
atmosphere

Article

Characteristics and Risk Assessment of 16 Metals in Street Dust
Collected from a Highway in a Densely Populated Metropolitan
Area of Vietnam

Van-Truc Nguyen 1 , Nguyen Duy Dat 2,* , Thi-Dieu-Hien Vo 3,* , Duy-Hieu Nguyen 4, Thanh-Binh Nguyen 5,
Ly-Sy Phu Nguyen 6,7 , Xuan Cuong Nguyen 8,9, Viet-Cuong Dinh 10 , Thi-Hong-Hanh Nguyen 11,
Thi-Minh-Trang Huynh 12, Hong-Giang Hoang 13, Thi-Giang Huong Duong 1, Manh-Ha Bui 1

and Xuan-Thanh Bui 14,15

����������
�������

Citation: Nguyen, V.-T.; Duy Dat, N.;

Vo, T.-D.-H.; Nguyen, D.-H.; Nguyen,

T.-B.; Nguyen, L.-S.P.; Nguyen, X.C.;

Dinh, V.-C.; Nguyen, T.-H.-H.;

Huynh, T.-M.-T.; et al. Characteristics

and Risk Assessment of 16 Metals in

Street Dust Collected from a Highway

in a Densely Populated Metropolitan

Area of Vietnam. Atmosphere 2021, 12,

1548. https://doi.org/10.3390/

atmos12121548

Academic Editors: Dmitry Vlasov,

Omar Ramírez Hernández and

Ashok Luhar

Received: 24 October 2021

Accepted: 17 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental Sciences, Saigon University, Ho Chi Minh City 700000, Vietnam;
nvtruc@sgu.edu.vn (V.-T.N.); huongduong@sgu.edu.vn (T.-G.H.D.); manhhakg@sgu.edu.vn (M.-H.B.)

2 Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education,
Ho Chi Minh City 700000, Vietnam

3 Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000,
Vietnam

4 College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung City 81157,
Taiwan; andyhieuenv@gmail.com

5 Department of Marine Environmental Engineering, National Kaohsiung University of Science and
Technology, Kaohsiung City 81157, Taiwan; ntbinh179@nkust.edu.tw

6 Faculty of Environment, University of Science, Ho Chi Minh City 700000, Vietnam; nlsphu@hcmus.edu.vn
7 Vietnam National University, Ho Chi Minh City 700000, Vietnam
8 Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University,

Da Nang 550000, Vietnam; nguyenxuancuong4@duytan.edu.vn
9 Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
10 Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung,

Hanoi 100000, Vietnam; cuongdv@nuce.edu.vn
11 Department of Civil Engineering, Vietnam Maritime University, Hai Phong 180000, Vietnam;

honghanh.ctt@vimaru.edu.vn
12 Graduate Institute of Applied Geology, National Central University, Taoyuan 32000, Taiwan;

tranghuynh44@gmail.com
13 Faculty of Health Sciences and Finance-Accounting, Dong Nai Technology University, Bien Hoa 810000,

Vietnam; honggiangenv@gmail.com
14 Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi

Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City 700000, Vietnam; bxthanh@hcmut.edu.vn
15 Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT),

Ho Chi Minh City 700000, Vietnam
* Correspondence: datnd@hcmute.edu.vn (N.D.D.); vtdhien@ntt.edu.vn (T.-D.-H.V.)

Abstract: The present study focused on investigating the contamination and risk assessment for 16 met-
als in street dust from Ha Noi highway, Ho Chi Minh City. The results indicated that the concentrations
of metals (mg/kg) were found, in decreasing order, to be Ti (676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn
(426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6) > Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5)
> Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn (7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd
(0.6 ± 0.2) > Se (0.4 ± 0.1). The geo-accumulation index (Igeo) showed moderate contamination levels
for Pb, Cd, Cu, Sn, Mo, and Zn. The enrichment factor (EF) values revealed moderate levels for Cd,
Cu, Mo, and Sn but moderate–severe levels for Zn. The pollution load index of the heavy metals was
moderate. The potential ecological risk (207.43) showed a high potential. Notably, 40.7% and 33.5% of
the ecological risks were contributed by Zn and Mn, respectively. These findings are expected to provide
useful information to decision-makers about environmental quality control strategies.
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1. Introduction

