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Abstract: Municipal wastewater treatment plants (WWTPs) inside cities have been the major com-
plained sources of odor pollution in China, whereas there is little knowledge about the dose–response
relationship to describe the resident complaints caused by odor exposure. This study explored a dose–
response relationship between the modelled exposure and the annoyance surveyed by questionnaires.
Firstly, the time series of odor concentrations were preliminarily simulated by a dispersion model.
Secondly, the perception-related odor exposures were further calculated by combining with the peak
to mean factors (constant value 4 (Germany) and 2.3 (Italy)), different time periods of “a whole
year”, “summer”, and “nighttime of summer”, and two approaches of odor impact criterion (OIC)
(“odor-hour” and “odor concentration”). Thirdly, binomial logistic regression models were used to
compare kinds of perception-related odor exposures and odor annoyance by odds ratio, goodness of
fit and predictive ability. All perception-related odor exposures were positively associated with odor
annoyance. The best goodness of fit was found when using “nighttime of summer” in predicting
odor-annoyance responses, which highlights the importance of the time of the day and the time of
the year weighting. The best predictive performance for odor perception was determined when
the OIC was 4 ou/m3 at the 99th percentile for the odor exposure over time periods of nighttime
of summer. The study of dose–response relationship could be useful for the odor management and
control of WWTP to maximize the satisfaction of air quality for the residents inside city.

Keywords: air dispersion model; dose–response relationship; odor impact criterion (OIC); perception-
related odor exposure; wastewater treatment plant (WWTP)

1. Introduction

Municipal wastewater treatment plants (WWTPs) as important facilities for urban
management have been constructed fast in recent years in China [1]. Unpleasant smells
emitted from WWTP may cause both ecological and social problems. Odors are released
from pretreatment operations, such as screen and sand filter, primary settler, aeration
facility, and sludge de-watering unit in the WWTP. Odor complaints for WWTPs continue
to increase by surrounding residents in cities [2]. Although odors are commonly treated as
a kind of nuisance, rather than being considered a direct risk for human health, they affect
the quality of life and can even cause physical effects on human health [3].

There are many tools to assess odor pollution, some of which include observing
the current odor impacts or effects by measurement and monitoring, such as sensorial,
analytical, and combined-sensorial technique [4,5] or underlying empirical long-term
experiences by community assessment techniques [6,7]. In contrast, other tools make
use of a “model” to predict what the impact might be [8–10]. Nowadays, most odor
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assessment regulations all over the world were determined based on the application of
dispersion model [11]. In general, different types of models can be used to simulate the
dispersion of odorants into the atmosphere, such as empirical model, Gaussian model,
Lagrangian particle model and so on. One of the main advantages of Lagrangian particle
model is the ability to treat wind calms, it simulates the dispersion of the emitted odorants
with computational particles moving in the wind field and three-dimensional turbulence
field. [12,13].

Meanwhile, odor impact criterion (OIC) is a jurisdictional standard according to the
desired protection level of general population, which aims to compare with simulation
exposure in ambient air by air dispersion model [11]. Whereas the limit values of OIC
are highly variable in different countries, which related to the national habits, such as
0.25 ou/m3 at the 90th percentile for residential and mixed areas in Germany and 2 ou/m3

for residential areas in Manitoba Canada. This means that the transfer of OIC from other
jurisdictions is meaningfulness.

The definition of the OIC depends on several factors, collectively known as the FIDOL
factors (frequency, intensity, duration, offensiveness, and location) [14]. In many countries,
OICs were defined as the combination of odor concentration threshold (in ou/m3) and
exceedance probability (in %), also called percentile [15]. To mimic the odor sensation of
the human nose, short-time peak concentrations, which are derived from one hour mean
values simulated by dispersion models, can also be included in the criteria [16]. Besides,
many factors have been considered to more precisely represent odor annoyance, such
as hedonic tones, human psychosocial health, living quality, other environmental stress,
age, work, and so on [17]. Furthermore, odor might be perceived more often at specific
times, which represent the time of the day and the year can be weighted in odor episodes
regarding their annoyance potential [18].

