA) and Chinese
Standard Weather Data (CSWD). Among these TMY databases, only in CSWD—which is
the most used in China—is daily solar radiation directly estimated from experimental data,
while in the remaining TMY databases, such quantity is evaluated from the observation of
other meteorological parameters, such as temperature and relative humidity, through some
solar irradiance models. Because each TMY database uses different models to calculate the
solar radiation, there will be some differences in solar radiation among these four kinds of
TMY database. By comparing the four TMY databases in Shanghai, China, it was found
that the cloud ratios (which are defined as diffuse solar radiation divided by global solar
radiation) of CSWD for the three months from May to July are relatively lower than the
other three TMY databases. Thus, it is questioned if the solar radiation components of the
CSWD database may have some accuracy problems, with a correspondence decrease in
air-conditioning load calculation accuracy.

Focusing on the solar radiation of CSWD in Shanghai, China, a method is proposed to
refine the cloud ratio of CSWD by using the actual observed solar radiation in Shanghai,
including diffuse solar radiation and global solar radiation, and an empirical solar radiation
separation model [14]. In addition, the influence of cloud ratios on air conditioning load is
also discussed using a typical glass building simulation in this paper.

2. Materials and Methods
2.1. Solar Radiation of Standard Year Weather Data in Shanghai

Table 1 shows characteristic of solar radiation of four TMY databases in China. Using
the four TMY databases in Shanghai, the monthly cloud ratios of four TMY databases in
Shanghai have been calculated and summarized in Figure 1. We can see that the monthly
cloud ratio of CSWD in Shanghai is approximately 0.20 lower than that of the other three
kinds of TMY database in the three months from May to July, and the monthly cloud ratios
of CSWD in the three months have almost the same value of about 0.4. Additionally, a study
by Lu et al. [15] showed that the recorded daily global irradiance of CSWD in Shanghai on
three days of TMY (12 May, 10 July and 9 October) was zero, and it is considered unrealistic.
Thus, the accuracy of solar radiation of CSWD in May, June and July is being questioned.



Atmosphere 2021, 12, 524 3 of 17

Table 1. Summary of four TMY database to derive solar radiation in China.

Items Measured Elements Measured Interval Interpolation Methods

CSWD Daily global solar radiation Daily

Hourly sequence values are estimated by Collores-Perein
and Rabl model [16], and diffuse and direct solar radiation
are separated according to the sky conditions: Clear sky is
separated by Liu and Jordan formula [17]; Cloudy sky is
separated by Hayagawa formula [18]; Overcast sky: No

direct radiation

CTYW Temperature, cloudiness,
relative humidity Every 3 h

Temperature, total cloud amount, relative humidity and
wind speed as the input elements are interpolated to hourly
values, based on the observation solar radiation data of one
year and using least squares fitting to estimate the formula

for the solar radiation in each location. The diffuse and
direct solar radiation are separated using Zhang’s

Gompertz function [19]

IWEC Sky cover, aerosol optical
depth, etc. Every 3 h

Sky condition of clear sky is interpolated and derived by
METSTAT model [20], and the sky condition of cloudy sky

is derived and corrected by Kasten model [21].
The diffuse and direct solar radiation are separated using

Perez model [14]

SWERA Sky cover, aerosol optical
depth, etc. Every 3 h Followed METSTAT model [20]
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Figure 1. Calculated monthly cloud ratios among four kinds of TMY database in Shanghai, China.

2.2. Cloud Ratio of Solar Radiation in Japan

With the aim of verifying the error of the cloud ratio of CSWD database, eight major
regions (Sapporo: 141.21◦ E, 43.03◦ N; Aomori: 140.44◦ E, 40.49◦ N; Akita: 140.06◦ E,
39.43◦ N; Tokyo: 139.45◦ E, 35.41◦ N; Nagoya: 136.54◦ E, 35.11◦ N; Osaka: 135.29◦ E,
34.41◦ N; Fukuoka: 130.23◦ E, 33.35◦ N; Kagoshima: 130.33◦ E, 31.36◦ N) of Japan, which is
a neighboring country of China, were selected because these selected regions implemented
actual observations of solar radiation. The cloud ratios for the eight selected regions of
Japan were calculated by using the Expanded AMeDAS Weather Database of Japan [22].

