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Abstract: Volatile organic compounds (VOCs) were monitored online at three photochemical as-
sessment monitoring stations (MDS, WQS and HGS) in the Pearl River Delta region during the
summer of 2016. Measured levels of VOCs at the MDS, WQS and HGS sites were 34.78, 8.54 and
8.47 ppbv, respectively, with aromatics and alkenes as major ozone precursors and aromatics as
major precursors to secondary organic aerosol (SOA). The positive matrix factorization (PMF) model
revealed that VOCs at the sites mainly came from vehicle exhaust, petrochemical industry, and
solvent use. Vehicle exhaust and industrial processes losses contributed most to ozone formation
potentials (OFP) of VOCs, while industrial processes losses contributed most to SOA formation
potentials of VOCs. Potential source contribution function (PSCF) analysis revealed a north-south
distribution for source regions of aromatics occurring at MDS with emission sources in Guangzhou
mainly centered in the Guangzhou central districts, and source regions of aromatics at WQS showed
an east-west distribution across Huizhou, Dongguan and east of Guangzhou, while that at HGS
showed a south-north distribution across Guangzhou, Foshan, Zhaoqing and Yangjiang. This study
demonstrates that multi-point high time resolution data can help resolve emission sources and locate
emission areas of important ozone and SOA precursors.

Keywords: volatile organic compounds; ozone formation potential; secondary organic aerosol
formation potential; positive matrix factorization; potential source contribution function

1. Introduction

Volatile organic compounds (VOCs) are important precursors to secondary pollutants
such as ozone (O3) and secondary organic aerosol (SOA) in the troposphere through com-
plex photochemical cycles [1]. In recent years, the gradual deterioration of O3 pollution in
China’s major cities has attracted great concerns [2]. Particularly in summer, excessive O3
concentration is the main cause of poor air quality index. Previous studies demonstrated
that in these megacities O3 formation is largely VOC-limited and the increase in anthro-
pogenic emissions of VOCs is an important reason for the deteriorating O3 pollution. The
ozone formation potentials (OFP) of different VOCs vary largely with their OH radical
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reaction rates [3–5]. Many VOCs, like aromatic hydrocarbons and biogenic VOCs, are also
precursors of SOA [6,7], which shares 20–70% mass concentrations of PM2.5 in ambient
air [8,9]. Therefore, for the coordinated prevention and control of O3 and PM2.5 prevention,
it is critical to determine which are the most important precursors to O3 and SOA among
the hundreds of VOC species occurring in the ambient [6,7,10], and, moreover, what are
the major sources and emission areas of these precursors.

The Pearl River Delta (PRD) region is the world’s largest megacity and one of the most
urbanized and industrialized regions in China. In the past decades, the rapid urbanization
and industrialization in the region have given rise to the emission of a large number of air
pollutants, leading to air quality problems with PM2.5 and O3 pollution. In recent years,
while PM2.5 pollution has been alleviated with intensified pollution control, O3 pollution
however are becoming more and more prominent. As O3 formation in this area is largely
more sensitive to VOCs than to nitrogen oxides (NOx) in the PRD region [11–15], a large
number of studies have been carried out in the region to investigate anthropogenic sources
of VOCs [10,14,16–23]. However, most of the studies on VOCs sources in the PRD region
are focused on urban areas through offline analysis with samples collected in canisters,
and studies on VOCs sources in rural areas and on regional scale are quite limited [14,24].
Moreover, online VOC monitoring with much higher time resolution and a larger data pool
would facilitate better understanding of the emission sources and diagnosing emission
areas [25–27] and would therefore yield results that benefit formulating emission control
measures.

In this study, approximate one-month online VOC measurement was carried out
concurrently at an urban, a suburban and a background site in the PRD region during the
photochemically active summertime to determine ambient levels of VOCs and identify
important precursors to O3 and SOA. PMF model was used for the source apportioning,
and PSCF was further used to explore the potential source areas of the aromatics, which
are important precursors to both O3 and SOA.

2. Methods
2.1. Desciption of Monitoring Sites

Three sites (MDS, WQS and HGS; Figure 1) among Photochemical Assessment Moni-
toring Stations (PAMS) in the PRD region are selected in this study. They are located in the
cities of Guangzhou and Jiangmen.