Exposure-annoyance relationship is an important method to study OIC, which has
been analysed in industrial sources [19], livestock, agriculture or farming sources [20–23]
and other sources [24,25]. However, there is little knowledge of dose–response relationship
describing the resident complaints caused by odor exposure in China. In this work, six
odor emitting units of the WWTP were under measurement to identify the time series
of odor concentrations for the surrounding residents by an appropriate air dispersion
model. Peak to mean factors, temperature and daytime weightings were primarily taken
as confounders for coupling with odor concentrations, then two approaches (“odor-hour”
and “odor concentration”) of OIC were calculated to transform the time series of odor
concentration to the perception-related odor exposures. Meanwhile, community question-
naires were investigated from twelve urban regions surrounding the WWTP to obtain odor
annoyance. Dose–response relationship between the perception-related odor exposure
and the investigated annoyance was studied by binomial univariate logistic models. It is
noticed that the study of dose–response relationship should be useful to determine the OIC
for WWTP and other industries in the future.

2. Materials and Methods
2.1. Site Description and Its Surroundings

The study was conducted at a WWTP located in Northern China, and more precisely
in the region of Tianjin. The WWTP was identified as a possible source of nuisance
odors, influencing normal life of people living in this area. The distribution of odor
complaint incidents during 2017 was shown in Figure 1, derived from environmental
protection hotline “12369” of Tianjin, China. On this background, we decided to carry out
a specific study by determining a dose–response relationship to derive odor impact criteria
of the WWTP.
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Figure 1. The location of the wastewater treatment plant (WWTP) and twelve surrounding residential
areas (A–L). The yellow stars which located in seven residential areas (A), (C–G), and (J) represent
the major off-site locations of odor complaints. The distance between the boundary of plant and the
southwest corner of residential area K is about 1.2 km. WWTP: Municipal wastewater treatment plant.

The WWTP covered about 295,000 m2 and the designed treatment capacity was
400,000 m3/d. It collected wastewater from four administrative regions of Tianjin, served
a population of about 1.11 million and 730 enterprises. Six odor emitted units inside this
WWTP were selected for analysis. Twelve off-site locations of surrounding residential areas
were selected to evaluate odor impact.

2.2. Questionnaire Data Collection

Cross-sectional questionnaire data were obtained from twelve urban regions (Figure 1).
A total number of 126 persons were randomly selected and contacted by face-to-face in
June 2018. Adult residents (>18 years old) living more than 1 year as being representatives
were requested to anonymously participate in the study.

The questionnaire was developed based upon a number of prior investigations [26–28]
and consisted of two main sections. The first part included general socio-demographic data
(i.e., age, gender, address, and years living in the region), while the second part referred
to environmental stressors, including satisfaction of living environment and origin of
pollution (i.e., noise, traffic, catering, waste, sewage, or others). Regarding the unpleasant
smells of sewage, the questions included: degree of perceived odor intensity (estimated
using the 6-point scale, i.e., “0 = no odor”,”1 = very faint strength” ”2 = faint strength”,
“3 = moderate strength”, “4 = strong strength”, and “5 = very strong strength”), degree
of perceived odor annoyance (estimated using the 5-point scale, i.e., “0 = not annoyed”,
“1 = slightly annoyed”, “2 = moderately annoyed”, “3 = very annoyed”, and “4 = extremely
annoyed”), occurrence time (separated the time of the day into 5 periods, a multiple choice
question, i.e., in the morning, at noon, in the afternoon, in the evening, and in the middle of
the night), and occurrence season (a multiple choice question, i.e., spring, summer, autumn,
and winter).
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2.3. Odor Expoure
2.3.1. Sampling Campaign

The air samples were collected according to all odor emitting units of this WWTP,
including six treatment processes of screen, sand filter, primary settler, aeration tank,
secondary sedimentation, and sludge dewatering unit. Screen and sludge dewatering unit
are regarded as point sources, due to these two workshops are completely closed with
sealing measures, and the exhaust gas is discharged by chimneys. Sand filter, primary
settler, aeration tank, and secondary sedimentation units are regarded as area sources due
to the unsealed surfaces (Figure 1). The sampling campaigns were conducted for two
days of May and June respectively in 2018, during 8:00 to 18:00, and the total numbers of
samples were 24 during the investigation.