The calculated monthly cloud ratios for the eight main regions of Japan are shown in
Figure 2. Results show that the monthly cloud ratios for the eight regions change around
0.55 in the three months from May to July.
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Figure 2. Comparison of monthly cloud ratios among eight main sites of Japan.

2.3. Sky Condition Classification

In order to put another argument against CSWD accuracy for the months of May, June
and July in Shanghai, China, the sky conditions are classified into five states depending
on the clear sky index (Kc) and cloudless index (Cle) by Igawa et al [23]. The Kc index is
defined based on the global solar radiation, and the Cle index is defined based on the global
solar radiation and diffuse solar radiation. The matrix of sky condition classification is
shown in Figure 3. The sky conditions are tentatively classified into five categories: (1) clear
sky conditions (sky index (Si) ≥ 1.7); (2) near clear sky conditions (1.7 ≥ Si > 1.5); (3) inter-
mediate sky conditions (1.5≥ Si > 0.6); (4) near overcast sky conditions (0.6 ≥ Si > 0.3); and
(5) overcast sky conditions (Si 5 0.3). The sky index (Si) is calculated as “Si = Kc + Cle0.5”.
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The indices of Kc and Cle are calculated by using Kasten’s formulation [24]. The
formulation to derive Kc and Cle is shown as follows:

Kc = Ig/Ig0 (1)
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m = 1/(cosγ + 0.50572 × (96.07995 − γ)−1.6364) (2)

Ig0 = 0.84 × Ic/m × exp(−0.027 × TL × m) (3)

Cle = (1 − Ce)/(1 − Ces) (4)

Ce = Id/Ig (5)

Ces = 0.01299 + 0.07698 × m − 0.003857 × m2 + 0.0001054 × m3 − 0.000001031 × m4 (6)

where “Ig” is the global solar radiation [W/m2], “Ic” is direct solar radiation outside
atmosphere (;1.367 [W/m2]), “m” is the atmospheric path [-], “TL” is the Linke turbidity
factor (=2.5), “γ” is the solar zenith angle [deg], “Kc” is the clear sky index [-], “Ig0” is the
standard global solar radiation [W/m2], “Cle” is the cloudless index [-], “Ce” is the cloud
ratio [-], “Ces” is the standard cloud ratio [-], and “Id” is the diffuse solar radiation [W/m2].

Calculating the Kc and Cle of representative clear days (27 May, 29 June and 25 July) of
May, June and July for CSWD, it is shown that the calculated indices of Kc and Cle are 0.58
and 1.18 for 27 May, respectively; 0.62 and 1.06 for 29 June, respectively; and 0.70 and 1.10
for 25 July, respectively. The Cle index of the three representative clear days is out of sky
condition classification. In addition to these three representative clear days, it was found
that there are many other days that are also out of sky condition classification as shown in
Figure 3. Thus, it is considered that the solar radiation of CSWD may deviate from reality
in the three months from May to July.

3. Refinement to Solar Radiation
3.1. Observed Solar Radiation

With the purpose of refining the solar radiation of three months (May, June and
July) of CSWD, actual observation of solar radiation was carried out in Shanghai, China.
A pyranometer (as shown in Figure 4) was placed on the rooftop of a building of Tongji
University located in Shanghai, China to observe the global solar radiation and diffuse
solar radiation with a step of one-minute record. The rotary shielding band is applied to
cover the direct solar radiation of sunlight and observe the diffuse solar radiation with a
data interval of five minutes.
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As an example of the observed solar radiation data, Figure 5 shows the actual observed
global solar radiation and diffuse solar radiation with one-minute intervals from January
to September (the data for the three months from October to December is not completed
due to instrument failure), 2011 in Shanghai, China. The monthly average cloud ratios of
the solar radiation from January to September were calculated using the solar radiation
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data so obtained. It is shown that all nine months have cloud ratios of above 0.5, and the
results are also larger than the value of the CSWD database from May to July.
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Figure 5. Actual observed solar radiation (diffuse irradiance and global irradiance) from January to September, 2011 in
Shanghai, China; please note that the observation that zero values of irradiance in the figures correspond to night hours.