The MDS site (113.33◦ E, 23.11◦ N) is 50 m above the ground on the roof of Guangdong
Provincial Environmental Monitoring Center in the Haizhu District of Guangzhou. The
station is located in a downtown area surrounded by a number of traffic arteries, and
there are petrochemical, shipping, automobile manufacturing and other industrial parks
clustered in the east and south of the site.

The WQS site (113.55◦ E, 22.71◦ N) is 30 m above the ground on the roof of the Science
and Technology Building of Fok Yingdong Research Institute, Hong Kong University of
Science and Technology in the Nansha District of Guangzhou. The station is located in the
southernmost part of Guangzhou and in the center of the “Golden Triangle” of Guangzhou,
Hong Kong and Macao. It is 50, 75 and 65 km away from core urban areas of Guangzhou,
Hong Kong and Macao, respectively. There are enterprises in thermal power generation,
chemical industry, electronics, shipping and other industries around the point.

The HGS site (112.93◦ E, 22.73◦ N) is 20 m above the ground on a hill top of the Huaguo
Mountain in the Taoyuan Town of Jiangmen. The station is 80 km away from Guangzhou,
50 km away from Foshan and 30 km away from Jiangmen. It is located within the core
areas of the PRD region with relatively intensive pollution emissions in its surrounding
cities and pollutions there are obviously affected by atmospheric transport.

According to the dominant southerly wind direction during the observation period
(July–August 2016), the upwind WQS is taken as the background site, while the MDS site
is an urban point and HGS is a suburban site influenced by regional transport.
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Figure 1. Location of the three monitoring sites in the Pearl River Delta.

2.2. Online Measurement of VOCs

Fifty-seven VOC species, including 29 alkanes, 10 alkenes, 17 aromatic hydrocarbons
and acetylene were monitored hourly at the three sites with three online VOCs analyzers,
two of which (TH-300B, Tianhong Inc., Wuhan, China) were installed at the HGS and MDS
sites, and one of which (Clarus-500 & TurboMatrix, PerkinElmer Inc., Waltham, MA, USA)
was installed at the WQS site. For the two TH300-B analyzers, air samples are firstly collected
at a flow rate of 60 mL/min for 5 min and then analyzed by the gas chromatography-flame
ionization detector/mass selective detector (GC-FID/MSD), with a sampling and analysis
cycle of 1 h. The moisture in the air samples was cryogenically removed and the VOCs
in air samples were captured by a collecting column. The FID was used to detect C2–C5
hydrocarbons through a 20 m × 0.32 mm × 3.0 µm PLOT column, and MSD was used
to detect C5–C12 hydrocarbons through a 60 m × 0.25 mm × 1.4 µm DB-624 column. In
order to improve the accuracy to identify sources of VOCs, some typical source tracers,
including chloromethane, trichloroethylene, tetrachloroethylene and methyl tert-butyl ether,
in each sample were also monitored. The Perkin Elmer analyzer consists of an automatic
concentrator, a thermal desorber, and a GC with dual FID detectors with a 50 m × 0.32 mm
sodium sulfate deactivated alumina column for the C2–C6 components, and a 50 m ×
0.22 mm × 1 µm methyl silane column for the C6–C12 components, respectively.

Stringent quality assurance/quality control criteria were followed during the online
monitoring. The analyzers have built-in auto-linearization and auto-calibration programs
developed for the quality control. The certified calibration standard mixture (1 ppm,
Spectra Gases Inc., Bransburg, NJ, USA) was dynamically diluted to 10 ppb and injected
every day to check the performance of the calibration curves, which had concentration-
response correlation coefficients above 0.995 in this study. The method detection limits
(MDLs) for the 57 VOC species ranged from 0.001 to 0.326 (ppbv).
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2.3. Data Collection

In this study, for VOCs monitoring at the three stations the time spans in 2016 were as
follows: from 9 July to 1 August at the MDS site; from 4 July to 3 August at the WQS site; and
from 1 July to 1 August at the HGS site. Except for missing data caused by instrument failure
or maintenance, 387, 707 and 690 groups of valid VOCs data were obtained at the MDS,
WQS and HGS sites, respectively. Hourly data for NOx (chemiluminescence method), O3
(UV spectrophotometry method), SO2 (UV fluorescence method), CO (infrared spectroscopy
method) and the meteorological data (including temperature, relative humidity (RH), wind
speed and wind direction measured with Vaisala WXT535 Multi-Parameter Weather Sen-
sor) were collected from the stations administered by the Ecological and Environmental
Monitoring Center of Guangdong Province.

