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Abstract: Disdrometer observations obtained by an OTT Parsivel2 during the 2017 Great Hunan
Flood from 1:00 a.m. LST 23 June 2017 to 4:00 a.m. LST 2 July 2017 in Changsha, Hunan Province,
southern China, are analyzed to diagnose characteristics of raindrop size distribution (DSD). This
event was characterized by a large number of small- to medium-sized raindrops (diameters smaller
than 1.5 mm) and the mean median volume diameter (D0) is about 1.04 mm. The median values of
rain rate R (1.57 mm h−1), liquid water content W (0.10 g m−3), and radar reflectivity Z (25.7 dBZ)
are smaller than that of the 2013 Great Colorado Flood. This event was composed of two intense
rainfall periods and a stratiform period, and notable distinctions of rainfall microphysics among the
three rainfall episodes are observed. Two intense rainfall periods were characterized by widespread
and intense convection rains with a surface reflectivity of 48.8~56.7 dBZ. A maximum diameter
of raindrops up to 7.5 mm was observed, as well as high concentrations of small and midsize
drops, resulting in large rainfall amounts during the two intense rainfall episodes. The mean radar
reflectivity of 22.6 dBZ, total rainfall of 17.85 mm and the maximum raindrop of approximately
4.25 mm were observed during the stratiform rainfall episode. The composite DSD for each rainfall
episode peaked at 0.56 mm but higher concentrations of raindrops appeared in the two intense
rainfall episodes. The Z-R relationships derived from the disdrometer measurements reflect the
unusual characteristics of DSD during the flood. As a result, the standard NEXRAD Z-R relationship
(Z = 300R1.4) strongly underestimated hourly rainfall by up to 27.5%. In addition, the empirical
relations between rainfall kinetic energy (KE) versus rainfall intensity (R) and mean mass diameter
(Dm) are also derived using DSDs to further investigate the impacts of raindrop properties on the
rainfall erosivity.

Keywords: the 2017 great Hunan flood; raindrop size distribution; precipitation microphysics; Z-R
relation; rainfall kinetic energy; southern China

1. Introduction

Persistent heavy rainfall (PHR) events such as the 2017 Great Hunan Flood are char-
acterized by several observable attributes: high intensity, wide range, long duration, and
strong stability [1]. Once the PHR event occurs, it often tends to cause flood disasters
and huge economic losses due to the difficulty of accurate weather forecasting, which
severely threatens human life and property. Hunan, located in the East Asian monsoon
climate zone, is one of the provinces with frequent PHR events in China. During the
period of 22 June to 2 July 2017, a large area of heavy rainfall with maximum local amounts
approximatively 576 mm fell over Hunan Province and adjacent regions, affecting a total
of 4,030,700 people and a direct economic loss of ¥6.014 billion, according to the official
report. This heavy a rainstorm, which had not been witnessed in this region for several
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decades, was characterized by its long duration, widespread flooding, and intense precipi-
tation. Extreme hydrometeorological events are difficult to forecast, since their weather
patterns and the related microphysical processes within the models do not resemble the
standard conditions of a region for which forecasting and nowcasting systems may have
been tuned [2]. Therefore, it is necessary to study extreme typical heavy precipitation event
like the 2017 Great Hunan Flood from multiple perspectives to improve our understanding
of such PHR events.

Several studies have mainly focused on the meteorological and hydrological settings
on a large spatial scale as well as the temporal and spatial distribution of rainfall. Jin
et al. [3] concluded that the stable maintenance of upper-level cold vortex and the subtropi-
cal high over Hunan province provides favorable large-scale circulation conditions for the
occurrence of this type of heavy rainfall. Chen et al. [4] analyzed the circulation background
and the transportation of the large-scale water vapor during the 2017 great Hunan flood
using the NCEP/NCAR reanalysis data and found that sufficient water vapors from the
Indian Ocean and the South China Sea entered Hunan Province with the convergence of
airflow at the lower level and aggregated and condensed in the middle- and upper- level
through the strong vertical upward movements, leading to the intense precipitation. Li
et al. [5] stressed the importance of the moisture divergence vertical flux and thermody-
namic wave activity density in the diagnosis and prediction of severe rainstorms from the
NCEP/NCAR Global Forecasting System (GFS) model.

These studies listed above explained the main driving mechanisms for the distribution,
amount, and vertical structure of clouds as well as precipitation on a mesoscale during the
2017 Great Hunan Flood. In contrast, the spatial and temporal evolution of raindrop size
distribution (DSD) and rain characteristics (i.e., rainfall intensity, mean diameter, and num-
ber concentration) that vary at a scale very smaller than the model resolution only received
minimal investigation and remain largely unknown [6]. The formation of precipitation
involves not only dynamics and thermodynamics but also microphysical processes. The
raindrop is the final form of liquid precipitation, and DSD is the number of raindrops per
unit volume per mm interval of the diameter, which evolves with precipitation both in time
and space. The characteristics of DSD are related to multiple complex microphysical and
dynamic processes, like collision-coalescence, breakup, and evaporation [7]. Rainfall pa-
rameters such as rain rate (R: mm h−1), radar reflectivity (Z: dBZ) and liquid water content
(W: g m−3) can be calculated from the DSD once it is known. In addition, the knowledge
of DSD is also required for the radar quantitative precipitation estimation (QPE), satellite
retrieval of precipitation, microphysics parameterization in numerical weather prediction
models and soil erosivity estimation [8–12]. Therefore, this work aims to contribute to
the understanding of the microphysical properties of the 2017 Great Hunan Flood by
using the consecutive eleven-day measurements of the OTT Parsivel2 disdrometer from
22 June to 2 July 2017, when the rainbands passed over the Changsha site. On a wider
scope, this paper not only gives an insight into the microphysical features of an extreme
hydrometeorological event that occurred in southern China, but also contributes to the
precipitation microphysical studies on regional or global scales, as well as remote sensing
measurement of precipitation.