A representative day was selected from each month (Jan. to Sep.) as the analysis
object, and the daily average cloud ratios, Kc and Cle, of selected relatively clear days from
each month (Jan. to Sep.) were calculated using the Equations (1)–(6) above, and the results
are recorded in Figure 6. We can see that all indicators of Kc and Cle on these days are
within the sky condition classification (as shown in Figure 3) proposed by Igawa et al [23].
Thus, we can conclude that these observed solar radiations can be trusted for modifying
the cloud ratio of CSWD database.

Figure 7 shows the comparison of monthly cloud ratios from January to September
between observed solar radiation and CSWD in Shanghai. It is indicated that the monthly
average cloud ratios calculated by observed global solar radiation and diffuse solar radia-
tion vary from 0.5 to 0.63, and they are about 0.15 larger than that of CSWD in the three
months from May to July. There is almost no difference compared to the other months.

The observation solar radiation in this paper is only a single year’s data for Shanghai,
thus we considered the fact that data exposed in this section are just indicative for a low
accuracy concerning CSWD cloud ratios data for the town of Shanghai, China.
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Figure 6. Daily cloud ratios, Kc and Cle of a relatively clear day selected from each month (from January to September) in
Shanghai, China.
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3.2. Introduction of Perez Model

The research by Soga et al [25] compared a lot of solar radiation separation models and
indicated that the “Perez model” [14] has a high separation accuracy compared to other
solar radiation separation models; thus, this study adopts the “Perez model” to separate
the diffuse and direct solar radiation from global solar radiation.

The equations of solar radiation separation involved in the Perez model are shown in
the following:

I = Idisc · X (Kc′, Z, W, ∆Kc′) (7)

Idisc = Ic · [Knc − {A + B · exp(C · m)}] (8)

Knc = 0.866 − 0.122m + 0.0121m2 − 0.000653m3 + 0.000014m4 (9)

If, Kc ≤ 0.6, then,
A = 0.512 − 1.56Kc + 2.286Kc2 − 2.22Kc3 (10)

B = 0.37 + 0.962Kc (11)

C = −0.28 + 0.932Kc − 2.048Kc2 (12)

If, Kc > 0.6, then,
A = −5.743 + 21.77Kc − 27.49Kc2 + 11.56Kc3 (13)
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B = 41.40 − 118.5Kc + 66.05Kc2 + 31.9Kc3 (14)

C = −47.01 + 184.2Kc − 222.0Kc2 + 73.81Kc3 (15)

where “I” is the direct solar radiation, “Idisc” is the direct solar radiation estimated by the
DISC model proposed by Maxwell [26], “X (Kc′, Z, W, ∆Kc′)” is a coefficient function of the
four insolation condition parameters, “Kc” is the ratio of global to extraterrestrial irradiance
on a horizontal plane, “m” is the atmospheric path as defined in Equation (2) of Section 2.3,
and “Ic” is the normal incident extraterrestrial solar radiation.

Kc = Ig/(Ic · sinZ) (16)

Kc′ = Kc/(1.031·exp(−1.4/(0.9 + 9.4/m)) + 0.1) (17)

where “Kc′” is the clearness index, “Ig” is the global solar radiation, and “Z” is the solar altitude.

∆Kt′ = 0.5 · (|Kc′i − Kc′i + 1| + |Kc′i − Kc′i − 1|) (18)

where the subscripts i, i + 1, and I − 1 refer, respectively, to the current, the next, and the
previous hourly record. If the hourly record before or after is missing (for example, the
beginning or end of the day), ∆Kc′ may be expressed as,

∆Kc′ = |Kc′i − Kc′i ± 1| (19)

The precipitation “W” can be calculated by the dew-point temperature (Td), and it is
expressed as equation (20):

W = exp(0.07 · Td − 0.075) (20)

Table 2 shows the summary of the four insolation condition dimensions (solar zenith
angle “Z”, clearness index “Kc′”, stability index “∆Kc′”, and precipitation “W”).

Table 2. Bins used for four insolation condition dimensions X (Kc′, Z, W, ∆Kc′).