2.4. Data Analysis
2.4.1. PMF Receptor Model

Positive matrix factorization (PMF) receptor model is a method widely used to quantify
source contributions to target pollutants observed at a given receptor site. It is a multi-factor
analysis tool that can decompose the matrix of field observation data into two matrices:
a source contribution matrix and a source profile matrix [28,29]. In this work, the USEPA
PMF model version 5.0 was used [30], with input principles as follows: (1) certainty and
uncertainty values for VOC species were estimated according to the methods in the PMF 5.0
user guide; (2) VOC sources were explored using a data matrix based on the Equation (1)
below; (3) the PMF solution minimizes the objective function Q based on the uncertainties
(µ) with a convergence based on Equation (2) below:

Xij =
p

∑
k=1

gikfkj + eij (1)

Q =
n

∑
i=1

m

∑
j=1

[
xij − ∑

p
k=1 gikfkj

uij

]2

(2)

where matrix X is the VOC species concentration data, which can be decomposed into a
factorial solution of two matrices including g (source contribution) and f (source profile); e
is the residual value; i is the number of VOCs samples, j is the number of VOC species, and
k is the number of VOC sources, and p is the number of independent sources.

The PMF model requires two input files: sample species concentration values and sam-
ple species uncertainty values. In the model, data values below the MDLs were substituted
with MDL/2; missing data values were substituted with median concentrations [31]. If the
concentration is less than or equal to the MDL provided, the uncertainty is calculated using
the following equation, Unc = 5/6 × MDL; if the concentration is greater than the MDL
provided, the calculation is Unc = ((Error Fraction × mixing ratios)2 + (MDL/2)2)1/2 [32,33].
In this study, most species had all concentration levels above the MDLs. In the PMF analysis,
20% extra modelling uncertainty was used to account for temporal changes in source profiles
and other sources of variability. The species also need to be further filtered according to the
signal-to-noise ratio (S/N). If S/N > 2, species will be classified as “strong”. If 0.2 < S/N < 2,
species will be classified as “weak”. Otherwise, species will be classified as “bad” and ruled
out from the PMF model. To determine the optimum number of VOC sources, we tested
combinations of 3–8 sources, to determine the best fit in the PMF model. The number of
sources is optimal when the Q(true)/Q(expected) ratio is close to 1. In this study, 5 sources
were selected for the WQS site and 6 sources were selected for the MDS and HGS sites, with
the Q(true)/Q(expected) ratios ranging from 0.9 to 1.0.

2.4.2. Potential Source Contribution Function (PSCF)

In order to track possible emission area of pollution sources for ambient VOCs ob-
served at each site, the PSCF analysis was conducted using the software TrajStat developed
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based mainly on conditional probability function [34], which is defined as the conditional
probability that the corresponding value of a certain element exceeds the set threshold
when the air mass passing through a certain region reaches the observation site. A certain
study area is divided into grids with a specific resolution, and a threshold is set for VOC
concentrations. When the concentration of VOCs corresponding to the trajectory is higher
than the threshold, the trajectory can be considered as a pollution trajectory.

The backward trajectories were calculated for time points during a day (UTC 0:00, 3:00,
6:00, 9:00, 12:00, 15:00, 18:00 and 21:00). The meteorological parameters were collected from
the National Oceanic and Atmospheric Administration (NOAA) Global Data Assimilation
System (GDAS). The study field was divided into cells of 0.1◦ × 0.1◦. The PSCF is defined
by Equation (3) below:

PSCFij =
mij

nij
× Wij (3)

where i and j represent the latitude and the longitude, respectively; nij represents the total
endpoint number of trajectories falling in the ijth grid cell. mij represents the endpoint num-
ber of VOC concentration trajectories in the same grid cell. VOC concentration trajectories
represent any VOC concentration above the reference values [25], which were the average
VOC concentrations. To avoid uncertainties resulting from the influence of lower nij values,
an arbitrary weight function Wij was applied to the PSCF values [27]. Wij is defined by
Equation (4) below:

Wij =


1.00 20 < nij

0.75 10 < nij ≤ 20
0.50 5 < nij ≤ 10
0 0 < nij ≤ 5

(4)

2.4.3. Ozone Formation Potential (OFP)

OFP was calculated as the Equation (5) below based on the maximum incremental
reactivity (MIR) values of each VOC species [35]:

OFPi = [VOC]i × MIRi (5)

where OFPi represents the O3 formation potential of species i; [VOC]i is the concentration
of species i; and MIRi (in g O3/g VOC) is the MIR of species i.