To facilitate the detailed analysis of the microphysical characteristics of rainfall, this
rainfall process was divided into three rainfall episodes, since the duration of this flood
event was so long. Total rainfall amounts, DSDs, rainfall characteristics (mean mass-
weighted diameter Dm, and normalized intercept parameter Nw) and the Z-R and KE-R
relationships observed during the three rainfall episodes are compared and analyzed with
respect to the microphysical processes. For the entire rainfall period, the characteristics
of DSD in different rain rate classes, the percentage of occurrence, amount of rainfall and
percentage of contribution to the total rainfall for each rain rate category were computed.
Moreover, the performance of hourly rainfall estimations of the NEXRAD Z-R relationship
was also examined.
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2. Data and Methods
2.1. Instruments and Dataset

The data sets used in this study were collected by a second-generation OTT Parsivel2

disdrometer at a national weather station in Changsha (CS) City, Hunan Province, from
22 June to 2 July 2017. Changsha, a provincial capital city in Hunan Province located in
the southeast of China, is strongly influenced by the subtropical continental monsoon in
summer and is an inland region that features plains and hills. A topographic map of the
field site (CS site: 28.11◦ N, 112.79◦ E) is shown in Figure 1a. The Parsivel2 disdrometer
(Figure 1b) operated by Changsha Meteorological Bureau was deployed within the local
observation station and the optional S-band weather radar in Changsha is ~5 km northeast
of the CS site. This radar applied a standard WSR-88D scanning strategy and consists of
14 or 15 elevation angle scans ranging from 0.5◦ to 19.5◦. In addition, 3543 ground gauges
were used to analyze the spatial distribution of rainfall (not shown).
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measurements (due to turbulence, splashing, multiple drops at a time, margin fallers, in-
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Figure 1. Topographic map of the location (a) and field view of the observation site (b) at Changsha City in south China.
The red diamond marks the location of the Parsivel2 disdrometer and the black triangle denotes the location of the S-band
weather radar. The black solid circle indicates the 150-km observation radius of the S-band radar.

The OTT Parsivel2 is a laser-optical disdrometer with a horizontal laser beam of 54 cm2

that provides the number of raindrops in 32 bins of diameters from 0 to 25 mm and fall
speeds from 0 to 22.4 m s−1. A more detailed description of the OTT Parsivel2 device can
be found in Löffler-Mang and Joss [13]. The lowest two size classes are not used because of
the poor reliability of their low signal-to-noise ratio. Thus, the smallest size of raindrops
was limited to approximately 0.312 mm. Also, the measured maximum diameter could
reach about eight mm because of the break-up of larger raindrops during the falling.

In this study the temporal resolution was 1 min. To identify and remove suspicious
measurements (due to turbulence, splashing, multiple drops at a time, margin fallers,
insects, spiders, etc.), a fall velocity-based filter was applied to the raw Parsivel2 measure-
ments (32 × 32 drop counts) [14]. Namely, only drops that have the measured velocity
satisfying the equation:

|v(D)Meas − v(D)Brandes| ≤ 0.6v(D)Brandes (1)

are considered, where v(D)Meas is the velocity measured by Parsivel2, and v(D)Brandes is the
velocity for a drop of diameter D according to the velocity-diameter relationship proposed
by Brandes et al. (2002) [15]. As shown in Figure 2, the distribution of raindrop numbers
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is almost entirely within the ±60% of the empirical velocity model of Brandes et al. [15]
despite that the Parsivel2 lightly underestimated the mean fall velocity of the raindrops
in classes with diameters from 1.375 to 2.75 mm and overestimated the fall velocity of the
drops at sizes larger than 5.5 mm. In terms of rain amount, the filtered drops occupied
only 1.1% of the total rain amount. Note that if the 1-min DSD sample with a total number
of drops is lesser than 10 or a DSD-derived rain rate is lower than 0.1 mm h−1, it is also
regarded as noise and not considered to be a rainy minute. After all the quality control (QC)
criteria above, 7062 1-min DSD samples remaining were used in the following analysis.
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Figure 2. Distribution of raindrop numbers in the different diameter and falling-velocity classes for
the entire raw dataset. The color shading represents the drop number density (log scale). Mean and
standard deviation of measured fall velocity as a function of diameter are given as well by the white
circles and vertical bars, respectively. The black solid line indicates the Brandes et al. [15] terminal
drop velocity and the two dashed lines represent the ±60% ranges of the empirical V-D relationship.

2.2. Comparison with Rain Gauges

Four different rainfall statistics: correlation coefficient (CC), root mean square error
(RMSE), normalized absolute error (NE), and bias were employed to quantify the results
for the comparative study in this paper, and they are defined as:

CC =

N
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where N is the total number of samples, X and Y represent the estimated variable and refer-
ence variable, respectively. The symbol “¯” in Equation (2) represents the sample average.

The measurements from a rain gauge next to the Parsivel2 (Figure 1b) are accepted as
the official observations after quality control from the Parsivel2. Figure 3 shows the inter-
comparison of hourly rainfall between Parsivel2 and the rain gauge. Excellent agreement
is found, with a correlation coefficient of 0.98 between two independent instruments with
negligible aberrations. In addition, the Parsivel2 shows 9.66% less hourly rainfall than
the rain gauge, which is in a relatively lower deviation than that reported in the previous
studies [16]. The slightly underestimation of hourly rainfall observed from Parsivel2 is
believed to be a manifestation of small particle detection issues [17].
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Figure 3. Time series of hourly rainfall observed from OTT-Parsivel2 (red curve with circles) and its adjacent rain gauge
(black curve with squares). The inset graph shows the bias, correlation coefficient (CC), root-mean-square error (RMSE) and
the normalized absolute error (NE) between the two observations.

2.3. Raindrop Size Distribution

In order to investigate the characteristics of precipitation, DSD and its derived bulk
properties are calculated from the following formulas. In this study, measured DSD is
calculated from the number of drops (nij) recorded by the Parsivel2 at the ith size and jth
velocity bin:

N(Di) =
32

∑
j=1

nij

A∆tVj∆Di
(6)

where N(Di) (mm−1m−3) is the number concentration of drops within diameters in the
interval from Di to Di + ∆Di per unit size interval; Di (mm) is equivalent spherical rain-
drop diameter of the ith size bin and ∆Di (mm) is the corresponding diameter interval;
A (m2) and ∆t (s) are the effective instrument sample area and time interval, respectively;
Vj (m s−1) is the fall speed for the velocity bin j.