Bin #
Kc′ (-) Z (o) W (cm) ∆Kc′ (-)

from to from to from to from to

1 0.00 0.24 0 25 0 1 0.000 0.015
2 0.24 0.40 25 40 1 2 0.015 0.035
3 0.40 0.56 40 55 2 3 0.035 0.070
4 0.56 0.70 55 70 3 ∞ 0.070 0.150
5 0.70 0.80 70 80 0 ∞ ˆ 0.150 0.300
6 0.80 1.00 * 80 90 ** 0.300 1.000 *
7 0.000 1.000 ˆ

(ˆ) the highest “W” and “∆Kc′” bins incorporate all bins; they are used respectively when “W” and “∆Kc′” are not
available. (*) the values of “Kc′” above 0.87 should be considered suspect for sites below 1000 m elevation.

The database contains more than 58,000 records from 18 measurement stations at
15 sites in North US and EU.

3.3. Application of Perez Model for Refinement of Solar Radiation

In order to verify the accuracy of Perez model, the following work has been done in
this study.

Firstly, we used the Perez model to separate the diffuse solar radiation from global
solar radiation observed in Osaka, Japan and compared the diffuse solar radiation separated
by Perez model to the observed diffuse solar radiation. The result is shown in Figure 8.
We can see that there is a very high correlation coefficient (R2) of approximately 0.998,
almost no difference between the diffuse solar radiation estimated by the Perez model
and the observed diffuse solar radiation for a representative day in Osaka. Thus, it can be
considered that the accuracy of Perez model is reliable.
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Secondly, we used the Perez model to refine the solar radiation of the CSWD database
of three months from May to July. The solar radiation including direct and diffuse com-
ponents of three months (May, June and July) for the CSWD database are combined into
global solar radiation, and the combined global solar radiation is separated into diffuse
and direct solar radiation again by the Perez model.

Thirdly, we compared the diffuse solar radiation of the CSWD database separated by
the Perez model with the original diffuse solar radiation of CSWD.

3.4. Proposed Simple Refinement Method

Based on the observed solar radiation at the rooftop of Tongji University located in
Shanghai, China, a simple method was proposed to refine the solar radiation of three
months (May to July) for CSWD database.

The proposed simple refinement method is storied as the following steps, and shown
in Figure 9.

1st step: To calculate the hourly cloud ratio (Ce) of original solar radiation of the
CSWD database in three months, from May to July, using equation (5) “Ce = Id/Ig”. If the
calculated hourly cloud ratio (Ce) is more than 0.5, the diffuse solar radiation (Id) does not
need to be refined, and it will be directly added to the refinement solar radiation of the
CSWD database.

2nd step: To choose the hourly diffuse solar radiation (Id) when the hourly cloud ratio
(Ce) is less than 0.5, and to define it as “Id(Ce < 0.5)”.

3rd step: To summarize the hourly diffuse solar radiation (Id(Ce < 0.5)).
4th step: To calculate the refinement coefficient (K) by the following Equation (21),

{(∑Id - (∑Id(Ce < 0.5)) + (∑Id(Ce < 0.5) × K)} / Ig = 0.5 (21)

where “Ig” is the original hourly global solar radiation of the CSWD database [W/m2]; “Id”
is the original hourly diffuse solar radiation of the CSWD database [W/m2]; “Id(Ce < 0.5)”
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is the hourly diffuse solar radiation [W/m2], when “Ce“ is less than 0.5; and “K” is the
refinement coefficient [-].

5th step: To multiply the refinement coefficient (K) by the hourly diffuse solar radiation
(Id(Ce < 0.5)) extracted by the 2nd step.

Idr = Id(Ce < 0.5) × K (22)

6th step: To integrate the unrefined hourly diffuse solar radiation (Id) and refined
hourly diffuse solar radiation (Idr) of the CSWD database to yield a new refined hourly
diffuse solar radiation of three months from May to July.
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4. Results and Discussion
4.1. Comparison of Perez Model and Authors’ Proposed Simple Refinement Method

The daily cloud ratios of three representative days (27 May, 29 June and 25 July
in Shanghai) are calculated and compared among the original CSWD, Perez model and
authors’ proposed simple refinement method.