2.4.4. Secondary Organic Aerosol Formation Potential (SOAFP)

SOAFP is a parameter used to estimate the contribution of individual VOCs to SOA for-
mation [36,37]. In the present study, SOAFP was calculated by multiplying the concentration
of a species by its fractional aerosol coefficient (FAC), as shown by equations below:

SOAFPi = [VOCs]i,initial × FACi (6)

[VOCs]i,st = [VOCs]i,initial × (1 − F [VOC]i

)
(7)

where SOAFPi represents the amount of aerosol formed from species i; FACi refers to
fractional aerosol coefficient of species i; [VOC]i,initial refers to the initial concentration of
the species i; [VOC]i,st refers to the concentration of the species i after oxidation; and F[VOC]i
refers to the fraction of reacted for the species i.

3. Results and Discussion
3.1. Variations in Mixing Ratios of VOCs

The concentrations of VOCs were 34.78, 8.54 and 8.47 ppbv on average at the MDS,
WQS and HGS sites, respectively, during our field campaign in the summer (Figure 2).
Mixing ratios of VOCs at the MDS site in the core urban area were substantially higher
than that at the background (WQS) or suburban (HGS) sites. Apart from much stronger
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vehicle emissions and more decoration-related painting activity in the densely populated
urban areas, the prevailing southerly winds during the field campaign might also bring
pollutants from the upwind industrial areas to the MDS site. The concentrations of VOCs
at WQS and HGS site on average were quite near each other. The mean mixing ratio of
total VOCs observed at the HGS site in this study was quite near those observed previously
in background areas in the North China Plain, in the Yangtze River Delta region or the
PRD region [19,38,39], but was much lower than that measured at the same site during
autumn (22 October 22 to 20 November 20) in 2014 [40], possibly due to changes in emission
strength from 2014 to 2016 through enhanced emission control or due to lower boundary
layer heights in autumn than in summer. However, the mean concentration of VOCs at the
WQS site was similar to that observed previously during November–December 2009 [23] at
the same area. The inconsistent trends of mixing ratios of VOCs in ambient air at different
sites in the rapidly developing PRD region also implied that it is necessary to establish a
network with online measurements to track the changing VOCs in ambient air.
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Figures 3–5 display the temporal variations of VOCs along with that of wind speed
and direction, temperature and RH, O3, NO, NO2, SO2 and CO at the MDS, WQS and
HGS sites.

At the MDS site, higher concentrations of O3 appeared from 24 July to 26 July and from
29 July to 1 August, but there are differences between the two periods: concentrations of
VOCs and NOx showed no obvious rise from 24 July to 26 July, while they had a substantial
rise during 29 July−1 August. A sudden increase in SO2 was observed on 29 July, implying
enhanced emission from coal combustion.

At the WQS site, higher concentrations of O3 appeared from 7 July to 9 July and also
from 29 July to 1 August when wind speed was low and the concentrations of VOCs and
NOx were both at higher levels.

At the HGS site, higher O3 concentrations occurred on 8 July, 25 July and 31 July.
However, concentrations of VOCs and NOx were also higher on 8 July and 31 July, while
concentrations of VOCs and NOx were at a low level on 25 July when northerly winds
dominated, higher O3 levels on that day were possibly due to the regional transport.