The odor samples from point sources were collected by the SOC-01 sampler with
“lung” principle (Tianjin Sinodour Environmental Technology Co., Ltd., China) and de-
posited to a 10 L bio-oriented polyester sample bag equipped with a Teflon TM inlet
tube [29]. The odor samplings on area sources were carried out by a wind tunnel system,
which consists of a PET hood positioned over the emitting surface. The wind tunnel has
a rectangular section inlet and outlet duct (0.042 m × 0.024 m). The central body of the
wind tunnel is a 0.5 m wide, 1.0 m long, and 0.13m high rectangular section chamber. The
sample stream was filtered through activated carbon at a specific sweep air velocity by a
fan, and air sample was collected at the outlet duct with a vacuum pump in 10 L sampling
bag [30]. The sweep air velocity inside the wind tunnel remained fixed at 0.064 m s−1.

The gas temperature and exit velocity were measured by thermal anemometer with
flow probe (Testo, Germany). The bags were cleaned twice using sample gas before
sampling for avoiding the interference of background odor concentration. All samples
were sent to the laboratory to analysis within 24 h. Temperature (26–36 ◦C), humidity
(60–90%), and pressure (990–1000 hPa) were measured during the sampling periods by
hand-held wind speed and direction indicator (Kestrel, Palo Alto, CA, USA).

2.3.2. Determination of Odor Concentration and Odor Emission Rate

Odor emission rate (OER) is the essential input data for air dispersion modeling and
its value directly determines the impact degree on the environmental odor [31]. To evaluate
OER, first the calculation of the odor concentration is required.

Odor concentration was measured by the triangle odor bag method in accord with
Chinese regulation: Air quality—Determination of odor -Triangle Odor Bag Method [32].
A sniff team of six trained panelists, distinguished the odor from three bags with one
odor sample and two odor free air samples. When a given panel member provided an
incorrect answer and a correct answer in adjacent dilution ratio, the test for this panel
was considered finished, then the personal olfactory threshold was calculated. Finally, the
odor concentration was calculated according to the personal olfactory threshold of the six
sniff members.

The calculation methods of OER for point source and area source were shown in
Equations (1) and (2).

OER1 = C·V (1)

OER2 = (C·L/S1)·S (2)

where OER1, OER2 is the odor emission rate for point source and area source respectively,
OU/s; C is the odor concentration, ou/m3; V is the flow rate measured by the gas flow
meter, m3/s; L is the flow rate in the outlet duct of wind tunnel system, m3/s; S1 is the
base area of wind tunnel, m2; S is the total area of emitting surface, m2.

2.3.3. Odor Dispersion Model

The odor release was calculated by a Lagrange puff model, the CALPUFF model. There
were several scientific studies proved the possibility of applying CALPUFF for modelling
the dispersion of odorants [33,34]. Puff models represent a continuous plume as a number
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of discrete packets of pollutant and evaluate the contribution of a puff to the concentration
at a receptor by a “snapshot” approach. The basic equation for the contribution of a puff to
the concentration at a receptor is expressed in Equations (3) and (4):

C =
Q

2πσyσz
g exp

(
− d2

a
2σ2

x

)
exp

(
− d2

c
2σ2

y

)
(3)

g =
2

(2π)1/2σz

∞

∑
n=−∞

exp
[
−(Hc + 2nh)2/

(
2σ2

z

)]
(4)

where C is the ground-level odor or pollutant concentration, ou/m3 or mg/m3, Q is the
odor or pollutant mass in the puff, OU or mg, σx is the standard deviation of the Gaussian
distribution in the along-wind direction, m, σy is the standard deviation of the Gaussian
distribution in the cross-wind direction, m, σz is the standard deviation of the Gaussian
distribution in the vertical direction, m, da is the distance from the puff center to the receptor
in the along-wind direction, m, dc is the distance from the puff center to the receptor in
the cross-wind direction, m, g is the vertical term of the Gaussian equation, s/m, H is the
effective height above the ground of the puff center, m, and h is the mixing height, m.

