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Abstract: This study assesses the performance of historical rainfall data from the Coupled Model
Intercomparison Project phase 6 (CMIP6) in reproducing the spatial and temporal rainfall variability
over North Africa. Datasets from Climatic Research Unit (CRU) and Global Precipitation Climatology
Centre (GPCC) are used as proxy to observational datasets to examine the capability of 15 CMIP6
models’ and their ensemble in simulating rainfall during 1951–2014. In addition, robust statistical
metrics, empirical cumulative distribution function (ECDF), Taylor diagram (TD), and Taylor skill
score (TSS) are utilized to assess models’ performance in reproducing annual and seasonal and
monthly rainfall over the study domain. Results show that CMIP6 models satisfactorily reproduce
mean annual climatology of dry/wet months. However, some models show a slight over/under
estimation across dry/wet months. The models’ overall top ranking from all the performance
analyses ranging from mean cycle simulation, trend analysis, inter-annual variability, ECDFs, and
statistical metrics are as follows: EC-Earth3-Veg, UKESM1-0-LL, GFDL-CM4, NorESM2-LM, IPSL-
CM6A-LR, and GFDL-ESM4. The mean model ensemble outperformed the individual CMIP6 models
resulting in a TSS ratio (0.79). For future impact studies over the study domain, it is advisable to
employ the multi-model ensemble of the best performing models.

Keywords: CMIP6; rainfall; assessment; multi-model ensemble; North Africa

1. Introduction

Climate change is a major concern globally, particularly in the arid and semi-arid
regions such as North Africa. The changes in climate directly affect many socio-economic
activities. For instance, it affects agriculture, water availability and quality, energy, and
food security, limiting socioeconomic growth [1]. According to several studies [2–4], the
North African region is regarded as one of the climate change hotspots. Unfortunately,
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limited gauge stations hinder quantification and assessment of impacts of climate change
over the region.

To better understand climate change and its effects on the past, current, and future
environments, several tools have been employed to reproduce the climate patterns. One of
the main tools is Global Circulation Models (GCMs) of the Coupled Model Inter-comparison
Project (CMIP). Various phases of CMIP data can be found (CMIP—https://www.wcrp-
climate.org/wgcm-cmip [Accessed 10 December 2020]). The latest CMIP dataset that is
available for analysis is phase 6 (CMIP6 [5]). The CMIP6 models simulate the physics,
chemistry, and biology of the atmosphere, terrestrial, and oceans in fine detail. The CMIP6
dataset differs from its predecessors: CMIP5 and CMIP3 datasets, in links of forcing
scenarios and carbon emissions. The CMIP6 project uses an updated version of the coupled
global climate models, a new beginning year, and a novel set of Shared Socioeconomic
Pathways (SSP) scenarios [6].

Many studies have been conducted to assess the impact of climate change on the
Northern Africa region. Some studies focusing on the variability of the annual rainfall
and drought periods over the region have projected a decrease of annual rainfall between
2071 and 2100 over the Mediterranean by 20% compared to the period 1961–1990 [7–10].
Other studies [1,10–13] also reported that the annual rainfall over North Africa is likely
to decrease in future. Furthermore, according to Intergovernmental Panel on Climate
Change Fifth Assessment Report (IPCC AR5), the mean annual rainfall has decreased
over the northern Africa region, with an abrupt reduction noted from 1968 to date [14].
Liebmann et al. [15] reported that the region received low annual rainfall amounts, and
a downward trend. Massoud et al. [16] investigated the change of atmospheric rivers
(ARs) and rainfall over the Middle East and North Africa (MENA) region. According to
their study [16], the mean daily rainfall is projected to decrease by 15%–30% between 2070
and 2100. In a recent study, Almazroui et al. [17] investigated the performance of CMIP6
datasets over Africa and projected a steady reduction in rainfall over North Africa region
in the 21st century.

While numerous studies have projected a decrease in rainfall over the Mediterranean
region, few studies have delineated with precision the intensity, frequency or magnitude of
the projected decline. Moreover, the sub-regional divergent tendencies remain a source
of confusion to the relevant stakeholders over the region. To illustrate this, recent studies
(e.g., [18–20]) have observed an increase in rainfall over some regions of Morocco and
Tunisia. Such contradictory scientific opinions on the spatiotemporal variability of rainfall
in a region already under absolute water scarcity result into more uncertainty to the general
community. This situation calls for further studies that would accurately delineate the
possible future rainfall patterns over the water scarce region of MENA. The advent of
CMIP6 promises robust projections due to the advanced features that characterize the
model outputs akin to predecessor versions used to examine past climate patterns over
the North Africa. Presently, no regional study has investigated the performance of CMIP6
models in replicating or projecting the rainfall over the region in terms of their spatial and
temporal variability.

As a first step, this study seeks to evaluate the capability of 15 CMIP6 GCMs in
reproducing annual, seasonal and monthly rainfall patterns over the study region. The
best performing models will be utilized in examining the possible future climate patterns
for vigorous policy making and adaptations. The rest of the study is organized as follows:
description of the study region, data, and methods used are presented in Section 2. Section 3
outlines results and discussion, while Section 4 presents the summary and conclusion of
the study.