The results are shown in Figure 10. It is shown that the diffuse solar radiation separated
by the Perez model is approximately 90 W/m2 larger in 27 May, approximately 106 W/m2

larger in 29 June, and approximately 94 W/m2 larger in 25 July, while compared to that of
the original CSWD database. It is also shown that the difference between the Perez model
and the authors’ proposed simple refinement method is less than 10 W/m2, and almost
the same.

In addition, the daily cloud ratios are also calculated and compared among the three
databases (original CSWD, Perez model and authors’ proposed simple refinement method).
It is shown that the daily cloud ratio of the Perez model is approximately 0.11 higher in
27 May, approximately 0.10 higher in 29 June, and approximately 0.09 higher in 25 July,
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while compared to that of the original CSWD database. It is also shown that the difference
in cloud ratios between the Perez model and the authors’ proposed simple refinement
method is very small, only about 0.02.

By using the diffuse solar radiation of three months (from May to July) refined by
the Perez model and the authors’ proposed simple refinement method, the correlation
coefficient (R2) is calculated. The result shows a very high value of 0.997 (as shown in
Figure 11).
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Based on the above results, we can conclude that the authors’ proposed simple refine-
ment method can be used to refine the cloud ratio of solar radiation for the CSWD database.

4.2. Refinement to Solar Radiation of CSWD by Authors’ Proposed Simple Refinement Method

Using the proposed simple refinement method, the monthly cloud ratios of the original
CSWD database in three months from May to July are refined, and the result is shown in
Figure 12. It is shown that the monthly cloud ratio after refinement has increased by about
0.13 in May, has increased by 0.15 in June, and has increased by about 0.13 in July.



Atmosphere 2021, 12, 524 14 of 17Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 11. Correlation of diffuse solar radiation between the Perez model and the authors’ 
proposed simple refinement method in three months (from May to July). 

4.2. Refinement to Solar Radiation of CSWD by Authors’ Proposed Simple Refinement Method 
Using the proposed simple refinement method, the monthly cloud ratios of the orig-

inal CSWD database in three months from May to July are refined, and the result is shown 
in Figure 12. It is shown that the monthly cloud ratio after refinement has increased by 
about 0.13 in May, has increased by 0.15 in June, and has increased by about 0.13 in July. 

 
Figure 12. Refined monthly cloud ratios of the CSWD database in three months from May to July 
in Shanghai, China. 

5. Evaluation of Influence on Air-Conditioning Load of Buildings 
To evaluate the effect of the cloud ratios on the air-conditioning load of buildings, 

this study used an air-conditioning load calculation program, “New HASP/ACLD-β” [6], 
often used in Japan [27], to calculate the air-conditioning load of a glass building simula-
tion located in Shanghai, China. All parameters such as the incident solar radiation in-
cluding diffuse and direct solar radiation, cloudiness, solar reflectivity of exterior walls, 

Figure 11. Correlation of diffuse solar radiation between the Perez model and the authors’ proposed
simple refinement method in three months (from May to July).

Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 11. Correlation of diffuse solar radiation between the Perez model and the authors’ 
proposed simple refinement method in three months (from May to July). 

4.2. Refinement to Solar Radiation of CSWD by Authors’ Proposed Simple Refinement Method 
Using the proposed simple refinement method, the monthly cloud ratios of the orig-

inal CSWD database in three months from May to July are refined, and the result is shown 
in Figure 12. It is shown that the monthly cloud ratio after refinement has increased by 
about 0.13 in May, has increased by 0.15 in June, and has increased by about 0.13 in July. 

 
Figure 12. Refined monthly cloud ratios of the CSWD database in three months from May to July 
in Shanghai, China. 

5. Evaluation of Influence on Air-Conditioning Load of Buildings 
To evaluate the effect of the cloud ratios on the air-conditioning load of buildings, 

this study used an air-conditioning load calculation program, “New HASP/ACLD-β” [6], 
often used in Japan [27], to calculate the air-conditioning load of a glass building simula-
tion located in Shanghai, China. All parameters such as the incident solar radiation in-
cluding diffuse and direct solar radiation, cloudiness, solar reflectivity of exterior walls, 

Figure 12. Refined monthly cloud ratios of the CSWD database in three months from May to July in
Shanghai, China.