The meteorological data used for the study area consisted of two parts, surface me-
teorological data and upper-air meteorological data, both were from 31 December 2016
to 31 December 2017. Surface meteorological data such as wind direction, wind speed,
air pressure, temperature, relative humidity, and cloud cover were obtained from the
weather station, which was the nearest one from the WWTP. Upper-air meteorological data
were generated by WRF (Weather Research and Forecasting) model with 1 km resolution
relevant to the studied area. The wind rose diagram at the WWTP was shown in Figure 2.
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Figure 2. Wind rose diagram in the atmospheric vertical altitude of 10 m at the WWTP during 2017.
Legend denotes wind speed categories and their associated colors. WWTP: Municipal wastewater
treatment plant.

Geophysical data (flat terrain, urban area) and grids (nested grids, assessment squares
defined by 32 × 32 km2 with the smallest 50 m spacing) were taken as input data in
the model. 126 sensitive points were set in the model according to urban resident sites
investigated by questionnaires. Then a time serious of one hour mean values of the odor
concentrations were calculated at each household, where the corresponding questionnaire
was available.
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2.4. Perception-Related Odor Exposure Analysis
2.4.1. Preliminary Perception-Related Odor Exposure Variables

Preliminary perception-related exposure variables were determined for weighting the
odor concentrations by the following confounders:

(1) Peak-to-mean factor (F): In regard to the duration of one single human breath, the
short-term concentration fluctuations were transformed from one hour mean values
of the odor concentrations (e.g., constant value 4 (Germany), 2.3 (Italy) or 1 (UK)) [15];

(2) Temperature and daytime: The annoyed time period of the year and time period of
the day were obtained by the community questionnaires to emphasize those hourly
values, when residents are more sensitive to odor.

By these confounders, the odor concentrations were transformed to the perception-
related odor exposure preliminarily at each site.

2.4.2. Perception-Related Odor Exposures by OICs

In order to determine which OIC shows a better performance, the “odor-hour” metric
approach, expressed as the threshold of a certain percentile (like in Ireland [15]) and the
“odor concentration “approach, expressed as the threshold of a certain concentration (like
in Germany [15]) were used to calculate the further perception-related odor exposures,
which are shown as follows.

(1) The threshold of a certain percentile at a certain site: The odor concentrations at 98, 95,
90, 85, 80, and 70 percentiles were selected, based on the time series of the preliminary
perception-related odor concentrations, expressed as C98, C95, C90, C85, C80, and
C70, respectively;

(2) The threshold of a certain concentration at a certain site: The probabilities exceeding
odor concentration thresholds of 1, 2, 3, 4, and 5 ou/m3 were selected, based on the
time series of the preliminary perception-related odor concentrations, expressed as
P1, P2, P3, P4, and P5, respectively.

Then the further perception-related odor exposures by different OICs were calculated
at 126 sensitive points (households).

2.5. Dose–Response Relationship Analysis

Binomial logistic regression models basing on log-logit sigmoid equations were used
to estimate the association between the perception-related odor exposures (i.e., C98, C95,
C90, C85, C80, C70, P1, P2, P3, P4, and P5, respectively) and the odor annoyances which
were derived from questionnaires. For binomial models, the outcome variables of odor
annoyance degrees were dichotomized into two scores (score = 0, derived from “not
annoyed”, “slightly annoyed”; and score = 1, derived from “moderately annoyed”, “very
annoyed”, and “extremely annoyed”). As well, the independent variables of perception-
related odor exposures were transformed into loge values, which is due to a log fit between
odor exposure and odor annoyance previously was found to be closer than a linear fit [21].

In this analysis, the associations for the dose–response relationships were estimated
by OR (odds ratio), 95% CI (confidence interval), and P (significance level). The goodness
of fit (Akaike information criterion, AIC; McFadden R2; Hosmer-Lemeshow test, HL test)
were obtained. The predictive abilities were also investigated by using AUC (area under
the ROC (receiver operating characteristic) curve) and accuracy parameter. The statistical
analyses were performed in both SPSS and MATLAB software.

3. Results and Discussion
3.1. Socio-Demographic Characteristics of Participants

The long-term experiences of the communities were investigated and a total of
126 valid questionnaires were obtained in the study. The number of questionnaires in
each investigated residential area was shown in Table 1. In general, 60 respondents were
females and 66 respondents were males; About 64% of respondents were over the age of 45,
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about 36% of respondents were at the age of ranging 18 to 45; 68 respondents were living
in the household lower than 5 years, 34 respondents were living between 5 to 10 years,
and 24 respondents were living more than 10 years; Besides sewage smells, 7 respondents
were influenced by noise impact and 13 respondents experienced environmental stressor
of waste smells.