Given N (Di), the integral rainfall quantities viz. radar reflectivity Z (mm6 m−3), rain
rate R (mm h−1), liquid water content W (g m−3), and the total number concentration of
raindrop Nt (m−3), can be derived as follows:

Z =
32

∑
i=1

N(Di)D6
i ∆Di (7)

R =
6π

104

32

∑
i=1

32

∑
j=1

VjN(Di)D3
i ∆Di (8)

W =
π

6× 103

32

∑
i=1

N(Di)D3
i ∆Di (9)
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Nt =
32

∑
i=1

N(Di)∆Di (10)

The well-known three-parameter gamma model DSD [18] is used in this study:

N(D) = N0Dµe−ΛD (11)

where D (mm) is the raindrop diameter, N0 (mm−1-µm−3) is the intercept parameter, µ
(dimensionless) and Λ (mm−1) are the shape and slope parameters, respectively. The
nth-order moment of a DSD, Mn, is expressed as:

Mn =
∫ Dmax

0
N(D)DndD (12)

The mass-weight mean diameter Dm (mm) and the generalized intercept parameter
Nw (m−3 mm−1) were calculated as:

Dm =
M4

M3
=

32
∑

i=1
N(Di)D4

i ∆Di

32
∑

i=1
N(Di)D3

i ∆Di

(13)

Nw =
44

πρw

(
103W

D4
m

)
(14)

where M4 and M3 are the 4th-order and 3rd-order moment of the DSD, respectively. ρw
(1.0 g cm−3) is the density of water. Note that the derived DSD parameters (e.g., Dm, Nt,
and Nw) are all calculated directly from measured DSDs, while the three parameters of
the gamma DSD model (N0, µ and Λ) are calculated using the second, fourth, and sixth
truncated moments method [19].

2.4. Rainfall Kinetic Energy

The knowledge of the relationship between rainfall intensity (R) and kinetic energy
(KE) (the product of mass and fall velocity squared) is important for erosion prediction [20]
and the relationship between R and KE can be established from drop-size and drop-velocity
measurements [21]. The kinetic energy of rainfall can be expressed in two forms [22]: the
rate expenditure of rainfall kinetic energy (i.e., time-specific KE) with units of energy per
unit area per unit time (KEtime, J m−2 h−1), and the amount of rainfall kinetic energy
(KEmm, J m−2 mm−1) per unit area per unit depth of rain (i.e., volume-specific KE). KEtime
and KEmm can be calculated by:

KEtime =
ρπ

12× 103 A∆t

N

∑
i=1

niD3
i v2

i (15)

KEmm =
ρπ

12× 103 APr

N

∑
i=1

niD3
i v2

i (16)

where ρ is the water density (kg m−3); A (mm2) is the detection area; ∆t is the time interval
(h) and N is the total number of bins (32 in this study); Pr (mm) is rainfall amount per
minute; ni, Di (mm) and vi (m s−1) are the number of measured raindrops, the equivalent
spherical raindrop diameter and the raindrop fall velocity in a drop size bin i, respec-
tively. Note that vi (m s−1) was calculated in terms of Di from the V-D relationship of
Brande et al. [15].

KEtime is related to KEmm by:

KEmm = cKEtimeR−1 (17)
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where R is rainfall intensity (mm h−1) and c is a constant that to adjust for any difference
existing in the units of time used. For example, c is equal to 1 if KEmm is in J m−2 mm−1

and KEtime is in J m−2 h−1.

3. Case Description and Environment Conditions

This persistent and heavy rainstorm occurred in Hunan, southern China, from 22 June
to 2 July 2017, and was characterized by a wide range of influence, long duration, strong
rainfall intensity and large cumulative rainfall, which also was an unusual and rare rainfall
event, not only because of its duration but also because of the amount of precipitation.

The first rainfall episode (hereafter S1) is a three-day intense rainfall between 11:00 a.m.
LST 22 June and 8:00 p.m. LST 25 June 2017. The precipitation system was a strong and
widespread convection rainfall embedded with intense linear convective cells with a
radar reflectivity higher than 50 dBZ (Figure 4a). The rainfall band was located mainly
in the north of Hunan Province, resulting in the rainfall amounts exceeding 100 mm
(Figure 4b), and there were 30 (375) rain gauges recording total rainfall of 300 (200) mm
with a maximum value of 470.2 mm at Loudi City (Figure 4b). From 8:00 p.m. LST 25 June
to 8:00 p.m. LST 28 June (hereafter S2), the precipitation system was characterized by a
long-lasting stratiform rainfall with embedded moderate convection, and the relatively
intense rainfall band was concentrated in the southern part of Hunan (Figure 4c), leading
to rainfall amounts of 200~236 mm mainly occurring at the junction area of three cities:
Hengyang, Zhuzhou and Chenzhou (Figure 4d). After about a five hours rain-free period,
a second intense convective rainfall lasting nearly four days from 1:00 a.m. LST 29 June to
8:00 p.m. LST 2 July (hereafter S3) hit most cities except for a few regions in the northwest
and southeast of Hunan (Figure 4e). The spatial distribution of total rainfall during S3 was
similar to that of the S1, while the precipitation was more intense during the latter episode.
The rainfall amounts in Changsha and Yueyang exceeding 200 mm were noticed, and there
were 105 (705) rain gauges that recorded rainfall amounts exceeding 300 (200) mm during
S3 (Figure 4f).
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development of a heavy rainstorm. Moreover, the evolution of the mean water vapor flux 
and the divergence of the water vapor flux at 850 hPa indicated that the moist water vapor 
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at 850 hPa during S2 gradually moved eastward and disappeared, and the coupling situ-
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vapor conveyor belt moved southward, so the precipitation during S2 was less intense 
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Figure 4. The CAPPI of radar reflectivity (Z: dBZ) at 1 km above ground level from the Changsha S-band weather radar on
3:03 a.m. LST 23 June 2017 (a), 11:26 a.m. LST 27 June (c), and 11:30 p.m. LST 29 June 2017 (e), respectively. (b,d,f) present
the distribution of rainfall totals during the three rainfall episodes in Hunan.