2. Materials and Methods
2.1. Study Domain

The study domain of the present work is confined with longitude 20◦ W and 38◦ E
and latitude 19◦ and 37◦ N (Figure 1). The climate of North Africa varies greatly between

https://www.wcrp-climate.org/wgcm-cmip
https://www.wcrp-climate.org/wgcm-cmip
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coastline and inner domains of the region. North Africa has a Mediterranean climate along
the coast, which is characterized by mild, wet winters and warm, dry summers, with plenty
rainfall of approximately 400 to 600 mm per year. Inland, the countries of North Africa
experience semiarid and arid desert climates, which are characterized by extremes in daily
high and low temperatures, little rainfall of about 200 to 400 mm per year for semiarid
areas and <100 mm per year for desert regions. The region is situated at the boundary of
the subtropics and mid-latitudes. The changes in rainfall over the domain are attributed to
different factors, such as the Hadley circulation and winter storms [16]. For instance, the
changes in Hadley circulation have led to the observed decline in rainfall over the study
due to the significant strengthening of Azores high pressure. Seasonal variability of rainfall
is mainly influenced by the formation and passage of cyclonic disturbances. Furthermore,
the spatial variability is due to the complex topography landscape [21,22]. Although the
study domain has 4 distinct seasons [2,22–26], this work will mainly focus on two seasons:
winter (December–February [DJF]) and summer (June–August [JJA]).

Figure 1. Geographical map of the study domain (North Africa), the division between the countries
is outlined by the black line.

2.2. Data

In this study, simulated data from 15 CMIP6 model simulations alongside their ensem-
ble were investigated. The choice for the model outputs was informed by the availability
of the CMIP6 models with complete first ensemble member (r1i1p1f1) at the time of analy-
sis. Moreover, the listed models were not sensitive to the other ensemble members. Our
initial analysis using the first three ensembles’ members for two randomly selected models
(NorESM2-LM and IPSL-CM6A-LR) indicated that the results were not sensitive to the en-
semble member selected, with no statistically significant difference between the ensemble
members and mean rainfall over North Africa. Details of the models used in this study
are summarized in Table A1. More information about CMIP6 models can be found in
Eyring et al. [5]. The model simulations were compared with two gauge derived gridded
datasets in the absence of quality rain-gauge observational datasets to minimize uncer-
tainty. The two datasets were Climatic Research Unit (CRU TS v. 4.04) [27], and the global
precipitation analysis products of the Global Precipitation Climatology Centre (GPCC)
version 2020 [28], for the period 1951–2014. For comparison, all datasets were initially
re-gridded to a standard resolution (2.81◦ × 2.81◦) of one of the participating models with
the lowest resolution. The interpolation was done using the bilinear interpolation method
to allow the evaluations to be made at an equal resolution.

2.3. Methods
2.3.1. Statistical Validation of CMIP6

The robustness of each CMIP6 model outputs and their ensemble was assessed at
annual, seasonal (i.e., DJF), and monthly time scales by comparing rainfall estimates
with the two gridded observations. In this work, the average of all CMIP6 dataset was
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considered as the ensemble mean. The annual and seasonal means were calculated from
monthly data. Furthermore, the mean climatological description is presented by showing
the spatial rainfall pattern of inter-annual variability. A student t-test was applied to
examine the significance of the difference between observations and the model datasets. A
typical significance level of 0.05 was employed. CMIP6 simulations were further evaluated
based on statistical analysis and validation. The performance measures are statistically
based and include the empirical cumulative density function (ECDF), Mean Bias (MB),
Root Mean Squared Error (RMSE), and coefficient of determination (R2). The measures are
defined in Equations (1)–(3);

MB =
∑n

i=1 D
n

− ∑n
i=1 S
n

(1)

R2 =

 ∑n
i=1
(

D − D
)(

S − S
)√

∑n
i=1
(

D − D
)2
√

∑n
i=1
(
S − S

)2

2

(2)

RMSE =

√
∑n

i=1(D − S)2

n
(3)

where S is the rainfall value acquired from the observation dataset; CRU, the D represents
the assessed value obtained from the CMIP6 rainfall dataset, while S and D are denote
the observed and the CMIP6 estimated mean values, respectively. The n is the number of
data pairs. Bias indicates how close the mean of CMIP6 is to the mean observed value. A
bias ratio closer to 0 indicates that CMIP6 rainfall estimate data is closer to observation
data and thus considered an ideal score. Root mean square error (RMSE) computes the
distance between estimated (CMIP6) and observed (CRU) measurements. It states how
concentrated the data is around the line of best fit; a measure of 0 is the optimal score. The
coefficient of determination (R2) quantifies the correlation between the CMIP6 models and
observations (CRU), with the value of R2 closer to 0 signifying no correlation whereas 1
denotes perfect correlation.