Table 1. The questionnaire number, averaged odor intensity and odor annoyance by respondents in investigated residential
areas A–L.

Title Questionnaire
Result

Investigated Residential Area

A B C D E F G H I G K L

Questionnaire number 10 10 12 13 11 11 12 10 11 12 10 15
Averaged odor intensity 2.8 2.5 2.8 3.0 3.0 2.4 2.1 0.8 0.8 2.5 0.7 1.4

Odor annoyance (%) 75 33 64 45 63 55 44 11 10 50 0 29

In the 126 questionnaires, about 40% of the residents were annoyed by sewage odor at
their households, which consist of “moderately annoyed”, “very annoyed”, and “extremely
annoyed”, and about 23% of the residents were annoyed as “very annoyed” and “extremely
annoyed”. Besides, summer was the most serious annoyed season when sewage smell
occurred (20%, 50%, 18%, and 12% was the proportion of occurrence time in spring,
summer, autumn, and winter month, respectively). Nighttime was the most serious
annoyed time in the day when sewage smell occurred (13%, 10%, 21%, 46%, and 10% was
the proportion of occurrence time in the morning, noon, afternoon, night, and midnight of
the day, respectively). Odor complaints occur predominantly in the afternoon and evening
hours of the warm season when residents are outside [18].

Respondents who lived in residential area A annoyed the most by sewage smell,
followed by residential areas C, E, F, and G; Averaged odor intensities in residential areas
A-G were all higher to 2, indicated that many people in these residential areas can perceive
sewage smell; A small number of people may perceive sewage smell in residential areas
H, I, K, which were located on the southwest and 650 m~1100 m away from the WWTP
boundary (Table 1).

3.2. Odor Exposure and Perception-Related Odor Exposure

The time series of the odor concentrations were calculated over 8760 h. The average
odor concentrations of the 8760 h for 126 sensitive points ranged from 0.3 ou/m3 to
4.8 ou/m3. The order of mean odor concentration from highest to lowest was residential
area A (3.7), B (3.6), C (2.7), D (1.3), L (1.2), E (1.1), G (0.8), J (0.8), I (0.5), F (0.5), K (0.5), and
H (0.4).

The time series of the odor concentrations were firstly multiplied by peak to mean
factors 1, 2.3, and 4, respectively, and divided into three time periods of “a whole year”,
“summer”, and “nighttime of summer”, respectively, due to the serious annoyed season of
the year and time of the day obtained from the community questionnaires. Then the odor
exposures were calculated by “odor concentration“ metric approach, expressed as C98, C95,
C90, C85, C80, and C70, respectively, and “odor-hour” metric approach, expressed as P1, P2,
P3, P4, and P5, respectively. Based on these calculations, the groups of perception-related
odor exposures were obtained.

3.3. Dose–Response Relationship by Binomial Univariate Logistic Models

The perception-related odor exposures and investigated odor annoyances were per-
formed to establish dose–response associations by binomial univariate logistic models.
Results revealed the associations between odor annoyance and (1) odor concentrations
(C98, C95, C90, C85, C80, and C70); (2) odor percentiles (P1, P2, P3, P4, and P5) (Table 2).
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Table 2. OR values for odor annoyance by binomial logistic regression models a,b.

Odor Con-
centration

Peak to
Mean Factor

Variable of Odor Exposure: The Threshold of Concentration

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

C70 4/2.3/1 2.063 1.433–2.971 1.967 1.440–2.688 1.757 1.347–2.293
C80 4/2.3/1 2.438 1.577–3.770 2.481 1.630–3.714 2.254 1.553–3.273
C85 4/2.3/1 2.279 1.499–3.466 2.308 1.557–3.416 2.402 1.589–3.633
C90 4/2.3/1 2.193 1.398–3.439 2.365 1.534–3.647 2.475 1.597–3.835
C95 4/2.3/1 2.278 1.408–3.687 2.473 1.543–3.964 3.153 1.870–5.316
C98 4/2.3/1 2.652 1.493–4.712 3.448 1.855–6.409 4.085 2.128–7.843