Extreme and persistent rainfall events usually occur under the background of sta-
ble and large-scale circulation [23]. As shown in Figure 5a–c, during the whole event,
the blocking high was stably maintained near Lake Baikal at 500 hPa, and the northern
boundary of the western Pacific subtropical high (WPSH) in the middle and low latitudes
almost stagnated in the southern part of Hunan, making the north-central part of Hunan a
confluence of cold and warm air, which is conducive to the generation and maintenance of
a persistent rainstorm. During S1 and S3, the coupling between the high-level jet steam at
200 hPa (Figure 5a,c) and the low-level jet steam at 850 hPa (Figure 5d,f), located in central
and northern Hunan, produced a strong ascending motion to promote the generation and
development of a heavy rainstorm. Moreover, the evolution of the mean water vapor flux
and the divergence of the water vapor flux at 850 hPa indicated that the moist water vapor
from the Bay of Bengal and the South China Sea provided sufficient water vapor for this
rainstorm’s development (Figure 6a,c). Compared with the first episode, the low-level
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jet at 850 hPa during S2 gradually moved eastward and disappeared, and the coupling
situation between the high and low altitude was not established, so the precipitation in
this period was not as intense as that in the first period (Figure 5e). In addition, the water
vapor conveyor belt moved southward, so the precipitation during S2 was less intense and
mainly concentrated in the south of Hunan (Figures 5b and 6b).
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4. Results and Discussion
4.1. Microphysical Features of Rain
4.1.1. Time Series of DSD

Figure 7 shows the time evolution of DSD and rain rate during the three rainfall
episodes observed from the Parsivel2 disdrometer at CS sites. Following a brief episode
of light rain around 01:40 a.m. LST on 23 June, a period of persistent rain was observed
over 12 h starting at 07:13 LST on 23 June (Figure 7a). During the first episode, a few
large raindrops with diameters exceeding four mm were occasionally observed in the
presence of relatively high concentrations of small and midsize drops. The presence of
large drops (>5 mm) along with the abundance of small raindrops were noticed at around
2:52 p.m. LST 24 June and 2:46 a.m. LST 25 June (Figure 7a), which was responsible for
the heavy rain and high reflectivity (Table 1). A large rainfall amount with 171.1 mm
was recorded by Parsivel2 in the first episode (Table 1). Rainfall was then quite sporadic
between 10:00 a.m. and 4:50 p.m. LST 25 June, with high concentrations of small drops,
with the maximum drop diameter not exceeding 2.8 mm before 12:35 p.m. LST on 25 June,
and low concentrations of raindrops were observed until 4:50 p.m. LST 25 June. Finally,
high concentrations of small and midsize drops were present due to the passage of the
rainband, and the storm ended with a moderate shower.
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Table 1. Rainfall characteristics during the three episodes: number of 1-min samples, accumulated rainfall, and integral rain
parameters (rain rate R, liquid water content W, mean mass diameter Dm and total concentration of raindrops Nt) derived
from the composite raindrop spectra.

Period Samples (mins) Total Rainfall (mm) R (mm h−1) W (g m−3) Dm (mm) Nt (m−3)

1st episode 2367 171.1 4.34 0.23 1.23 395
2nd episode 1390 17.8 0.78 0.05 0.99 209
3rd episode 3023 350.8 6.98 0.35 1.22 591

During the second rainfall episode (Figure 7b), rainfall was quite sporadic, and the
rain rate was lower than 5 mm h−1 for this whole period with the maximum drop diameter
not exceeding 4.8 mm. Low concentrations of small drops were observed throughout the
entire episode except for the period between 3:40 a.m. and 6:04 a.m. LST on 28 June when
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a high concentration of small raindrops dominated. The absence of large raindrops and
narrow raindrop spectra results in the lowest Dm, R, W and Nt mean values of 1.07 mm,
0.78 mm h−1, 0.05 g m−3 and 209 m−3, respectively (Table 1).

The third rainfall episode was the most intense period of this event, having a total
rainfall amount of 350.8 mm (Table 1). The time series of the DSD in S3 was distinctly
different than the previous two periods. Several periods (denoted as 1 to 9 in Figure 7c)
of high concentrations of medium and large drops (D > 5 mm) were observed and the
concentration of small raindrops (D < 1 mm) was as high as 103.5 mm−1m−3, resulting in
significant increases in rainfall rate (R > 50 mm h−1). The highest rain rate, 227.5 mm h−1,
was observed at 9:38 a.m. LST 1 July when the concentration of midsize drops of 3~5 mm
diameter was relatively high. In addition, the highest concentrations (104.5 mm−1m−3)
of small drops (D < 1.0 mm) were noticed in the narrow raindrop spectra where the
maximum drop diameter was 2.7 mm between 1:40 p.m. and 7:20 p.m. LST on 1 July.
The integrated rainfall parameters, i.e., R, W and Nt, in the third episode also are at their
maximum. Compared with the median values of rainfall parameters of the 2013 Great
Colorado Flood, the median R, Z and W of the 2017 Great Hunan Flood are smaller, while
the median volume diameter D0 was slightly larger. In terms of its microphysics, such as
Z, W, D0 and Nw, a larger mean diameter of raindrops (i.e., larger D0) with a relatively
lower concentration of raindrops were observed in this event than in that of the 2013 Great
Colorado Flood, resulting in higher mean reflectivity and water content in the 2017 Great
Hunan Flood.

4.1.2. Composite Raindrop Spectra

Figure 8 shows the composite raindrop spectra for the three different rainfall episodes
to further investigate the variations in DSDs, and the gamma distribution parameters
derived from the composite DSDs using the truncated moment method are also provided
in Table 2. The maximum concentration occurred at a diameter of 0.56 mm followed by a
slow decrease in concentration from the peak to 0.9 mm for the three composite DSDs.
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Figure 8. Composite DSDs during the three rainfall episodes.

Table 2. Gamma distribution parameters (N0 is the intercept parameter; µ and Λ are the shape and
slope parameters, respectively) derived from the composite raindrop spectra during three rainfall
episodes using the truncated moment method.