5. Evaluation of Influence on Air-Conditioning Load of Buildings

To evaluate the effect of the cloud ratios on the air-conditioning load of buildings, this
study used an air-conditioning load calculation program, “New HASP/ACLD-β” [6], often
used in Japan [27], to calculate the air-conditioning load of a glass building simulation
located in Shanghai, China. All parameters such as the incident solar radiation including
diffuse and direct solar radiation, cloudiness, solar reflectivity of exterior walls, structure
of building walls, operating condition of air-conditioning, etc. could be rewritten easily in
the New HASP/ACLD-β calculation program.

The air-conditioning load of the simulated building located in Shanghai, China was
calculated under the condition that the clear sky index (Kc) is fixed, and the cloudless index
(Cle) is varied by three patterns of 0.8, 0.9 and 1.0.
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Results (as shown in Figure 13) show that the air-conditioning load of the simulated
building will increase by approximately 10%, while varying the cloudless index (Cle) varies
from 1.0 to 0.8. Thus, it is considered that the change in cloudless index (or cloud ratio)
will strongly affect the air-conditioning load of buildings.
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6. Conclusions and Future Work

This study has pointed out the cloud ratios the CSWD database, which is defined as
the index of diffuse solar radiation divided by global solar radiation, shows smaller values
in the three months (May, June, and July) in Shanghai while compared to the other three
TMY databases (CTYW, IWEC, SWERA). The main reason that the smaller cloud ratio is
considered is because the diffuse solar radiation of the CSWD database is inaccurate. Thus,
with the aim of improving the accuracy of diffuse solar radiation in the CSWD database,
this study used the actual observed solar radiation in Shanghai, China for about one year
and proposed a simple refinement method to refine the diffuse solar radiation (or cloud
ratios) of the CSWD database. In addition, in order to verify the accuracy of the proposed
simple refinement method, this study also compared the results of the authors’ proposed
simple refinement method with that of the Perez model of high accuracy.

The obtained knowledge in this study is summarized as follows.

� By comparing the four TMY databases (CSWD, CTYW, IWEC, SWERA) often used in
China, it is shown that the monthly cloud ratio of CSWD in Shanghai is approximately
0.20 lower than that of the other three TMY databases in three months from May to
July, and the monthly cloud ratios of CSWD in the three months have almost the same
value, about 0.4.

� The monthly cloud ratios for the eight main sites of Japan were calculated and
investigated using the Expanded AMeDAS Weather Database. It is shown that the
monthly cloud ratios for the eight main sites of Japan are all above 0.5.

� The indices of Kc and Cle of representative days in May, June and July for CSWD
were calculated. It was verified that the calculated indices of Kc and Cle for chosen
representative days of May, June and July are out of sky condition classification.
Therefore, it is considered that the diffuse solar radiation of CSWD in the three
months may deviate from reality.
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� A solar radiation separation model, the “Perez model”, was used to separate the
global solar radiation into direct solar radiation and diffuse solar radiation. The cloud
ratios of CSWD separated by the Perez model were calculated and compared to that
of the original CWSD. It is shown that the cloud ratio of CSWD separated by the Perez
model is higher than that of the original CSWD, respectively for May, June and July.

� A simple refinement method was proposed by authors to refine the diffuse solar
radiation of CSWD. The diffuse solar radiation of CSWD was refined by a proposed
simple refinement method, and it was also compared with the Perez model of high
accuracy. It is shown that the correlation coefficient (R2) shows a very high value of
0.997. Thus, it can be concluded that the proposed simple refinement method could
be used to refine the diffuse solar radiation (or cloud ratios) of the CSWD database.

� The evaluation of influence on the air-conditioning load of a simulated building
located in Shanghai, China was carried out under three different conditions of the
cloudless index (Cle) with 0.8, 0.9 and 1.0. The result showed that the air-conditioning
load of a simulated building increases by approximately 10% while varying the
cloudless index (Cle) from 1.0 to 0.8. Therefore, it is considered that the change in
the cloudless index (or cloud ratio) will strongly affect the air-conditioning load
of buildings.

Future work will aim to observe the solar radiation in the other sites of China and
develop a more accurate TMY database for air-conditioning load calculation which is
directly related to building energy savings.
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