Street dust, road dust, or urban street dust are names for dust on road surfaces. Street
dust contains various metals deriving from many different sources, such as vehicle emis-
sions, residential combustion, solid waste combustion, power plants, industrial activities,
and city construction [1]. The presence of metals in the street dust may cause both adverse
environmental effects and human health issues [2]. Metals associated with street dust
are a current concern of scientists around the world. Many researchers have evaluated
the levels of metals in street dust collected from various countries, for example China,
Colombia, Iran, Jordan, Turkey, United Arab Emirates (UAE), Vietnam, etc. Most of these
studies focused mainly on six to eight metals [3–12]. Some studies extended the list to more
than eight metals [13–17]. The results showed that the concentration of metals fluctuates
widely up to 8430 mg/kg [6]. Various methods were employed to determine the level of
metal pollution in dust, for example the enrichment factor (EF) [4], geo-accumulation
index (Igeo) [18–20], pollution load index (PLI) [3,21], and ecological risk assessment
(ERA) [4,5,22–26]. The results all indicated significant potential risks of metals for hu-
man health as well as ecosystems.

The characteristics of street-dust metals and the related emission sources and risks
have not received much attention in Vietnam, where there are many cities with high traffic
density, dense population, and interwoven industrial zones. To the best of our knowledge,
only three studies have been conducted to determine the street-dust metal levels in Vietnam.
Firstly, Phi et al. [27] conducted monitoring of the concentration of six metals in street
dust sampled at 163 locations from Hanoi, Vietnam. Secondly, the concentration of eight
metals (Pb, Cu, Cr, Zn, Fe, Mn, K, and Ca), and the risk assessment for five metals (Cu,
Pb, Cr, Zn, and Mn) from exposure to street dust from Highway No. 5 and Highway
No. 18 in Northeast Vietnam were investigated by Phi et al. [28]. Thirdly, Dat et al. [12]
measured the concentrations of eight metals (Pb, Cu, Cr, Zn, Mn, Ni, Cd, and Co) in street
dust in Southern Vietnam. Information on the spatial distribution, potential emission
sources, and risk assessments for multiple metals associated with the rapid urbanization
and industrialization in Ho Chi Minh City is limited.

From the literature review, it was found that most studies focused on common metals
(Cd, Co, Ni, Pb, Cr, Cu, Mn, and Zn). Recently, survey studies have been undertaken in
cities with high traffic density and industrial development areas, such as Ho Chi Minh
City [13,14]. The results showed that in addition to the metals mentioned above, many
other metals were detected (Se, Sb, Mo, B, Sn, As, V, Ti, etc.) with relatively high concen-
trations. Measuring more elements results in a more complete assessment of pollution
levels. Therefore, with the desire to provide a comprehensive view for policymakers on
environmental pollution control strategies, this study investigated the spatial distribution
and potential emission sources of 16 metals (Se, Cd, Sb, Mo, B, Sn, As, Co, Ni, V, Pb, Cr,
Mn, Cu, Zn, and Ti) in the street dust collected from one of the main routes entering Ho
Chi Minh City (Ha Noi highway). Possible sources and relationships between the metals
were interpreted using multiple statistical analysis methods such as Pearson’s correlation
coefficient, principal component analysis (PCA), and hierarchical cluster analysis (HCA).
In addition, we calculated the geo-accumulation index (Igeo), pollution load index (PLI),
and enrichment factor (EF), to evaluate the levels of anthropogenic enrichment by metals.
Finally, the potential ecological risk index (PER) was calculated.

2. Materials and Methods
2.1. Sampling Site

Ho Chi Minh (HCM) City is the biggest city in the Southeast of Vietnam (Figure 1a,b),
with an area of 2095 km2. It has a tropical climate (average annual precipitation of 1800 mm
and temperature of 28 ◦C). There are two main seasons: the dry (December–April) and
wet (May–November) seasons [29]. In recent years, Ha Noi highway has been the main
thoroughfare (Figure 1c) connecting HCM city with Binh Duong and Dong Nai provinces,
where there are many industrial zones.
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Figure 1. A regional map of Vietnam (a); Ho Chi Minh City (b); sampling sites on Ha Noi highway (c); background sampling
sites in Can Gio District (d).