Spatial model performance is further assessed based on the Taylor diagram and Taylor
Skill Score (TSS) [29]. The approach has been widely used to assess the similarity between
different sets of data [29–31]. In this work, the Taylor skill score was employed to estimate
the performance of CMIP6 models reproducing the spatial rainfall patterns over North
Africa. The TSS is computed using Equation (4);

TSS = 4(1 + PC)2/[

(
σcmip

σobs
+

σobs
σcmip

)
(1 + PC0)

2] (4)

where PC is the spatial pattern correlation coefficient between the model outputs and
observation. The PC0 is the highest achievable (here, we set the threshold at 1). Also,
variables such as σcmip and σobs represent standard deviation of the simulated and observed
patterns, respectively. The score ~ 1 threshold value shows a perfect association between
models and observed whereas 0 expresses contrary model performance. Details about TSS
technique and its successful application in various studies (e.g., [32–35]).

2.3.2. Trend Analysis

The trend detection analysis was performed using the Modified Mann-Kendall (MMK)
test. The MMK test [36–38] is used to discern statistically significant decreasing or increas-
ing trend in time series against the null hypothesis of no trend [39–42]. The method did
not require the sample to conform to any specific probability distribution since it worked
well even with insufficient or abnormal values. Significance of the trend was tested at 5%
significance level. Z-score exceeding the magnitude of critical values (±1.96) at 5% signif-
icance level denotes a monotonic trend of rainfall events. The S value denotes variance,



Atmosphere 2021, 12, 475 5 of 25

which is used to calculate significance of the trend. Detailed equations of MMK can be
found in relevant literature [42–45]. The magnitude of the slope in models was assessed
using Theil-Sen Slope Estimator [46]. The methods were successfully applied in related
studies [34,44,47].

3. Results and Discussion
3.1. Annual Cycle

Structured assessment of climate models through estimation of observations is a
criterion to gaining confidence in climate analysis. Appropriate climate model evaluation
involves examining mean state, trends, variability, vital physical processes, and emergent
constraints [48]. In this study, the performance of CMIP6 models is examined based
on their capability to mimic regional mean annual climatology, trends, and inter-annual
variability. Figure 2 presents the annual rainfall cycle over North Africa. The climate of the
study domain is mostly characterized by dry anomalies with rainfall mostly experienced
during winter (DJF), while summer (JJA) is regarded as “hotspot” climate [23]. This is so
because the region experiences stronger warming of the regional land-based hot extremes
compared to the mean global temperature increase as defined by IPCC [49]. The dry
(JJA)/wet (DJF) seasons over the Mediterranean are mainly regulated by the north/south
oscillation of Azores anticyclone [21]. The observed annual cycle peak of the observation
is 23 mm/month in December, and the lowest amount was found between June and July
(4 mm/month). Some models satisfactorily simulate the peak season of regional rainfall
but fail to accurately mimic the rainfall pattern. This shows the models’ capability to
capture mechanisms influencing the local rainfall and the number of observed values by
the majority. This presents an optimistic simulation of regional climate patterns in a region
characterized by sparse gauge-based datasets.

In agreement with expectation, the multimodal mean ensemble adequately reproduces
the observed features than individual models. The ensemble mean performs best from
January to April and tends to overestimate the observed rainfall during the rest of the
year. Moreover, some individual models (i.e., BCC-CSM2-MR, CESM2-WACCM, and
NorESM2-LM) robustly reproduce the rainfall peaks while with varying rainfall amounts
reproduced (Figure 2). For instance, the CMIP6 dataset scored low values during the JJA
season. It is notable that EC-Earth3-veg scored the lowest rainfall value among the other
GCMs (<5 mm/month) between July and August. Interestingly, SAMO-UNICON and
CanESM5 are unable to accurately replicate the observed annual climatology in the North
Africa region. CNRM-CM6-1 and CNRM-ESM2-1 consistently overestimate the rainfall,
specifically between September and February, scoring an overestimated amount exceeding
5 mm/month. The performance of these two models was contrary to what they depicted in
a recent study [34] over Uganda, East Africa where they underestimated rainfall more than
all the other models. The large wet biases exhibited by CNRM-CM6-1 and CNRM-ESM2-1
calls for further studies to establish in depth understanding of the model performance in
a region that is classified as hot dry climate anomaly. Overall, nine models depicted an
overestimated annual cycle of regional rainfall out of the 15 participants (Figure 2). The
observed wet bias noted in most CMIP6 models could be attributed to the challenges arising
from the parameterization schemes which tends to capture more rainfall as compared to
the observed value [5]. This is despite new improvements such higher spatial resolution in
comparison to coarser resolution for CMIP5 [11], or changes in the physical processes and
biogeochemical cycles, among others [5].

Further analyses of spatial patterns of regional rainfall for monthly and seasonal
timescales are presented in Figures A1 and A3, respectively. The observed rainfall quantities
for monthly mean varies across the region from 0 to 50 mm/month, while DJF mean ranges
from 0 to 80 mm/season (Appendix B, Figures A1 and A3). The lowest monthly mean
rainfall is recorded over the arid region of southern North Africa, while high monthly
mean rainfall accrued over northern parts of the study region (Figures A1 and A3). Most
CMIP6 models tend to capture the observed patterns of rainfall distribution over the study