Period N0 (mm−1-µm−3) µ Λ (mm−1)

1st episode 58,264 2.53 5.00
2nd episode 677,035 4.17 8.36
3rd episode 18,877 1.08 3.67
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Figure 8 shows the composite DSDs during the three rainfall episodes, revealing
the general characteristics of concentration and size distribution of raindrops for the
three different rainfall episodes. The numerical concentrations of the small raindrops
below 0.5 mm are almost the same, and the difference is obvious from 0.5 mm. The
concentration of raindrops for all diameters in the two heavy rainfall periods is higher
than that in the second rainfall period with stratiform, indicating that collision-coalescence
process is more active during the intense rainfall episodes. Previous studies [24–26]
with basically different measuring systems and model calculations showed that raindrop
spectra have at least one peak, and the first peak usually appeared at the lower end of
the measuring scope. According to the diameter classification setting of Parsivel, three
raindrop spectra obtained from the Parsivel measurements showed that the highest number
of raindrops were between 0.5 and 0.625 mm. The three spectra exponentially decrease
with the increasing drop sizes, and the differences of the three DSDs started to be evident
from the diameter of 0.5 mm. The concentration of raindrops larger than 0.5 mm was the
least during the second episode, resulting in low rainfall intensity and rainwater content
(showed in Table 1). The concentrations of small drops with diameter less than 2.0 mm for
the first and third intense rainfall episodes were similar, whereas larger concentrations of
medium- and large-sized drops (D > 3.0 mm) were observed during S3 where the composite
DSD was the widest and the maximum drop diameter was approximately 7.6 mm. Such
a DSD of the third episode generated the highest integral rainfall parameters (Table 1).
Note that three parameters of the gamma DSD have the lowest values for the third rainfall
episode (Table 2).

4.1.3. DSD and Rainfall Characteristics for Different Rain Rates

Rainfall microphysical properties vary largely under different rain rates [23,27]. To
further investigate the DSD characteristics in different rain rates, the total dataset was
divided into six rain rate classes (R1: 0.1≤ R < 1, R2: 1≤ R < 2, R3: 2≤ R < 5, R4: 5 ≤ R < 10,
R5: 10 ≤ R < 20, and R6: ≥20 mm h−1) [28]. As shown in Figure 9, the distribution in the
percentage of occurrence of R bins is similar to that of the summer rainfall of North Taiwan
(Table 4 in Seela et al. [29]), with the highest frequency of occurrence in R1 (39.3%), followed
by R3 (23.2%) and R2 (17.2%). The percentage of occurrence of R from small to large is
10.9% in R4, 4.2% in R5 and 5.1% in R6. Even though the occurrence numbers from R1 to
R3 vary, a steady increase is observed in the percentage of rainfall relative contribution.
R4 contributes to the total rainfall as much as R3, both registering approximately 15.8% of
the total rainfall, while the frequency number of R4 was only about half of R3. More than
45% of the total rainfall was from R6, despite its relatively low percentage of occurrence.
Although the percentage of occurrence in the R5 category is the lowest, its contribution to
the total rainfall is also higher than that of R1 and R2. During the whole rainfall period,
more than 55% of total rainfall is contributed by R5 and R6, and these high rain rates lead to
the floods and flash floods over the study area because the high probability of occurrences
of these rain types is instrumental in causing mountain torrents and debris flows [30,31].

The averaged DSDs in six rain-rate classes were superimposed on the same graph to
investigate and compare the characteristics of DSD in different rain rates in Figure 10. Also,
the corresponding integral rainfall parameters derived from the average DSD in each rain
rate class are presented in Table 3, and the values associated with the entire datasets are
also given in Table 3 and Figure 10. The spectral width of DSDs increases with the rain rate
and the shape of DSD becomes flatter due to the contribution of large raindrops (Figure 10)
which led to larger integral rainfall properties, such as Nt, Z, W, and Dm (Table 3), in higher
rainfall rates. The gamma parameters, N0, µ and Λ, decrease with an increased rain rate
from R1 to R4. Note that the maximum Nw appeared in R5 and there is an increase for
each gamma parameter at R5. This may be related to the apparent variation of DSD shape
at R5 (Figure 10) where a bi-modal shape with the peaks at 0.56 and 1.06 mm occurred.
The minimum values of N0, µ and Λ are found in R6, corresponding to the widening and
flattening of the DSD shape. For the entire rainfall period, the shape of DSD is close to an
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exponential distribution with shape parameter µ of 0.28. Compared with the composite
raindrop spectrum in the same rain rate class of the 2016 ”7.20” Beijing rainstorm [32], the
DSDs under the R1-R3 classes show high similarities in the two events. In R4 and R5, the
number densities of drops with diameters smaller than 0.5 mm and larger than 2.0 mm of
the 2017 Great Hunan Flood are lower than that of the 2016 ”7.20” Beijing rainstorm, while
the number of raindrops in the middle size is higher in the former event. In the highest rain
rate R6 class, medium- to large-sized drops (D > 2 mm) with larger concentrations were
observed in the 2017 Great Hunan Flood despite that the number density of tiny raindrops
(D < 0.8 mm) of the 2016 “7.20” Beijing rainstorm is higher up to 1–2 orders of magnitude.
Therefore, higher values of W, Z and Dm are observed in the 2017 Great Hunan Flood.
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Table 3. Integral rainfall physical quantities (total concentration of raindrops Nt, radar reflectivity Z, liquid water content W,
median-volume diameter D0, mass-weighted mean diameter Dm, and normalized intercept parameter (log10Nw)) derived
from the averaged DSDs and the fitted gamma distribution parameters (intercept parameter (log10N0), shape µ and slope
parameter Λ) in different rain rate classes.