2.2. Sample Collection, Preparation, and Analytical Methods

A total of 13 samples were collected in this study, of which 10 were street-dust samples
from Ha Noi highway (Figure 1c) and 3 were background soil samples from Rung Sac
Street, Can Gio District (Figure 1d). Samples were collected during February 2020 using
brushes, dustpans, and clean plastic. Each sample was collected over an approximate
area of 2 m2 adjacent to the street curb, and 500 g of the dust sample was collected into a
polyethylene bag before shipping it to the lab for treatment and metals analysis [30]. In this
study, background samples were collected in Can Gio District because no industrial zones
are located in this area, and the population and traffic densities are low (Figure 1d). The
samples were dried in ambient conditions to stabilize moisture and then sieved through
a nylon sieve of 149 µm diameter. Finally, the samples were stored in a desiccator until
further treatment for metals analysis. The locations of the sampling sites and the GPS
coordinates are shown in Table S1.

In this study, the extraction procedures strictly followed those reported by Dat et al.
(2021), which are presented in detail in the Supplementary Materials. Briefly, the dust sam-
ples were analyzed for extractable metals according to EPA Method 3051A [31] and Method
200.8, Revision 5.4 [32]. All reagents were of analytical grade (Merck) and purification
was needed before digestion. Sixteen metals (Se, Cd, Sb, Mo, B, Sn, As, Co, Ni, V, Pb, Cr,
Cu, Mn, Zn, and Ti) were quantified using inductively coupled plasma mass spectrometry
(ICP-MS; model 7700x, Agilent, Santa Clara, CA, USA) with an ICP-MS-grade standard.
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The metals were measured in triplicate for each sample and a blank test was conducted for
every 10 samples. Blank samples were prepared and analyzed using the same procedure,
showing concentrations below the method detection limit (MDL). QA/QC of the analytical
method was ensured by analyzing the certificate reference material for urban particulates
(SRM-1648a). The results indicated that the recoveries ranged from 90 to 120% for all
metals. The MDLs of Se (20 µg/L), Cd (20 µg/L), Sb (20 µg/L), Mo (2 mg/L), B (2 mg/L),
Sn (0.2 mg/L), As (20 µg/L), Co (0.2 mg/L), Ni (0.2 mg/L), V (2 mg/L), Pb (20 µg/L), Cr
(0.2 mg/L), Cu (2 mg/L), Mn (2 mg/L), Zn (5 mg/L), and Ti (2 mg/L) were significantly
lower than the concentrations of metals found in this study.

2.3. Degree of Contamination and Pollution Load Index
2.3.1. Geo-Accumulation Index (Igeo)

We investigated the Igeo values to evaluate the contamination levels of the metals,
computed according to Equation (1).

Igeo = log2

(
Cn

1.5Bn

)
(1)

where Cn and Bn are the street-dust metal concentration of sample n and the background
sample, respectively. The factor of 1.5 was applied to correct for potential background
variation [12]. The risk was evaluated based on the criteria of seven grades, as presented in
Table S2.

2.3.2. Enrichment Factor (EF)

The EF was computed to assess the degree of contamination. This was first carried out
by Buat-Menard and Chesselet [33] for oceanic suspended matter, and then for heavy metals
in street dust [19,25,34]. Table S2 shows the standard criteria for EFs, employed to evaluate
the metals contamination. The EF was estimated based on Equation (2). The elements
Fe [25,34–36], Al [37,38], and Mn [39,40] are common references (ref) when computing the
EFs of toxic metals in environmental samples. In this study, we selected Fe to represent the
reference element.

EF =
(Ci/CFe)Sample

(Ci/CFe)Background
(2)

where EF is the enrichment factor and (Ci/CFe)Sample and (Ci/CFe)Background are the ratios
of the metal concentration (Ci) to the concentration of Fe (CFe) in the street dust and
background samples, respectively.