Figure 6 shows the diurnal variations of VOCs, NOx, and O3 concentrations at the
three sites. It can be found that O3 peaked in the afternoon, while NOx and VOCs concen-
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trations seemed to be opposite to that of O3, with the lowest concentrations in the afternoon.
Concentration of VOCs rose at night mainly because there was no photochemical consump-
tion at night and that the boundary layer height was also reduced. On noon time when
photochemical reaction was the strongest in a day while temperature and the boundary
layer height reached the highest, a large amount of VOCs were consumed during the
photochemical formation of O3 and the higher boundary layer also resulted in decreased
VOCs concentrations.
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3.2. Compositions and Contributions to OFP and SOAFP

Figure 2 also shows the group compositions (alkanes, alkenes, alkyne and aromatics)
of VOCs observed at the three sites. Alkanes were the most abundant with the proportions
of 62.8%, 43.8% and 42.9%, followed by aromatics with shares of 20.2%, 36.6% and 35%,
alkenes with shares of 12.1%, 19.4% and 17.1%, and alkynes with shares of 4.9%, 0.2%
and 5%, respectively, at the MDS, WQS and HGS sites. The higher proportion of alkanes
at the MDS site might reflect more contributions from liquefied petroleum gas (LPG)-
related sources and vehicle emissions in the urban area [41], while the higher proportion
of aromatics in the WQS and HGS sites might be related to stronger emissions in the
surrounding areas from industrial point sources, most of which had been moved from
urban areas to industrial parks in rural or suburban areas.

Figure 7 shows top 10 VOCs species in average mixing ratios at the three sites. At the
MDS site, the LPG-related propane and n-butane were the most abundant VOC species,
followed by toluene, isobutane, ethylene, isopentane, m/p-xylenes, ethane, acetylene and
n-pentane. At the WQS site, isopentane, which is tracer of oil evaporation [21], was the most
abundant VOC species, followed by toluene, n-pentane, 1-hexene, m/p-xylenes, n-dodecane,
o-xylene. At the HGS site, toluene, which is a widely used solvent in industry [42], became
the most abundant VOC species, followed by propane, isoprene, m/p-xylenes, ethylene,
n-butane, isopentane, acetylene, n-pentane, ethane. It worth noting that isoprene at the
HGS site ranked the third, indicating reasonably more biogenic emissions at this site on a
vegetated mountain.

Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. The top 10 VOC species by (a) concentrations at MDS, (b) ozone formation potentials 
(OFP) at MDS, (c) secondary organic aerosol formation potential (SOAFP) at MDS, (d) concentra-
tions at WQS, (e) OFP at WQS, (f) SOAFP at WQS, (g) concentrations at HGS, (h) OFP at HGS, and 
(i) SOAFP at HGS. 

As for OFP contributed by VOC species at the three sites, consistent with previous 
studies [43–48], aromatics and alkenes were major contributors, and xylenes and toluene 
were among the most important aromatics, while ethylene, propylene, butene and iso-
prene were the most important alkenes (Figure 7). Ethylene contributed the most to OFP 
at the MDS site, followed by m/p-xylenes, toluene, propylene, o-xylene, n-butane, iso-
prene, cis-2-butene, isobutane and propane. At the HGS site isoprene contributed the 
most to OFP, followed by m/p-xylenes, ethylene, toluene, o-xylene, propylene, 
ethylbenzene, isopentane, styrene and n-butane. At the WQS site, m/p-xylenes contrib-
uted the most to OFP, followed by 1-hexene, 1,2,4-trimethylbenzene, cis-2-butene, 
o-xylene, toluene and 1-butene. 

As aromatics are most important anthropogenic precursors to SOA [49–51], toluene 
and xylenes were reasonably found to contribute the most to SOAFP at the three sites. 
At the MDS and HGS sites, toluene, ethylbenzene and xylenes contributed more than 
80% of the total SOAFP, while at the WQS site, toluene, m/p-xylenes, o-xylene, 
n-dodecane, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene, ethylbenzene, 
p-diethylbenzene, m-ethyltoluene and m-diethylbenzene are the top 10 species in their 
contributions to SOAFP. 