Atmosphere 2021, 12, 475 6 of 25

domain. The spatial variation of pluviometry over North Africa is primarily influenced
by anticyclone passage towards the south, giving way to the ocean disturbances to the
adjacent landmass [21]. The ensemble adequately estimated the rainfall across the entire
domain. In contrast, CESM2-WACCM, CESM2, and SAMO-UNICON show a moderate
overestimation of the rainfall amount across the south of the study domain ranging from 5
to 10 mm/month, while CanESM5, CNRM-CM6-1, and MRI-ESM2-0 depict slight rainfall
underestimation in mid and south of the domain (Figure A1). CNRM-CM6-1 and CNRM-
CM2-1 demonstrated a consistent overestimation of rainfall over the north of the study
area by 10–20 mm/month reaching an amount of 80 mm/month in some regions (Figure 1).
On the other hand, BCC-CSM2-MR, BCC-ESM1, CanESM5, CESM2-WACCM, CESM2,
EC-Earth3-veg, SAMO-UNICON, and UKESM1-0-LL models showed an underestimation
(10–20 mm/month) in the northern parts of the study domain. GFDL-CM4, GFDL-ESM4,
IPSL-CM6A-LR, and the ensemble mean, outperformed other models in estimating the
suitably observed monthly rainfall (Figure A1).

Figure 2. Annual cycle of mean monthly rainfall (mm/month) over North Africa for the period
1951–2014, of ensemble mean and Coupled Model Intercomparison Project phase 6 (CMIP6) mod-
els alongside Climatic Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC)
datasets. CRU is represented by thick black dots, GPCC by the thick green and ensemble by the
thick blue line. The highlighted rainfall rate in purple corresponds to the mean ± standard deviation
of the 15 Global Circulation Models (GCMs). The gray highlighted section represents the peak
rainfall season.

Likewise, seasonal patterns (Figure 3) show enhanced rainfall over northern parts,
similar to monthly patterns (Figure A1). However, more rainfall is simulated during DJF,
with the highest amount recorded in CNRM-ESM2-1 and CNRM-CM6-1. Remarkably,
SAMO-UNICON depicted pronounced underestimation over the entire domain with the
least amount of rainfall <15 mm/season (Figure 3). Overall, the best performing models
in seasonal rainfall simulations over North Africa are: CNRM-ESM2-1, CNRM-CM6-1,
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and GFDL-ESM4. Conversely, models that exemplify unsatisfactory performance over this
study region include SAMO-UNICON and CESM2.

Figure 3. Spatial distribution of December–February (DJF) mean rainfall for observations (CRU and GPCC), CMIP6 models,
and mean ensemble over North Africa during 1951–2014.

3.2. Trend Analysis

The trends were evaluated and tested for their significance and magnitude over North
Africa during 1951–2014. Table 1 shows the mean, slope, Z-score, and significance of linear
trend of annual and DJF rainfall for CRU, GPCC, and the CMIP6 models. The rainfall over
the region exhibits significant decreasing trends for annual and DJF season. CRU depicts
the significant decreasing trend with Z-score values of 2.32 during annual and DJF season,
whereas GPCC show significant decreasing trend during DJF (−2.32). These results agree
with past studies over the study area [2,50,51]. To illustrate, Giorgi and Lionello [2], found
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a pronounced decrease in rainfall, especially in warm season, with attributions pointing
to increased anticyclonic circulations that yields increasingly stable conditions. Only two
models: BCC-ESM1 and GFDL-ESM4, show a significant decrease during annual and
DJF season with Z-scores of −2.1 and −2.35, respectively. The mean ensemble shows an
insignificant decreasing trend in annual (seasonal) analysis with a Z-score of −1.05 (−1.16).

Table 1. Mean value, Modified Mann-Kendall trends, and Sen Slope values of Annual and DJF season over North African
during 1951–2014 using CRU and GPCC against CMIP6 models. * indicates significant trend at 5% significance level.

Model Annual DJF

Mean Z-Score Slope (mm/yr) Mean Z-Score Slope (mm/yr)

CRU 147.73 −2.03 * −0.22 60.20 −2.32 * −0.12
GPCC 154.50 −1.80 * −0.21 62.44 −2.06 * −0.13

BCC-CSM2-MR 166.76 0.42 0.04 47.15 0.6 0.04
BCC-ESM1 145.4 −2.1 * −0.23 43.9 −1.2 −0.07
CanESM5 156.45 −0.19 −0.02 37.23 0.11 0.01

CESM2-WACCM 122.35 −0.97 −0.12 39.52 −0.7 −0.06
CESM2 155.71 0.89 0.11 55.11 0.74 0.05

CNRM-CM6-1 185.38 0.94 0.18 64.37 −0.05 −0.01
CNRM-ESM2-1 172.55 0.38 0.06 80.92 −1.19 −0.11
EC-Earth3-Veg 122.78 0.46 0.03 51.26 0.9 0.05

GFDL-CM4 164.98 −1.01 −0.14 61.82 −0.82 −0.05
GFDL-ESM4 151.87 −0.83 −0.11 75.09 −2.35 * −0.17

IPSL-CM6A-LR 136.96 0.77 0.11 47.29 −0.23 −0.02
MRI-ESM2-0 173.54 0.33 0.08 60.17 0.6 0.04

NorESM2-LM 134.73 0.57 0.06 46.06 −0.61 −0.05
SAMO-UNICON 151.96 −0.76 −0.12 48.9 −0.41 −0.03

UKESM1-0-LL 151.41 −0.12 −0.02 59.12 0.18 0.01
Ensemble 154.95 −1.05 −0.04 55.59 −1.16 −0.02

Examination of the magnitude of the slope using Sen’s slope shows capability of
most models in reproducing observed trends satisfactorily (Table 1). Generally, models’
competence to reproduce the spatial variance and trends vary from one model to another
and from one-time slice to another. Nevertheless, the best performing models capable
of simulating annual temporal trends over North Africa can be summarized as follows:
BCC-ESM1, CESM2, GFDL-ESM2, and ensemble mean. Conversely, poor performing
models in mimicking the observed temporal trends include CNRM-CM6-1, EC-Earth3-Veg,
and CESM2-WACCM.