2.3.3. Pollution Load Index (PLI)

The pollution level of metals in street dust was evaluated via the PLI value calculated
using Equations (3) and (4):

Pi =
Ci

Cb
(3)

PLI = n
√

P1 × P2 × P3 × . . . .Pn (4)

where Pi is the pollution index for element i, Ci and Cb are the concentrations of element i
and the background for element i, PLI is the pollution load index, and n is the number of
metals analyzed in this study. The five categories of Pi and the four categories of PLI [41]
are shown in Table S2.
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2.4. Potential Ecological Risk (PER)

The PER index was first defined by Hakanson [42]. The PER represents the potential
ecological risk factor of multiple metals, calculated [25,26,42] according to Equations (5)
and (6):

Ei = Ti × Ci
f (5)

PER = ∑ Ei (6)

where Ei is the potential ecological risk index of metal i, Ti is the toxic response factor of
each metal (i.e., Cu = Ni = Co = Pb = 5; Mn = Zn = Cr = 2; Cd = 30) [43], and Ci

f is the
contamination factor of metal i. Detailed information on the five categories of Ei and four
categories of PER can found in Table S3.

2.5. Data Analysis

Statistical analysis was carried out using OriginPro 2021 software (OriginLab Corpora-
tion, Northampton, MA, USA). Multivariate statistical analyses (i.e., Pearson’s correlation,
principal component analysis (PCA), and cluster analysis) were conducted to identify the
potential sources of metals.

3. Results and Discussion
3.1. Basic Statistics of Metals Concentration

Figure 2a shows the box plot of the concentrations of the 16 metals from different
sampling sites. In general, the metal concentrations (mg/kg) decreased in the order Ti
(676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn (426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6)
> Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5) > Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn
(7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd (0.6 ± 0.2) > Se (0.4 ± 0.1).
Figure 2b shows the percentage contribution of the metals at different sampling points. Ti,
Zn, and Mn were major contributors to the total metal concentration, accounting for about
35%, 23%, and 21%, respectively, while minor contributions were obtained from Se (0.02%),
Cd (0.03%), and Sb (0.04%). In total, 93% of the samples collected on the highway had heavy
metal concentrations in excess of their background concentrations. This result suggests a
significant influence of anthropogenic sources on the concentrations of these metals [4,44].

In this study, Zn, Cu, Mn, Pb, Cr, and Ni contributed the most to the total metal
concentration in the street-dust samples. The spatial distributions of six selected metals are
shown in Figure 3. High values for Ni (55.7 mg/kg), Pb (93.5 mg/kg), Cr (123.6 mg/kg),
Cu (289.4 mg/kg), and Mn (642.7 mg/kg) were also recorded at D4, and a high value for
Zn (1062.7 mg/kg) was recorded at D3, a location close to high traffic density, a residential
area, the university, and a supermarket. The highest value for heavy metals was recorded
at locations D3 (Zn) and D4 (Ni, Pb, Cr, Cu, and Mn), while the minimum values for
those metals were detected at D2 (Ni and Cr), and D9 (Pb, Cu, Mn, and Zn). At D4, high
concentrations of metals were obtained because it is located near Thu Duc crossroads on
Ha Noi highway, with high traffic density.
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In this study, the coefficients of variation (CV = S.D/mean value) were determined for
16 metals (Se, Cd, Sb, Mo, B, Sn, As, Co, Ni, V, Pb, Cr, Cu, Mn, Zn, and Ti). The CV values
can be classified as low variability for CV < 0.2, moderate variability for 0.2 ≤ CV < 0.5,
high variability for 0.5 ≤ CV < 1.0, and extremely high variability for CV ≥ 1.0 [45]. In this
study, the CV of Cd was 1.1, suggesting extremely high concentration variability. Relatively
high CV values were also obtained for Zn and Sn (0.6 and 0.5). The CV values of Cu,
Pb, Sb, Mo, Se, As, Ni, Cr, Mn, B, V, and Ti showed moderate variability, while the CV
value of Co showed low variability. The high CV values of some of the elements showed a
strong anthropogenic influence [4,41,46,47]. Detailed information on the mean, standard
deviation, min, max, CV, and background concentrations of the 16 metals studied can be
found in Table S4 in the Supplementary Materials.