3.3. Source Attributions by PMF  
Figure 8 shows the source profiles resolved by PMF at the MDS site. Factor 1 shows 

a higher contribution by C8- and C9-aromatics and substantial contributions by trichlo-
roethylene and tetrachloroethylene, therefore it may be related to industrial process 
losses [31]. Factor 2 is characteristic of higher proportions of aromatics such as toluene, 
styrene and ethylbenzene that are generally used as solvents [52,53], and it can be 
termed solvent use. Chloromethane, which is a marker of biomass burning [53–55], con-
tributes the most in the Factor 3, and some alkenes and aromatic hydrocarbons also oc-
curs in the Factor 3 [56]. Therefore, Factor 3 is considered as biomass burning. Ethylene, 
acetylene, ethane and 1-butene, as well as 2-methylhexane, n-heptane and methyl cyclo-
hexane, which might be related to oil cracking process [57,58], are present in the Factor 

Figure 7. The top 10 VOC species by (a) concentrations at MDS, (b) ozone formation potentials (OFP)
at MDS, (c) secondary organic aerosol formation potential (SOAFP) at MDS, (d) concentrations at
WQS, (e) OFP at WQS, (f) SOAFP at WQS, (g) concentrations at HGS, (h) OFP at HGS, and (i) SOAFP
at HGS.

As for OFP contributed by VOC species at the three sites, consistent with previous
studies [43–48], aromatics and alkenes were major contributors, and xylenes and toluene
were among the most important aromatics, while ethylene, propylene, butene and isoprene
were the most important alkenes (Figure 7). Ethylene contributed the most to OFP at the
MDS site, followed by m/p-xylenes, toluene, propylene, o-xylene, n-butane, isoprene, cis-
2-butene, isobutane and propane. At the HGS site isoprene contributed the most to OFP,
followed by m/p-xylenes, ethylene, toluene, o-xylene, propylene, ethylbenzene, isopentane,



Atmosphere 2021, 12, 327 10 of 16

styrene and n-butane. At the WQS site, m/p-xylenes contributed the most to OFP, followed
by 1-hexene, 1,2,4-trimethylbenzene, cis-2-butene, o-xylene, toluene and 1-butene.

As aromatics are most important anthropogenic precursors to SOA [49–51], toluene
and xylenes were reasonably found to contribute the most to SOAFP at the three sites. At
the MDS and HGS sites, toluene, ethylbenzene and xylenes contributed more than 80% of
the total SOAFP, while at the WQS site, toluene, m/p-xylenes, o-xylene, n-dodecane, 1,2,4-
trimethylbenzene, 1,2,3-trimethylbenzene, ethylbenzene, p-diethylbenzene, m-ethyltoluene
and m-diethylbenzene are the top 10 species in their contributions to SOAFP.

3.3. Source Attributions by PMF

Figure 8 shows the source profiles resolved by PMF at the MDS site. Factor 1 shows a
higher contribution by C8- and C9-aromatics and substantial contributions by trichloroethy-
lene and tetrachloroethylene, therefore it may be related to industrial process losses [31].
Factor 2 is characteristic of higher proportions of aromatics such as toluene, styrene and
ethylbenzene that are generally used as solvents [52,53], and it can be termed solvent use.
Chloromethane, which is a marker of biomass burning [53–55], contributes the most in
the Factor 3, and some alkenes and aromatic hydrocarbons also occurs in the Factor 3 [56].
Therefore, Factor 3 is considered as biomass burning. Ethylene, acetylene, ethane and
1-butene, as well as 2-methylhexane, n-heptane and methyl cyclohexane, which might
be related to oil cracking process [57,58], are present in the Factor 4. Therefore, Factor 4
is regarded as petrochemical industry emissions. Factor 5 shows highest contributions
by propane, isobutane and n-butane, which are markers of LPG-related emissions [59]
and also among most abundant species from on-road vehicle fleets with a considerable
portion of LPG-fueled buses and taxies [41], meanwhile MTBE, a tracer of gasoline-related
emissions [43], and vehicle exhaust related C5 and C6 alkanes [43,60], are also present in
the Factor 5. So Factor 5 represents vehicular emissions. Isoprene from plant emissions [55]
contributes the most in the Factor 6, which is thus biogenic emission. Figures 9 and 10 show
source profiles resolved by PMF at the WQS and the HGS sites, respectively. Similarly
emission sources are identified based on the factor profiles.