Further analyses of spatial trends based on Sen’s slope during annual and DJF are
presented in Figures 4 and 5, respectively. The observed datasets display a slightly decreas-
ing trend at −0.8 to 0 mm/year across the entire grids of study region. Remarkably, the
northern part of the study domain depicted much lower trend values of −1.0 mm/year
on annual and DJF season (Figures 4 and 5). Whereas most models satisfactorily simulate
temporal trends of annual and seasonal rainfall over North Africa, spatial tendencies
remain a challenge on an annual scale. Few models such as BCC-ESM1, GFDL-CM4, and
CNRM-ESM2-1 can reproduce observed trends. The majority of models show enhanced
positive variance of rainfall tendency in a region that has experienced an intense and
prolonged drought during the recent decades [52,53]. Due to the participation of diverse
models, the ensemble did not perform well in capturing the observed trend.
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Figure 4. Spatial difference of linear trends of annual rainfall of CMIP6 models and the ensemble mean over North Africa
during 1951–2014 alongside observation datasets (CRU and GPCC). Observations and mean ensemble are marked with
red color.

The significant decreasing rainfall trends observed in North Africa result from the
recent amplification of cyclonic circulation and northward alteration of the sequence of
cyclonic depression regions [2]. This has occasioned acute water shortage due to recurrent
droughts recorded over the recent decades [8]. Moreover, the continued decline of rainfall
observed has equally affected most of the economic activities, with communities shifting
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from traditional agricultural activities to long-distance trade. This illustrates how some
susceptible regions are forced to pursue drastic adaptive responses, including relocation
and societal structure changes [49]. Models that robustly exemplify the observed trends
presents promising future climate diagnostic and projections, unlike previous versions of
CMIP3 and CMIP5 that presented varying outcomes of historical patterns and projections
of North Africa climate [18,19,54].

Figure 5. Same as Figure 4 but for DJF season.
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3.3. Statistical Analysis
3.3.1. Student’s t-Test, Bias, Coefficient of Determination, RMSE, and ECDF Metrics

The skillfulness of CMIP6 models is determined by their capability to exhibit low
bias (<0), high R2 (1), and small RMSE (<0). Moreover, the ability of models to mimic
extreme rainfall events is examined based on the ECDF performance. Table 2 shows the
Student’s t-test analysis on monthly time scale between CRU and CMIP6 models. At
(p < 0.05), most CMIP6 models resulted in significant differences with the CRU, other than
BCC-CSM2-MR and UKESM1-0-LL. Figure A2 displays the spread in the biases simulated
by the CMIP6 models over the Northern African region for monthly rainfall against CRU
observations. Over the northwest of the study domain, CNRM-CM6-1 and CNRM-ESM2-1
reveal a positive bias range of 16 to 32 mm/month. In contrast, the remaining models
exhibit negative bias from 2 to 32 mm/month in the same area. Over the southern parts
of North Africa, SAMO-UNICON exhibits some high positive values across the desert
ranging between 8 to 16 mm/month. BCC-CSM2-MR, BCC-ESM1, CanESM5, CESM2-
WACCM, CESM2, CNRM-CM6-1, CNRM-ESM2-1, MRI-ESM2-0, UKESM1-0-LL, and the
mean ensemble depict positive bias values (2 to 8 mm/month). Meanwhile, EC-Earth3-Veg,
NorESM2-LM, GFDL-CM4, GFDL-ESM4, and IPSL-CM6A-LR slightly underestimate the
observed rainfall (0 to −2 mm/month). The summary of CMIP6 models spread with respect
to the observational datasets for mean bias is presented in Figure 6. The overall distribution
shows that most models tend to underestimate the observed rainfall, especially EC-Earth3-
veg, NorESM2-LM, and IPSL-CM6A-LR (around 75% of the distribution). Meanwhile,
the concentration of the bias distribution of CNRM-CM6-1, CNRM-ESM2-1 exhibits more
positive bias values (Nearly 75% of the distribution). GFDL-CM4 and the ensemble show
the best performance scoring a median value close to 0 mm/month, and their boxplot is
comparatively minimal.

Table 2. Summary statistical indices and skill score of CMIP6 model performance for monthly
temporal scale against CRU data over North Africa during 1951–2014, * represents significance
at 0.05.