Class Nt (m−3) Z (dBZ) W (g m−3) D0 (mm) Dm (mm) log10Nw log10N0 µ Λ (mm−1)

Total 452.20 35.66 0.25 1.33 1.61 3.48 5.52 0.28 2.62
R1 (0.1~1.0) 187.81 18.80 0.03 0.80 0.91 3.60 5.50 3.70 8.44
R2 (1.0~2.0) 335.93 25.88 0.10 0.97 1.10 3.73 5.15 3.27 6.58
R3 (2.0~5.0) 504.13 30.75 0.20 1.09 1.26 3.81 4.77 2.55 5.21
R4 (5.0~10.0) 781.81 34.88 0.39 1.14 1.37 3.96 4.84 2.59 4.80

R5 (10~20) 1012.42 38.61 0.73 1.34 1.53 4.04 5.04 3.46 4.88
R6 (>20) 1465.62 47.15 1.91 1.83 2.07 3.93 4.23 1.83 2.81

4.1.4. Distribution of Dm and Nw

Many studies have thoroughly detailed the different characteristics of DSD in con-
vective and stratiform rain, and they are related to the cloud microphysical processes and
vertical motions for each rain type [28,33–37]. Additionally, the distribution of Dm and
log10Nw are often used to characterize the convective precipitation as being continental
or maritime (e.g., [34,38,39]). Figure 11 shows the frequency distributions of Dm versus
log10Nw during the three episodes. The Dm-log10Nw pairs mainly reside on both sides of the
stratiform line according to Bringi et al. [31], with the mean value of Dm near 1.2 mm and
log10Nw of 3.65 (the 1st episode) and 3.83 (the 2nd episode) (Figure 11a, c). During the sec-
ond episode, a larger proportion of data (>15%) exists near log10Nw = 3.4 and Dm = 1.0 mm,
corresponding to stratiform rain in Bringi et al. [34] (Figure 11b). It is worth noting that
some scatter during S2 and S3 have high values of log10Nw (>4.5) but low Dm (<1.0 mm),
which appear at 4:10~6:00 a.m. LST on 28 June 2017 (during S2) and 11:45 a.m.~8:00 p.m.
LST on 1 July 2017 (during S3), where intense convective rainfall passed over the site with
radar reflectivity higher than 50 dBZ, with the maximum drop diameter on the ground
small to 2.5 mm (Figure 7b, c). This may be related to the shallow convective rain charac-
terized by a relatively small maximum diameter and high concentration of raindrops with
small diameters, as recorded in Wen et al. [39]. Besides, some scatter distributed on the
right side of the stratiform line are closer to the maritime convection cluster (Figure 11a),
although the CS site is located in the inland, and this feature is more evident during the
third episode (Figure 11c), indicating that the convective rainfall during the 2017 Great
Hunan Flood is characterized by a high concentration of small raindrops. On the one
hand, this flood occurred between late June and early July during the Mei-yu (called Baiu
in Japan) period, and the adequate vapor during the Asian summer monsoon season
from the Bay of Bengal and the South China Sea (Figure 6) might limit the evaporation
processes of raindrops. On the other hand, the mean CAPE values calculated from in- situ
sounding data at the CS site are high at 275.9 J kg−1 and 1006.2 J kg−1 during S1 and S2,
respectively, suggesting relatively intense convective activities during both periods. The
stronger convective activity contributes to the collision-breakup processes in heavy rain; as
a result, there are abundant small raindrops.

Figure 12 presents the Dm and log10Nw vary with R to further investigate the variability
of the two parameters with respect to rain rates, and the fitted power-law relationships
using a least-squares method are also provided. The variability of Dm and log10Nw with
the rain rate shows similarity in the three episodes. The standard deviations of both
parameters decrease with the rain rate. The Dm increases with the rain rate, and the indexes
of Dm-R relationships are greater than 0.15. The indexes of log10Nw-R relationships are
close to 0, and the log10Nw converges with the increasing rain rate. This suggests that the
concentration of raindrops remains constant at a high rain intensity, while any increase
in rain rate is mainly due to an increase in the size of raindrops, which is contrary to
the situations in Nanjing, eastern China [39] and Zhuhai, southern China [40], where the
increase in rain rate is mainly due to the increase of raindrop concentration. These results
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reveal the unusualness of the DSD for the 2017 Great Hunan Flood. At high rain rates, the
DSDs may reach a size-controlled state where raindrops are neither created (no coalescence)
nor destroyed (no breakup), that is, the drop concentration remains approximately constant
and grows by accretion of cloud droplets [41].
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It is possible to establish an empirical relationship between Nw and Dm since the
two parameters are related and not independent [38], and this relation was normally used
in the GPM DPR rainfall retrieval [42]. Figure 13 shows the Nw-Dm distribution under
different rain rates, and one can see that there is a good correlation between Nw and Dm
within a specific range of rainfall rates. Table 4 summarized the statistical results for each
Nw-Dm relation in different rain rate classes. The coefficients of determination R2 were
high (>0.91) from the R2 to R5 classes, but they are lower in light rain (R < 1.0 mm h−1)
and intense rain (R > 20 mm h−1). This is consistent with the variation of log10Nw and Dm
with rain rates as shown in Figure 12. The distributions of Dm and log10Nw are scattered in
low rain rates with relatively higher standard deviations, resulting in a low value of R2

(0.76) in the regression between Dm and log10Nw. The second-degree polynomial equation
fitted the data least well in the highest rain rate class with R2 of ~0.42 due to the increase of
Dm and approximate invariability of log10Nw in the high range of R (>20 mm h−1). For the
whole data set of this event, the coefficients of determination R2 are only 0.2, indicating
that the polynomial equation can hardly represent the log10Nw-Dm relationship very well.
Therefore, using GPM DPR observations to derive the parameters Nw and Dm in different
rainfall rate classes by applying the corresponding log10Nw-Dm relationships may help to
improve the accuracy of rainfall retrieval from GPM DPR measurements.
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Figure 13. Scatterplots of log10Nw versus Dm and the fitting curves for their relationships in six rain
rate classes and the whole data set (the black dashed line).

Table 4. Coefficients of the fitted relations between log10Nw (Nw: mm−1m−3) and Dm (mm) and coef-
ficients of determination (R2) for the second-degree polynomial equations in six rain rate categories
(R1~R6) and the total data set.