Odor
Percentile

Peak to Mean
Factor

Variable of Odor Exposure: The Threshold of Percentile

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

P1
1 7.403 2.674–20.499 6.287 2.659–14.867 8.362 3.135–22.307

2.3 11.791 3.363–41.343 8.277 3.065–22.356 13.821 3.987–47.902
4 18.103 4.204–77.954 10.942 3.591–33.338 20.836 5.077–85.516

P2
1 3.814 1.842–7.893 4.257 2.119–8.551 3.840 2.021–7.295

2.3 7.874 2.767–22.412 6.371 2.677–15.162 8.719 3.163–24.036
4 10.345 3.134–34.148 7.627 2.936–19.812 12.677 3.833–41.931

P3
1 2.594 1.515–4.440 3.066 1.769–5.313 2.824 1.743–4.576

2.3 6.902 2.585–18.428 6.014 2.604–13.892 7.110 2.876–17.575
4 8.536 2.882–25.283 6.681 2.759–16.177 9.735 3.366–28.156

P4
1 2.177 1.383–3.428 2.555 1.601–4.077 2.411 1.606–3.619

2.3 4.851 2.118–11.107 4.986 2.351–10.574 4.759 2.287–9.901
4 7.403 2.674–20.499 6.032 2.603–13.981 8.362 3.135–22.307

P5
1 1.950 1.309–2.906 2.231 1.486–3.349 2.143 1.496–3.070

2.3 3.448 1.747–6.806 3.776 1.975–7.220 3.527 1.934–6.430
4 6.934 2.589–18.575 5.834 2.557–13.307 7.298 2.916–18.262

a Odor exposures were loge transformed; b p Values were all lower than 0.001.

The values of OR were invariant for a certain concentration combined with different
constant values of peak to mean factor due to the multiple relations. In regard to the results
basing on “a whole year” confounder, all odor exposure variables were positively associated
with odor annoyance. C98 as exposure assessment variable seemed to be a slightly better
association than other odor concentrations (OR = 2.652; 95% CI =1.493–4.712), and P1
combined with F = 4 showed the greatest correlation (OR = 18.103; 95% CI = 4.204–77.954).
Furthermore, the associations were substantially larger when using “odor-hour” metric
approach than “odor concentration” approach.

Then the analysis was performed basing on “summer” and “nighttime of summer”
confounders. All odor exposure variables were also positively associated with odor
annoyance. The strongest association was found when using the combination of P1,
F =4, and “nighttime of summer” as exposure assessment variable (e.g., OR = 20.836,
95% CI: 5.077–85.516). Besides, the highest association between odor concentration and
odor annoyance was found when using the combination of C98 and “nighttime of summer”
(OR = 4.085, 95% CI: 2.128–7.843).

3.4. Goodness of Fit and Predictive Ability of Binomial Logistic Models

The goodness of fit obtained from “nighttime of summer” showed to be preferable in
the combination of P2 and F = 1 (AIC = 152.9, McFadden R2 = 0.131 and HL test = 0.215 and
the combination of P4 and F = 1 (AIC = 153.0, McFadden R2 = 0.131 and HL test = 0.063)
(Table 3). The predictive ability of accuracy and AUC of logistic models seemed not
accordance with each other (Table 4). The best accuracy was obtained in the combination
of C98 and “summer” and the combination of P4, F = 1 and “nighttime of summer”
(accuracy = 66.7). However, the best consequence of AUC was obtained in the combination
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of C95 and “nighttime of summer” (AUC = 0.743). On the whole, goodness of fit (AIC,
McFadden R2) and predictive ability (AUC) showed that the values obtained by “summer”
and “nighttime of summer” had better predictive performance than “a year”, especially by
“nighttime of summer”. The results illuminate that the odor episode should be weighted
by the time of the day and the time of the year when studying odor annoyance, OICs, and
so on.

Table 3. Goodness of fit (AIC, McFadden R2, HL test) for odor annoyance by binomial logistic regression models a.