Model R2 RMSE(mm) Bias (mm) T Stat TSS

BCC-CSM2-MR 0.41 5.78 0.56 1.62 0.67
BCC-ESM1 0.29 6.55 −0.98 −2.86 * 0.58
CanESM5 0.14 7.31 −1.96 −6.13 * 0.43

CESM2-WACCM 0.35 6.92 0.95 2.47 * 0.62
CESM2 0.36 6.69 0.8 2.11 * 0.64

CNRM-CM6-1 0.37 9.6 5.29 11.9 * 0.58
CNRM-ESM2-1 0.37 9.28 4.79 10.86 * 0.58
EC-Earth3-Veg 0.58 5.22 −1.26 −3.35 * 0.78

GFDL-CM4 0.49 6.44 1.85 4.6 * 0.70
GFDL-ESM4 0.45 7.08 2.87 7.16 * 0.68

IPSL-CM6A-LR 0.44 5.73 −0.97 −2.82 * 0.68
MRI-ESM2-0 0.36 7.95 3.21 7.83 * 0.61

NorESM2-LM 0.43 6.2 −2.05 −5.68 * 0.69
SAM0-UNICON 0.04 8.62 1.14 3.29 * 0.36
UKESM1-0-LL 0.52 5.96 0.23 0.58 0.72

Ensemble 0.66 4.36 1.23 3.69 * 0.79

Figure A3 shows the spatial coefficient of determination between CMIP6 models and
CRU over Northern Africa. Remarkably, most CMIP6 models depict low spatial correlation
across the entire study domain. CMIP6 models display some weakness in reproducing
the observed rainfall variability over North Africa. This could be attributed to the steady
moisture outflow due to amplified evapotranspiration, increased radiation, and minimal
cloud cover [55]. Across the northern part of the study area along the Mediterranean coast,
the ensemble depicts an enhanced R2 values with the observed data reaching (0.6) in some
grids. This could be associated with the presence of a large coastline that results in more
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convective activities leading to more rainfall. It is evident from Table 2 that the ensemble
demonstrates the most satisfactory R2 value (0.66), followed by EC-Earth3-Veg (0.58),
GFDL-CM4 (0.49), GFDL-ESM4 (0.45), and IPSL-CM6A-LR (0.44). Conversely, SAMO-
UNICON scores the lowest (0.04). A similar low correlation of SAMO-UNICON was also
found over the Yangtze River in China [56], and over Uganda, situated in the East Africa
region [45].

Figure 6. Rainfall bias between CMIP6 models and CRU dataset over North Africa, 1951–2014.

Figure 7 displays the boxplot of the coefficient of determination of CMIP6 models data
with respect to CRU observed data. In general, CMIP6 models exhibit a low correlation.
Most CMIP6 models depict low R2 ratio resulting in low median values. Interestingly, 75%
of R2 distribution of 14 CMIP6 models were below 0.1 ratio. Meanwhile, the ensemble
and IPSL-CM6A-LR model showed enhanced results. IPSL-CM6A-LR performance was
comparatively better than the other individual CMIP6 models scoring higher correlation
values. This performance is agreeing with the spatial R2 distribution (Figure A3), where
IPSL-CM6A-LR showed a moderate correlation over the southern of the study domain.
However, its median remained low (<0.1). The ensemble mean appears to show the most
enhanced performance scoring the highest median (0.04) despite depicting comparatively
a large spread in its distribution. The highest R2 value was scored by the mean ensemble
(0.66). The ensemble good performance was also found in Table 2 scoring the highest
temporal correlation of determination ratio (R2 = 0.66). Consistent with other studies, the
mean ensemble shows better performance due to the cancellation of systematic errors in
the individual models.
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Figure 7. Rainfall coefficient of determination between 15 CMIP6 models and CRU rainfall dataset over North Africa for the
period 1951–2014.

The spatial RMSE of mean monthly rainfall relative to CRU data over North Africa
from 1951 to 2014 is presented in Figure A4. The overall RMSE values results show
higher values (30 < RMSE < 80 mm/month) over the northwest of the study domain
featuring higher altitude topography. However, low values of RMSE of <10 mm/month
are noted over the low-lying areas characterized by arid and semi-arid land (ASAL).
CESM2-WACCM, CESM2, and SAMO-UNICON exhibit RMSE values between 10 and30
mm/month, which is considered higher compared to the monthly rainfall average observed
in this particular region. From Figure A4, the ensemble performs well, followed by IPSL-
CM6A-LR, NorESM2-LM, ECEarth3-veg, and UKESM1-0-LL. The results show that the
RMSE of most CMIP6 models varies in performance with variations to different climatic
features and topography. High RMSE is observed in high altitude with wet climate regions,
while low RSME is recorded in low altitude with dry climate anomaly.

Temporal patterns based on the boxplot of the RMSE distribution of CMIP6 data
akin CRU observed data are shown Figure 8. The general distribution of RMSE exhibits
different variation from one model to another. However, the concentration of RMSE
distribution for all GCMs is below 35 mm/month. Clearly, SAMO-UNICON shows the
weakest performance resulting in the high RMSE values and lengthiest spread of the
RMSE distribution. In addition, it results in the highest median value, followed by CNRM-
CM6-1 and CNRM-ESM2-1. On the other hand, the ensemble shows the most acceptable
performance among the models followed by NorESM2-LM, IPSL-CM6A-LR, and EC-
Earth3-veg. The enhanced performance of the ensemble was also found in Table 2 scoring
the lowest RMSE value (4.36 mm/month).
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Figure 8. Temporal RMSE (mm/year) of ensemble and CMIP6 models against CRU data over North Africa for the mean
monthly annual rainfall for the period 1951–2014.