In a comparison among the metals, high concentrations of Ti, Zn, Mn, Cu, Cr, and
Pb and low concentrations of Sb, Cd, and Se were observed in this study (Table 1). The
mean concentration of Ti (676.3 ± 155.4 mg/kg) in this study was significantly higher
than that of 158.4 mg/kg reported from Asaluyeh County, Iran [17], but the value was
significantly lower than those reported from Hefei, China (1522 mg/kg) [15], Xining City,
China (1977.9 mg/kg) [14], and Nanchang City, China (3277.9 mg/kg) [4].
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The average Zn concentration was 519.2 ± 318.9 mg/kg, with the highest Zn concen-
tration found in sample D3 (1062.7 mg/kg), while the lowest level was measured in sample
D9 (136.1 mg/kg). A high Zn level in street dust was also recorded by Shabbaj et al. [46]
(487.5 mg/kg) and Bartholomew et al. [6] (8430.3 mg/kg). Bourliva et al. [47] and
Idris et al. [48] showed that tire wear, brake wear, brake pads, lubricating oils, engine tires,
diesel exhaust, and wear of machine parts were the potential emission origins of Zn in street
dust. The Zn concentration (519 mg/kg) obtained in urban street dust was over 7.9-fold
higher than the background level (71.27 mg/kg). A similar Zn level was found by Shabbaj
et al. [46] in Jeddah (Saudi Arabia) (487.5 mg/kg). In addition, the Zn value reported in
this study was much higher than those reported from Hanoi, Vietnam (369 mg/kg) [27],
Urumqi, China (224.5 mg/kg) [49], the Petra region, Jordan (129 mg/kg) [9], and Lahore,
Pakistan (67.9 mg/kg) [50]. On the other hand, our value was significantly lower than that
from Jinhua, China (8430.3 mg/kg) [6].

The concentration of Cu (144.7 ± 61.5 mg/kg) was over 5.3-fold higher than the
background level (27.1 mg/kg). The highest Cu concentration was observed in sample D4
(289.4 mg/kg) and the lowest level was reported in sample D9 (64.7 mg/kg). The mean
value of the Cu concentration was higher than those previously reported from various
sites worldwide. For instance, Cu concentrations of 51, 54.8, 64.9, 97.4, and 133.7 mg/kg
were determined in street dust from Dezful, Iran [16], Xi’an China [3], Highway No. 5,
Vietnam [28], Beijing, China [5], and Jinhua, China [6], respectively. This study found a
Cu concentration lower than those documented in other sites, e.g., Ho Chi Minh, Vietnam
(153.7 mg/kg) [12], and Tianjin, China (527.5 mg/kg) [13]. Copper in street dust may also
originate from exhaust gases and lubricating oils [51], or be released from manhole cover
metal, wear of tires and brake pads, and emissions from engine parts [21,52].
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Table 1. Comparison of potentially toxic elements (mg/kg) in street dust from different sites worldwide.

Sampling Sites Se Cd Sb Mo B Sn As Co Ni V Pb Cr Cu Mn Zn Ti References

Xi’an, China * - - - - - - - - 26.4 56.8 94.5 251.8 54.8 406 377 - [3]

Nanchang City, China ** - 1.0 - - - - 10.1 - 28.1 - 89.5 112.5 101.3 - 277.2 3277.9 [4]

Beijing, China * - 0.5 - - - - 4.1 - 40.8 - 62.3 99.5 97.4 536.3 255.9 - [5]

Jinhua, China ** - 4.9 - - - - 8.7 - 76.3 - 110.6 105.3 133.7 451 8430.3 - [6]

Tianjin, China ** - 2.1 21.8 12.8 - 82.9 29.5 10.5 77.9 100.2 120.7 - 527.5 670.6 983.2 0.7 [13]