Odor
Concen-
tration

Peak to
Mean
Factor

Variable of Odor Exposure: The Threshold of Concentration

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

AIC McFadden R2 HL Test AIC McFadden R2 HL Test AIC McFadden R2 HL Test

C70 4/2.3/1 157.6 0.105 0.335 154.3 0.124 0.083 154.8 0.121 0.104
C80 4/2.3/1 156.5 0.110 0.045 153.1 0.130 0.028 153.5 0.128 0.107
C85 4/2.3/1 158.6 0.099 0.098 155.1 0.119 0.016 155.5 0.117 0.073
C90 4/2.3/1 162.7 0.075 0.102 162.7 0.075 0.032 156.7 0.109 0.050
C95 4/2.3/1 163.2 0.072 0.144 159.6 0.093 0.220 153.3 0.129 0.274
C98 4/2.3/1 163.2 0.072 0.036 157.6 0.104 0.098 153.6 0.127 0.109

Odor
Per-

centile

Peak to
Mean
Factor

Variable of Odor Exposure: The Threshold of Percentile

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

AIC McFadden R2 HL Test AIC McFadden R2 HL Test AIC McFadden R2 HL Test

P1
1 158.6 0.098 0.115 155.1 0.119 0.075 154.5 0.123 0.141

2.3 158.2 0.101 0.112 155.1 0.119 0.016 155.2 0.118 0.560
4 157.6 0.104 0.248 154.5 0.122 0.289 154.3 0.124 0.699

P2
1 160.0 0.090 0.465 155.2 0.118 0.054 154.0 0.125 0.350

2.3 158.4 0.100 0.230 155.1 0.119 0.163 155.0 0.119 0.250
4 158.4 0.099 0.151 155.1 0.119 0.037 155.0 0.120 0.509

P3
1 161.3 0.083 0.168 156.0 0.114 0.026 152.9 0.131 0.215

2.3 158.5 0.099 0.124 154.8 0.120 0.077 154.1 0.125 0.147
4 158.3 0.100 0.111 154.8 0.121 0.040 154.7 0.121 0.017

P4
1 162.5 0.075 0.079 156.6 0.110 0.436 153.0 0.131 0.063

2.3 158.9 0.097 0.750 153.9 0.126 0.076 153.5 0.128 0.398
4 158.6 0.098 0.115 155.1 0.119 0.385 154.5 0.123 0.141

P5
1 163.3 0.071 0.031 157.1 0.107 0.170 154.5 0.123 0.259

2.3 160.4 0.088 0.361 155.8 0.115 0.039 154.0 0.125 0.173
4 158.5 0.099 0.052 155.0 0.120 0.067 154.2 0.124 0.142

a Odor exposures were loge transformed.

Table 4. Predictive ability (accuracy, AUC) for odor annoyance by binomial logistic regression models a.

Odor Con-
centration

Peak to
Mean Factor

Variable of Odor Exposure: The Threshold of Percentile Concentration

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

C70 4/2.3/1 64.3 0.711 64.3 0.742 65.9 0.730
C80 4/2.3/1 63.5 0.711 64.3 0.736 62.7 0.738
C85 4/2.3/1 62.7 0.713 63.5 0.738 62.7 0.740
C90 4/2.3/1 63.5 0.684 61.9 0.727 65.1 0.734
C95 4/2.3/1 64.3 0.679 62.7 0.710 63.5 0.743
C98 4/2.3/1 65.1 0.672 66.7 0.717 63.5 0.736
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Table 4. Cont.

Odor
Percentile

Peak to Mean
Factor

Variable of Odor Exposure: The Threshold of Percentile

Modeled by a Year Modeled by Summer Modeled by Nighttime
of Summer

Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

P1
1 62.7 0.713 64.3 0.740 65.1 0.736

2.3 64.3 0.708 65.1 0.736 65.1 0.728
4 64.3 0.711 64.3 0.735 65.1 0.735

P2
1 63.5 0.696 64.3 0.720 65.9 0.727

2.3 65.1 0.712 64.3 0.734 65.1 0.737
4 64.3 0.709 63.5 0.739 65.1 0.729

P3
1 64.3 0.688 63.5 0.721 65.1 0.733

2.3 62.7 0.708 63.5 0.739 65.1 0.732
4 65.1 0.712 64.3 0.736 65.1 0.736

P4
1 65.1 0.683 62.7 0.722 66.7 0.736

2.3 62.7 0.701 64.3 0.740 65.1 0.730
4 62.7 0.713 64.3 0.727 65.1 0.736

P5
1 64.3 0.678 63.5 0.716 64.3 0.731

2.3 64.3 0.695 64.3 0.736 64.3 0.728
4 62.7 0.708 65.1 0.718 65.1 0.732

a Odor exposures were loge transformed.