Class
log10Nw = aDm

2 + bDm + c

a b c R2

R1 (0.1~1.0) 0.6395 −3.1403 5.8829 0.7642
R2 (1.0~2.0) 0.8244 −3.7124 6.8186 0.9543
R3 (2.0~5.0) 0.9785 −4.0699 7.3432 0.9285

R4 (5.0~10.0) 0.5398 −3.0356 7.0993 0.9657
R5 (10~20) 0.3465 2.3050 6.7054 0.9185

R6 (>20) 0.0165 0.4715 4.8474 0.4175
All 0.6411 −2.0426 5.1380 0.1749

4.2. QPE

Radar quantitative precipitation estimation (QPE) is one of the applications of DSDs.
The analyses above show that DSDs, rainfall parameters, and the gamma function param-
eters differ among the first, second and third episodes, and one may wonder how that
affects the radar reflectivity-rain rate (Z-R) relationship. Previous studies have shown
that the coefficient (A) and exponent (b) of radar reflectivity-rain rate (Z = ARb) relations
strongly depend on DSD variability [7]. Figure 14a shows the Z-R relationships for the
entire event and the three rainfall episodes derived from the 1-min DSD samples. For
comparison, Z = 300R1.4 for the standard NEXRAD Z-R relationship used in the China and
United States is also provided. For this rainfall event, the exponents of the Z-R relationship
are around 1.4, while the disparities are obvious in coefficients of A. When the rain rate is
smaller than 10 mm h−1, the power-law Z = 175.681R1.426 derived from the third rainfall
episode observations gives the highest rain rate estimation for a given radar reflectivity.
All the Z-R relationships obtained in this rainfall event lie under the standard NEXRAD
Z-R relation, indicating that using the standard Z-R relationship with A = 300 and b = 1.4
in the weather radar would give an underestimation for this rainstorm.
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S-band weather radar at Changsha site using Z = 300R1.4 relationship vs gauge observations with the whole dataset of this
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We used the rain gauges deployed within radar coverage to evaluate the performance
of the NEXRAD Z-R relationship-based quantitative precipitation estimation from the
S-band weather radar for the 2017 Great Hunan Flood. In this paper, the data from 0.5◦

elevation angle PPI (plan position indicator) in the range between 15 and 120 km of
radar are used to estimate surface rainfall, and the 1-h rainfall accumulation was used for
comparison with rain gauge data. The CC, RMSE, and NE of the NEXRAD Z-R relationship
are 0.89, 3.80 mm, and 0.36, respectively (Figure 14b). In terms of relative bias, the Z-R
relationship commonly used by operational NEXRAD strongly underestimated hourly
rainfall by up to 27.5%, indicating that the single-polarization radar variable was too weak
to be useful for rain-rate estimations.

4.3. Rainfall Erosivity Estimation

There have been diverse KEmm-R relationships developed due to the more widespread
use of KEmm [20], such as logarithmic [43], polynomial [44], exponential [22,45], linear [46],
or power law [47]. Therein, the most used are the logarithmic and exponential forms.
According to Salles et al. [21], KEtime provides a better correlation between KE and R
than KEmm, and power-law and linear function are common in the regression of KEtime-R.
Figure 15 presents the scatterplots of KEtime and KEmm versus R for the three rainfall
episodes of the 2017 Great Hunan Flood. Here, the linear, polynomial and power-law equa-
tions are used in KEtime-R fitting, and the power, exponential and logarithmic equations
are applied in KEmm-R regression. As Figure 15 shown, KEtime increases more linearly with
rain rate R than KEmm. At relatively lower R values, for each rainfall episode, the three
fitting lines of KEtime -R are almost overlapping while deviating more and more obviously
with the increase of rain rate, especially the linear fitting curves that give the lowest KE
estimations under the same rainfall intensity than the other two models (Figure 15a–c).
From the statistical results for each rainfall episode in Table 5, one can see that the regres-
sion between KEtime and R with power-law and polynomial equations are similar and



Atmosphere 2021, 12, 1556 20 of 24

better than the linear function. Moreover, three equations perform better during the intense
rainfall episodes and produced a higher coefficient of determination and less dispersion.
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Figure 15. Scatterplots of the time-specific kinetic energy KEtime (J m−2 h−1) vs. rain rate R (mm h−1) (a–c) and volume-
specific kinetic energy KEmm (J m−2 mm−1) vs. rain rate R (mm h−1) (d–f) of the three rainfall episodes, as well as the
different regression equations for their relationships.

Table 5. Coefficients of determination (R2), root mean squared error (RMSE) and, normalized absolute error (NE) for
KEtime-R equations applied to three different rainfall episodes.

Rainfall Episodes Statistics KEtime-R

Linear Polynomial Power Law

1st episode

KEtime = 16.21R − 14.53 KEtime = 0.08R2 + 12.90R − 6.05 KEtime = 8.15R1.19

R2 0.9608 0.9732 0.9761
RMSE 24.3181 20.1161 18.9612

NE 0.2632 0.1807 0.161

2nd episode

KEtime = 10.58R − 1.68 KEtime = 1.49R2 + 6.43R − 0.26 KEtime = 7.63R1.32

R2 0.8790 0.9032 0.9001
RMSE 2.7952 2.4999 2.5389

NE 0.2722 0.2158 0.2187

3rd episode

KEtime = 20.3R − 33.75 KEtime = 0.01R2 + 19.17R − 29.34 KEtime = 10.73R1.14

R2 0.9501 0.9512 0.9546
RMSE 69.733 68.9328 66.5323

NE 0.3059 0.2781 0.1962

Figure 15d–f show that the relationship between KEmm and R is nonlinear and KEmm
present a high dispersion of values compared to KEtime. Specifically, for the second rainfall
episode dominated by the light rain intensity, the KEtime-R pairs do not show a clear
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structure and all the three equations show poor performances in the regressions among
the three rainfall episodes (Table 6). The power-law equation shows the best fit in the
third intense rainfall episode with the highest coefficients of determination R2 of 0.63 and
relatively low RMSE (2.77) and NE (0.22) values, whereas the logarithmic equation is fitting
best for the first rainfall episode and the statistical parameters are close to that from the
power-law regression. Overall, compared with KEtime-R relationships, there is not a clear
relationship between KEmm-R. Therefore, KEtime-R relationships are preferable for erosivity
estimation of each rainfall episode for this event.

Table 6. As in Table 5, but for KEmm-R relationships.