3.3.2. Cumulative Density Function (ECDF) Analysis

The ECDF of mean monthly rainfall for GCMs obtained from CMIP6 models and
their ensemble average against two observational datasets of CRU and GPCC are shown
in Figure A5. The ECDFs depict the frequency of occurrence of anomalous rainfall on a
monthly distribution (mm/month). Most CMIP6 models overestimate the monthly rainfall
(Figure A5). The ensemble displayed similarity with the observed rainfall distribution from
22 to 41 mm with slight over/underestimation. CNRM-CM6-1, CNRM-ESM2-1, NorESM2-
LM, IPSL-CM6A-LR, and UKESM1-0-LL show large wet bias of rainfall between 27 mm to
54 mm/month. On the other hand, SAM0-UNICON, CanESM1 EC-Earth3-Veg, BCC-ESM1,
and MRI-ESM2-0 show dry bias ranging between 16 mm/month and 31 mm/month.

During DJF season (Figure A6), the ensemble underestimates rainfall when rain-
fall amounts < 52 mm/season, while it shows more agreement when rainfall surpasses
52 mm/season. Similarly, in the annual distribution, CNRM-CM6-1, CNRM-ESM2-1,
NorESM2-LM, IPSL-CM6A-LR, and GFDL-ESM4 overestimate the rainfall but with higher
amounts (27 to 58 mm/month). Furthermore, CanESM1, BCC-ESM1, SAM0-UNICON,
MRI-ESM2-0, BCC-CSM2-MR, and EC-Earth3-Veg depict underestimation. Contrary to the
monthly distribution, UKESM1-0-LL underestimates the observed rainfall. In contrast with
the monthly distribution, the DJF distribution shows more models underestimating the
rainfall. The ensemble performed the best from Figures A5 and A6, followed by CESM2
and CESM2-WACCM.
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3.3.3. Taylor Score and Ranking

Taylor diagram and skill score are employed to evaluate the general skill performance
of CMIP6 models reproducing the spatial rainfall pattern. Figure 9 displays the Taylor
diagram for annual rainfall climatology over North Africa based on CMIP6 models and
observations. The radial coordinate represents the magnitude of the standard deviation,
while the root mean square difference is illustrated using the concentric semi-cycle. The
angular coordinate shows the correlation coefficient between models and the observed
dataset; CRU.

Figure 9. Taylor diagram of fifteen CMIP6 models and CRU dataset over North Africa for the 1951
to 2014.

The analyses demonstrate that SAMO-UNICON, CanESM5, and BCC-ESM1 models
score low variability against CRU data. In contrast, CESM2-WACCM, UKESM1-0-LL,
GFDL-CM4, GFDL-ESM4, MRI-ESM2-0, and CNRM-CM6-1 exhibit high variability com-
pared to CRU observation. IPSL-CM6A-LR, NorESM2-LM, BCC-CSM2-MR, CESM2, and
EC-Earth3-Veg exhibit a close agreement in terms of rainfall variability relative to CRU.
SAMO-UNICON scored the weakest correlation (r = 0.2), and ensemble scored the highest
(r = 0.81). The remaining models reveal a correlation ratio between 0.4 and 0.76. In terms of
the centered RMSE, ensemble indicates a good performance resulting in a low centered
RMSE value (0.6). On the other hand, the highest value was scored by SAMO-UNICON,
which results in the most inferior performance compared to the other models.

Finally, model overall ranking is established using the Taylor skill score (TSS) metrics.
The TSS for the 15 CMIP6 models and their mean ensemble over North Africa are shown in
Figure 10. Principally, the TSS values closer to 1 depict better performance. The values of the
TSS for all the models are listed in Table 2. The ensemble outperforms the other individual
model recording the finest TSS score (0.79). Outstandingly, EC-Earth3-veg exhibited a
robust performance (0.78). Other models that performed better include UKESM1-0-LL
(0.72), GFDL-CM4 (0.70), NorESM2-LM (0.69), GFDL-ESM4 (0.68), IPSL-CM6A-LR (0.68),
BCC-CM2-MR (0.67), CESM2 (0.64), CESM2-WACCM (0.62), MRI-ESM2-0 (0.61), BCC-
ESM1 (0.58), CNRM-ESM2-1 (0.58), CNRM-CM6-1 (0.58), and CanESM5 (0.43), respectively.
The lowest TSS ratio was scored by SAMO-UNICON (0.36). The best performing models
will thus, be used to build an ensemble for future projection of the region’s possible climate
change scenario.
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Figure 10. Taylor skill score (TSS) and ranking of fifteen CMIP6 models and CRU dataset over North
Africa for 1951 to 2014.