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 17 
 

 

4. Therefore, Factor 4 is regarded as petrochemical industry emissions. Factor 5 shows 
highest contributions by propane, isobutane and n-butane, which are markers of 
LPG-related emissions [59] and also among most abundant species from on-road vehicle 
fleets with a considerable portion of LPG-fueled buses and taxies [41], meanwhile 
MTBE, a tracer of gasoline-related emissions [43], and vehicle exhaust related C5 and C6 
alkanes [43,60], are also present in the Factor 5. So Factor 5 represents vehicular emis-
sions. Isoprene from plant emissions [55] contributes the most in the Factor 6, which is 
thus biogenic emission. Figure 9 and Figure 10 show source profiles resolved by PMF at 
the WQS and the HGS sites, respectively. Similarly emission sources are identified based 
on the factor profiles. 

 
Figure 8. Source profiles derived from the positive matrix factorization (PMF) model at the MDS 
site. 
Figure 8. Source profiles derived from the positive matrix factorization (PMF) model at the MDS site.



Atmosphere 2021, 12, 327 11 of 16Atmosphere 2021, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Source profiles derived from the PMF model at the WQS site. 

 
Figure 10. Source profiles derived from the PMF model at the HGS site. 

Figure 11 shows contributions by major emission sources at the three sites. At the 
MDS site, vehicle exhaust contributed the most with a percentage of 43%, followed by 
petrochemical emissions (30%) and solvent use (13%). At the WQS site, vehicle exhaust 
also contributed the most but with a percentage of 26%, while petrochemical industry, 
solvent use, industrial processes losses and biomass burning accounted for 24%, 21%, 
18%, and 11%, respectively. At the HGS site, vehicle exhaust was again the largest con-
tributor (34%), followed by petrochemical emissions (25%), industrial processes losses 
(13%), solvent use (12%) and biogenic emissions (12%). Higher contribution of biogenic 
emission at the HGS site is reasonable as the site is mostly surrounded by forests. 

Figure 9. Source profiles derived from the PMF model at the WQS site.

Atmosphere 2021, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Source profiles derived from the PMF model at the WQS site. 

 
Figure 10. Source profiles derived from the PMF model at the HGS site. 

Figure 11 shows contributions by major emission sources at the three sites. At the 
MDS site, vehicle exhaust contributed the most with a percentage of 43%, followed by 
petrochemical emissions (30%) and solvent use (13%). At the WQS site, vehicle exhaust 
also contributed the most but with a percentage of 26%, while petrochemical industry, 
solvent use, industrial processes losses and biomass burning accounted for 24%, 21%, 
18%, and 11%, respectively. At the HGS site, vehicle exhaust was again the largest con-
tributor (34%), followed by petrochemical emissions (25%), industrial processes losses 
(13%), solvent use (12%) and biogenic emissions (12%). Higher contribution of biogenic 
emission at the HGS site is reasonable as the site is mostly surrounded by forests. 
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Figure 11 shows contributions by major emission sources at the three sites. At the
MDS site, vehicle exhaust contributed the most with a percentage of 43%, followed by
petrochemical emissions (30%) and solvent use (13%). At the WQS site, vehicle exhaust also
contributed the most but with a percentage of 26%, while petrochemical industry, solvent
use, industrial processes losses and biomass burning accounted for 24%, 21%, 18%, and
11%, respectively. At the HGS site, vehicle exhaust was again the largest contributor (34%),
followed by petrochemical emissions (25%), industrial processes losses (13%), solvent use
(12%) and biogenic emissions (12%). Higher contribution of biogenic emission at the HGS
site is reasonable as the site is mostly surrounded by forests.
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With contributions to VOCs by different sources, the contribution of different emission
sources to OFP can be further calculated. Solvent use instead contributed most to OFP at
the MDS site due to a large number of more photochemically reactive VOCs species in
this source. At the WQS site, the contribution of petrochemical emissions, solvent use and
industrial process losses contributed more to OFP than vehicle exhaust, and accounted for
29%, 27% and 16% of total OFP, respectively, indicating that industry-related emissions
played a major role in OFP at the WQS site. At the HGS site, the biogenic emission however
ranked first in the contributions to OFP, reaching an average percentage of 26%.

Accordingly the contribution of different emission sources to SOAFP can also be cal-
culated. At MDS site, SOAFP was largely attributed to petrochemical emission (43%) and
solvent use (36%), while vehicle exhaust only contributed 11%. At the WQS site, the contribu-
tion percentages of solvent use, industrial process losses and petrochemical emission are 41%,
25% and 20%, respectively. At the HGS site, petrochemical emission and industrial processes
losses also contributed the most to SOAFP, with shares of 41% and 23%, respectively. In
general, SOAFP was largely contributed by VOCs from industry related emissions.