Rainfall Episodes Statistics KEmm-R

Exponential Logarithmic Power Law

1st episode

KEmm = 25.92 (1 − 0.72e−0.03R) KEmm = 8.27 + 4.45log10R KEmm = 8.01R0.2

R2 0.3491 0.5058 0.4995
RMSE 3.1784 2.7695 2.7881

NE 0.2768 0.2300 0.2340

2nd episode

KEmm = 21.81 (1 − 0.79e−0.18R) KEmm = 7.91 + 3.97log10R KEmm = 7.84R0.28

R2 0.3446 0.3612 0.3741
RMSE 2.3950 2.3646 2.3405

NE 0.2780 0.2690 0.2680

3rd episode

KEmm = 31.91 (1 − 0.79e−0.02R) KEmm = 7.11 + 5.26log10R KEmm = 6.8R0.25

R2 0.5438 0.5854 0.6293
RMSE 3.0046 2.8555 2.7000

NE 0.2578 0.2359 0.2230

According to Torres et al. [46], the kinetic energy can be expressed by the median-
volume drop diameter D0 using the D0 (R) relations. Wen et al. [48] proposed a polynomial
relation between KEmm and Dm: KEmm = −2.33 Dm

2+21.05Dm − 7.79, with the coefficient
of determination R2 of 0.94 and RMSE of 1.41 J m−2 mm−1 using data from Nanjing,
eastern China. Figure 16 depicts the relations between KEmm and Dm. From Figure 16, the
differences among the three fitting cures for the same rainfall period are very small, and the
distinction is only notable in the larger Dm end. In addition, the fitting performance of the
same equation to the KEmm-Dm is better than that of KEtime-R according to the statistical
results in Table 7. Amazingly, the coefficients of determination R2 are ≥0.95, RMSE and NE
values have no significant differences in rainfall episodes and different equations, implying
a good performance for rainfall KEmm estimation using the KEmm-Dm estimator.
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Figure 16. Same as Figure 15, but for KEmm (J m−2 mm−1) vs. mass-weighted mean diameter Dm (mm).
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Table 7. As in Table 5, but for KEmm-Dm relationships.

Rainfall Episodes Statistics KEmm-Dm

Linear Polynomial Power Law

1st episode

KEmm = 11.35Dm − 4.69 KEmm = 0.51Dm
2 + 10.07Dm − 3.94 KEmm = 6.63Dm

1.50

R2 0.9647 0.9651 0.9608
RMSE 0.7402 0.7361 0.7837

NE 0.0571 0.0568 0.0616

2nd episode

KEmm = 11.43Dm − 4.62 KEmm = 0.82Dm
2 + 9.77Dm − 3.82 KEmm = 6.60Dm

1.65

R2 0.9565 0.9573 0.9473
RMSE 0.6168 0.6116 0.6793

NE 0.0656 0.0656 0.0780

3rd episode

KEmm = 10.88Dm − 4.25 KEmm = −0.15Dm
2 + 11.27Dm − 4.94 KEmm = 6.68Dm

1.40

R2 0.9599 0.9599 0.9499
RMSE 0.8885 0.8878 0.9929

NE 0.0642 0.0644 0.0744

5. Summary and Conclusions

During the 2017 Great Hunan Flood from 22 June to 2 July 2017, detailed data from
a Parsivel disdrometer, a ground-based dual S-band Doppler weather radar, located at
Changsha site, Hunan province, southern China, and 357 rain gauges scattered in the
province, were used to measure the microphysical characteristics of this persistent rainfall.
Due to its long duration, the spatial and temporal variations of DSD, rainfall parameters
(R, Z, D0, and W), and derived relationships (i.e., radar reflectivity-rain rate and rainfall
kinetic relations) were derived and compared in three different rainfall episodes.

This rainfall event lasted for a long time and affected a wide range, with the maximum
total rainfall observed by Parsivel2 of 543 mm at the Changsha site. Rainfall throughout
the entire event was characterized by a large number of small- to medium-sized raindrops
(diameter D < 1.5 mm), resulting in the highest concurrency frequency of the small rain
rate category (0.1 < R < 1.0 mm h−1). The spatial distribution characteristics of rainfall are
different in three episodes, and each episode presents a different DSD feature.

The first rainfall episode was mainly composed of a small concentration of raindrops,
and the N (D) of the second episode was the lowest. During the third rainfall episode,
the highest concentration of small droplets (D < 1 mm) and large raindrops (D > 4 mm)
was observed, resulting in the largest integral rainfall parameters and rainfall kinetic
energy (KE). The patterns of the variation of Dm and log10Nw with rainfall intensity were
quite similar among the three episodes: Dm increases with the rain rate while the log10Nw
converges with the increasing rain rate. In addition, the Dm versus log10Nw pairs of the
first and third intense rainfall episodes are plotted roughly around the “maritime” cluster,
indicating a maritime nature of convective precipitation throughout the flood.

The DSD-derived Z-R relations from the disdrometer reflect how unusual the DSD
was during the 2017 Great Hunan Flood. A larger concentration of medium- to large-sized
drops (D > 3 mm) was observed during the third intense rainfall episode, accompanied
by an increase in liquid water content, medium volume diameter and reflectivity. As a
result, the Z-R relationship (Z = ARb) showed the smallest coefficient (A = 175.15) and
largest exponent (b = 1.43) compared to raindrop spectra during the first and second
rainfall episodes. Nevertheless, these values were smaller than the values of the “standard”
NEXRAD Z-R relationship (Z = 300R1.4), leading to an underestimation of radar-based
hourly rainfall by 27.5%.

A critical comparison of different formulae relating rainfall intensity (R) and kinetic
energy (KE), as well as mean mass-weighted diameter (Dm) and KE, was performed using
direct DSD measurements of this flood during the three rainfall episodes. Nine functions
to predict two types of KE (KEtime and KEmm) from R and Dm, were obtained. The fitting
effects of the same function for the first and third intense rainfall episodes were better than
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that for the second rainfall episode. When KE is related to R, the KEtime expression was
preferred over KEmm, and a power-law function showed the best regression between KEtime
and R. On the other hand, the comparison between KEmm-Dm and KEmm-R concludes
that Dm is more appropriate to be linked to KEmm than R and KEtime-R relationships for
erosivity estimation.
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