4. Summary and Conclusions

In this study, 15 CMIP6 models were investigated over North Africa for their perfor-
mance in replicating rainfall. Their performance in reproducing the spatial and temporal
distribution of rainfall over the region was investigated against two observational datasets
of CRU and GPCC. In addition, prominent statistical metrics such as bias, RMSE, R2,
ECDF and Taylor skill score (TSS) are utilized to assess model performance in reproduc-
ing monthly and seasonal rainfall over North Africa domain. Results show that CMIP6
models satisfactorily reproduced mean annual climatology of dry/wet months. However,
some models showed a slight over/underestimation across dry/wet months. The mean
ensemble showed relatively good performance from the wet season.

In terms of the spatial distribution of rainfall, CMIP6 models captured both the gener-
ally wet and dry regions. However, they fail to reproduce the observed amounts well. It
was found that GFDL-CM4, GFDL-ESM4, IPSL-CM6A-LR, and ensemble showed a better
agreement with the observation reproducing the spatial rainfall variability. The trend test
results indicated that most CMIP6 models could reproduce the observed downward trend
of rainfall over the study region. However, few models showed an opposite. Due to the di-
verse performance of CMIP6 models, the mean ensemble could not reproduce the accurate
observed spatial trend. Most CMIP6 models showed a dry bias over North Africa (from 0
to 32 mm/month). Nevertheless, only CNRM-CM6-1 and CNRM-ESM2-1 depict wet bias
in the same region, reaching 32 mm/month. GFDL-CM4 and the ensemble revealed the
lowest values in terms of spatial spread-out of bias ratios across the study domain.

The spatial correlation between CMIP6 models and CRU indicates that the ensemble
outperformed the other models resulting in a high correlation (0.66), followed by EC-
Earth3-Veg with R2 of 0.58. The model’s overall ranking from all the analyses ranging from
mean cycle simulation, trend analysis, inter-annual variability, ECDFs, spatial patterns
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variability based on RMSE, bias, and R2 are as follows: EC-Earth3-Veg, UKESM1-0-LL,
GFDL-CM4, NorESM2-LM, IPSL-CM6A-LR, and GFDL-ESM4. The mean model ensemble
outperforms the other CMIP6 models resulting in a TSS ratio (0.79). On the contrary, the
lowest score was recorded by SAMO-UNICON (0.36). Following [57] recommendations,
the six-top ranked GCMs will be used to build an ensemble for impact analysis and future
projections of North Africa climate.
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Appendix A. List of Selected CMIP6 Models

Table A1. Description of the 15 CMIP6 models used in the current study over North Africa.

No Names Institution Resolution

1 BCC-CSM2-MR Beijing Climate Center (BCC) and China
Meteorological Administration (CMA), China 1.13◦ × 1.13◦

2 BCC-EM1
Beijing Climate Center (BCC) and China

Meteorological Administration
(CMA), China

2.81◦ × 2.81◦

3 CanESM5
Canadian Centre for Climate Modelling and
Analysis, Environment and Climate Change

Canada, Victoria, Canada
2.81◦ × 2.81◦

4 CESM2 National Center for Atmospheric Research, USA 1.25◦ × 0.94◦

5 CESM2-WACCM National Center for Atmospheric Research, USA 1.25◦ × 0.94◦

6 CNRM-CM6-1
Centre National de Recherches Météorologiques
(CNRM); Centre Européen de Recherches et de

Formation Avancéeen Calcul Scientifique, France
1.41◦×1.41◦

7 CNRM-ESM2-1 Centre National de Recherches Meteorologiques,
Toulouse, France 1.41◦ × 1.41◦

8 EC-EARTH3-Veg Consortium of European research institution and
researchers, Europe 0.70◦ × 0.70◦

9 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory
(GFDL), USA 1.25◦ × 1.00◦

10 GFDL-CM4 Geophysical Fluid Dynamics Laboratory
(GFDL), USA 2.50◦ × 2.00◦

11 IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris, France 2.50◦ × 1.26◦

12 MRI-ESM2-0 Meteorological Research Institute (MRI), Japan 1.13◦ × 1.13◦

13 NorESM2-LM Norwegian Climate Centre/Norway 1.875◦ × 2.5

14 SAM0-UNICON Seoul National University, Seoul 08826, Republic
of Korea 1.25◦ × 0.94◦

15 UKESM1-0-LL UK Met Office Hadley Center, UK 1.88◦ × 1.25◦
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Appendix B. Supplementary Figures

Figure A1. Spatial distribution of monthly mean rainfall for observations (CRU and GPCC), CMIP6 models, and mean
ensemble over North Africa for 1951–2014.



Atmosphere 2021, 12, 475 19 of 25

Figure A2. Monthly spatial bias of mean ensemble and CMIP6 models against CRU data over North Africa for 1951–2014.
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Figure A3. Spatial coefficient of determination (R2) of ensemble and CMIP6 models with CRU data over North Africa for
the mean monthly rainfall for the period 1951–2014.
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Figure A4. Spatial RMSE (mm/month) of ensemble and CMIP6 models against CRU data over North Africa for the mean
monthly rainfall for 1951–2014.
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Figure A5. Comparisons of the empirical cumulative distribution function (ECDF) of mean monthly rainfall from observa-
tions of CRU and GPCC against 15 CMIP6 models over North Africa for 1951–2014.
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Figure A6. Same as Figure A5 but for DJF season.
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