Xining City, China * - - 8.9 - - 22.8 6.0 24.6 23.5 51.8 62.8 507.8 30.3 377.7 104.8 1977.9 [14]

Hefei, China ** - - 1.6 - - 1.2 2.0 7.2 28.6 31.4 0.9 139.3 41.6 240.5 130.1 1522 [15]

Urumqi, China ** - 1.2 - - - - - 10.9 43.3 - 53.5 54.3 94.5 926.6 294.5 - [7]

Villavicencio, Colombia *** - 0.04 - - - - - - 1.3 - 20.7 18.7 47.7 164.1 118.1 - [8]

Dezful, Iran *** - 0.4 - - - - 3 8 46 38 54 44 51 - 224 - [16]

Asaluyeh County, Iran ** - 0.3 2.2 14.2 - - 4.9 6.5 35.1 - 50. 37.3 121.3 252.7 518.5 158.4 [17]

Irbid-North Shooneh,
Jordan *** - 11.0 - - - - - 36.0 60.0 - 79.0 16.0 4.0 - 122.0 - [9]

Konya, Turkey * - - - - - - - 7 10 68 19 22 16 - 68 - [10]

Abu Dhabi, UAE *** - 0.5 - - - - 0.2 - 0.3 - 50.1 306.3 - - 173.0 - [11]

Ho Chi Minh City,
Vietnam ** - 0.5 - - - - - 7.9 36.2 - 49.6 102.4 153.7 393.9 466.4 - [12]

Ho Chi Minh City,
Vietnam ** 0.4 0.6 0.8 4.1 5.7 7.0 8.3 8.3 30.9 35.5 52.2 81.4 144.7 426.6 519.2 676.3 This study

Note: “-” indicates data not available. The dust samples were analyzed by X–ray fluorescence spectrometry (*), ICP-MS (**), and atomic absorption spectroscopy (***).
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The Cr mean concentration (81.4 mg/kg) exceeded the background level (27.1 mg/kg)
by over 3.0 times. The highest Cr concentration was obtained in sample D4 (123.6 mg/kg),
while the lowest value was observed in sample D2 (51.3 mg/kg). These values were higher
than those previously reported from Asaluyeh County, Iran (37.3 mg/kg) [17], the Lagos
metropolis, Southwestern Nigeria (41.3 mg/kg) [53], and Dezful, Iran (44 mg/kg) [16].

The value of the Pb concentration in street dust (52.2 mg/kg) was similar to the
values reported by previous studies from Dezful, Iran (54 mg/kg) [16], Abu Dhabi–Al Ain
National highway, UAE (50.1 mg/kg) [11], and Beijing, China (62.3 mg/kg) [5]. On the
other hand, higher levels of Pb were also found in other studies, for instance, in Nanchang,
China (89.5 mg/kg) [4], Xi’an, China (94.5 mg/kg) [3], Jinhua, China (110.6 mg/kg) [6],
and Tianjin, China (120.7 mg/kg) [13].

The results of this study revealed that the mean Cd concentration (0.6 ± 0.2 mg/kg)
in street dust was higher than for the background site (0.1 mg/kg). However, more than a
few times higher Cd concentration was found in street dust samples in previous studies
documented by Bartholomew et al. [6], Zhang et al. [13], and Alsbou and Al-Khashman [9].
The previous studies indicated that leakage of diesel fuel and lubricating oil were potential
sources of Cd in street dust [54], and Wahab et al. [21] also revealed that Cd is one of the
trace components in diesel fuel, car paints, and brake pads.