3.4. Source Areas by PSCF Analysis

As aromatics are found to be among most important ozone and SOA precursors as
discussed above and aromatics are more stable in ambient air than alkenes [49], in this
study we further conducted PSCF analysis to explore the location of probable emission
sources for aromatics including benzene, toluene, ethylbenzene and xylenes observed in
July–August when ozone pollution is more serious. This kind of analysis would help clarify
the source emission areas and regional transport channels as well.

As showed in Figure 12, the warmer the color in an area, the greater the value of PSCF
and thereby the greater the emission intensity in the grid. The potential source areas of
the aromatics observed at the MDS site show a north–south distribution, and the emission
sources in Guangzhou were mainly centered in the Guangzhou central districts. The poten-
tial source areas of the aromatics at the WQS site were distributed from east to west across



Atmosphere 2021, 12, 327 13 of 16

Huizhou, Dongguan and east of Guangzhou, where a great many industrial enterprises
were located. Also there were emission sources in the northeast Guangzhou, in Qingyuan in
the northwest to Guangzhou, and in Foshan in the southwest to Guangzhou that contributed
aromatics observed at the site. The potential source areas of the aromatics at the HGS site
had south-north distribution across Guangzhou, Foshan, Zhaoqing and Yangjiang, and
there were the source areas, though less important, in Huizhou and Dongguan. The PSCF
identified aromatics emission areas is highly consistent with the actual industrial layout
in the cities, indicating that the PSCF results can better reflect the potential source areas.
From south to north, there is a belt with high WPSCF values, which is mainly related to
furniture processing enterprises, which give emissions of aromatics [42], in Panyu in the
south of Guangzhou.
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4. Conclusions

In this study, VOCs were monitored online during the summer of 2016 at three
representative sites, namely MDS (urban), WQS (background) and HGS (suburban), in the
PRD region. The mixing ratios, chemical compositions, O3 and SOA formation potentials,
sources and potential source areas of VOCs in the PRD region were investigated based on
the hourly data. The results revealed average VOCs mixing ratios of 34.78 ppbv, 8.54 ppbv
and 8.47 ppbv at the MDS, WQS and HGS sites, respectively. In terms of mixing ratios,
alkanes were the most abundant VOC groups at the three sites, followed by aromatics and
alkenes; propane and n-butane were the most abundant VOC species at the MDS site in
mixing ratios, isopentane and toluene were the most abundant at the WQS site, and toluene
and propane were the top two at the HGS site.

Aromatics (xylenes and toluene) and alkenes (ethylene, propylene, butene and iso-
prene) among the VOC species contributed most to OFP at the three sites, and toluene and
xylenes contributed the most to SOAFP at the three sites. Source apportionment by the PMF
model revealed that vehicle exhaust was the largest contributor at the three sites, accounted
for 43%, 26% and 34% of observed VOCs at the MDS, WQS and HGS site, respectively.
Meanwhile, petrochemical emissions (30% at MDS, 24% at WQS, and 25% at HGS), solvent
use (13% at MDS, 21% at WQS and 12% at HGS) and industrial processes losses (3% at
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MDS; 18% at WQS and 13% at HGS) also contributed substantially, with reasonably much
lower contribution by industrial processes losses at the urban MSD site (3%) and much
biogenic emission contribution (12%) at the HGS site surrounded by forests. However, at
all the three sites OFP and SOAFP were mostly contributed by VOCs from industry-related
emission sources, indicating the importance to control reactive organic gases from industry
sources for the coordinated prevention of PM2.5 and O3 pollution in the region.

Based on the PSCF analysis with the high time resolution data, potential source areas
of the aromatics, which are important precursor to both O3 and SOA could be targeted.
This is a good example that online data can be used to locate potential source areas for
pollutants of concern. It worth noting that this study is only based on observations at three
sites during a summer month. It is quite certain that online observation data at more sites
and in more seasons would give a more clear and reliable picture for potential source areas
of important O3 and SOA precursors in the region, which is highly beneficial to reduce
emissions in an accurate and effective way.
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