3.5. Odor Impact Criteria of the WWTP

The best predictor of odor exposure was selected as the combination of P4, F = 1, and
“nighttime of summer”, integrating goodness of fit and predictive ability. The univariate
binomial logistic function was shown in Equation (5). Furthermore, in order to visualize
the results of the logistic function, the dose–response curve was shown in Figure 3.

p = 1 + exp (−1.595 − 0.880 lnP4) (5)

where p is the probability of odor annoyance, 0–1; P4 is the probability exceeded odor
concentration thresholds of 4 ou/m3, calculated by air dispersion model over the time
period of nighttime of summer, %.
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Figure 3. Exposure–response univariate binomial logistic model between odor exposure and proba-
bility of odor annoyance; The odor exposure of P4 is the probability exceeded odor concentration
thresholds of 4 ou/m3, calculated by air dispersion model over the time period of nighttime of
summer, %; F: Peak-to-mean factor.
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Aiming to limit the percentage of people experiencing some form of odor-induced
annoyance to 10% or less [35,36], the target value of OIC was calculated as follows: 4 ou/m3

at the 99th percentile for the odor exposure calculated by air dispersion model over the
time period of nighttime of summer.

3.6. Lagrange Dispersion Model and Separation Distances

A generalized non-steady-state air quality modeling system for regulatory use, Sigma
Research Corporation developed the CALPUFF dispersion model and programs. The
model contains algorithms for near-source effects such as building downwash, transitional
plume rise, partial plume penetration, subgrid scale terrain interactions, as well as longer
range effects such as pollutant removal (wet scavenging and dry deposition), chemical
transformation, vertical wind shear, overwater transport, and coastal interaction effects.
Most of the algorithms contain options to treat the physical processes at different levels of
detail depending on the model application [37]. CALPUFF model is driven by temporally
and spatially varying meteorological data on hourly basis, which can handle continuous
puffs of pollutants being emitted from a source into the ambient wind flow.

Capelli et al. [13] discussed the preference of the Lagrangian CALPUFF model, due
to the limitations of Gaussian models (inability to handle calm conditions, lack of three-
dimensional meteorology, and steady-state assumption). In a calibration study of Rood [38],
the CALPUFF model showed the smallest variance, highest correlation, and highest number
of predictions within a factor of two compared to the AERMOD model. Even for odorous
substances, CALPUFF was compared with other dispersion models with good results [39].

Direction-dependent separation distances are commonly used procedure to avoid odor
annoyance between emission sources and residential areas, calculated by air dispersion
model [40]. The separation distances were simulated by CALPUFF model, basing on
the OIC (4 ou/m3 at the 99th percentile for the odor exposure over the time period of
nighttime of summer). As shown in Figure 4, residential areas A, B, C, D, E, G, and J were
completely annoyed by sewage odors, which was basically accorded with the results of
odor complaints in 2017. Besides, a number of people in residential areas F, H, I, K, and L
were annoyed, and the separation distance in west-south direction was about 900 m from
the WWTP boundary.
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4. Conclusions

In conclusion, this was supposed be the first study aimed at determining a certain
OIC using different perception-related odor exposure approaches to study dose–response
relationship by binomial logistic regression models. The odor exposures calculated over
time period of “nighttime of summer” showed better predictive performance than “a whole
year” and “summer” in predicting odor-annoyance responses. OIC was taken as 4 ou/m3

at the 99th percentile for the odor exposure calculated by air dispersion model over the
time period of nighttime of summer. Furthermore, the separation distances of the WWTP
were calculated by CALPUFF model basing on the OIC, which was about 900 m from the
WWTP boundary in the west-south direction.
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