3.2. Heavy Metals Identification Resource
3.2.1. The Correlation Coefficient among the Heavy Metals in This Study

The Pearson’s correlation coefficient could reveal the inter-element relationships
that help to understand the transformation pathways of metals and their sources [25].
Egbueri et al. [24] suggested correlation coefficients in the range of 0.0–0.3 for poor, 0.4–0.6
for moderate, and 0.7–1.0 for strong correlations. A strong correlation between metal
pairs would reveal a similar origin, such as the same sources [26]. The coefficients for
inter-element correlation in street dust are presented in Figure 4a. Strong and significant
(p < 0.05) correlations were obtained for various metal pairs, including: (a) Ti-V (r = 0.86),
Ti-B (0.75), Ti-Mn (0.74), Ti-Pb (0.73); (b) Zn-Pb (0.77), Zn-Mn (0.77), Zn-Mo (0.72), Zn-Co
(0.71); (c) Cu-Pb (0.91), Cu-Sn (0.89), Cu-Ni (0.8), Cu-Sb (0.82), Cu-Cr (0.76), Cu-Co (0.75),
Cu-V (0.74); (d) Cr-Sn (0.9), Cr-Mo (0.87), Cr-Ni (0.86), Cr-Pb (0.73); (e) Pb-Sb (0.82), Pb-V
(0.77), Pb-Sn (0.76), Pb-Co (0.71); (f) V-B (0.82), V-Co (0.79), V-Sb (0.71); (g) Ni-Sn (0.89),
Ni-Mo (0.79), Ni-Sb (0.72); (h) Co-Sb (0.83), Co-Sn (0.83); (i) Sn-Mo (0.84), Sn-Sb (0.83); (j)
Mo-Sb (0.75). Anthropogenic activities are well known as potential sources of metals in
street-dust samples [23,55]. Processes including tire wear, brake wear, brake pads, diesel
exhaust, lubricating oils, engine tires and wear of machine parts are possible sources of Zn,
Pb, Ni, and Cr [47,48], while industrial processes, gas refineries, fuel combustion [56,57],
and car paints are possible sources of Ni [21]. Lau et al. [58] showed that smelting industries
produce a large number of heavy metals (e.g., Fe, Co, Mn, and V), and e-waste recycling
could contribute large amounts of trace elements such as Pb and Cd to street dust.
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3.2.2. Principal Component Analysis (PCA)

PCA is a widely applied multivariable statistical method to identify the potential
sources of street-dust metals [26,59]. Figure 4b shows the rotated component matrix
results for metals in street dust. Detailed information on the scree plot of the PCA and
the results of the PCA for 16 metals in street dust from Ha Noi highway, HCM City, can
be found in Figure S1 and Table S3. The Kaiser–Meyer–Olkin (KMO) value was 0.72,
suggesting the suitability of the PCA method for this study. The PCA data displayed three
main components with eigenvalues >1. The three principal components (PCs) obtained
explained more than 84% of the variance of the data.

The component PC1 was dominated by Sb, Mo, Sn, As, Co, Ni, V, Pb, Cr, and Cu,
accounting for 56.8% of the total variance. Sources of Cu, Pb, and Zn could be various
anthropogenic activities (e.g., tire wear, brake wear, diesel exhaust, and wear of machine
parts) [49,60,61]. Nickel (Ni) is used in battery and electronic manufacturing [2]. In addition,
Hini et al. [49] indicated that Cr can be derived from the wearing and aging of tires and
from tool manufacturing. The EF values of V (1.1), As (1.3), Ni (1.4), Sb (2.17), Cr (2.2), and
Pb (2.8) were between 1 and 3, suggesting less enrichment of these metals. On the other
hand, the EF values of Cu (3.9), Mo (4.2), and Sn (4.3) ranged between 3 and 5, suggesting
a moderate enrichment level. Therefore, it is suggested that these metals (Sb, Mo, Sn,
As, Ni, V, Pb, Cr, and Cu) might originate from vehicular and industrial activities. The
result of the enrichment factor analysis showed that the EF value of Co (0.8 < 1) indicated
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a limited influence of human activity (i.e., no enrichment). The results of the PCA and
the EF indicated that Co was of lithological (natural) origin, while other metals (i.e., Sb,
Mo, As, Ni, Sn, V, Pb, Cr, and Cu) in street dust were of mixed origins (lithological and
anthropogenic origins).

The PC2 component was characterized by high loading of Se, B, Mn, Ti, and Zn,
contributing 18.3% to the total variance. The EF values of Se (0.95) and Mn (0.7) were
lower than 1, thereby indicating that these metals showed limited enrichment and less
impact from human activity. The EF values of B (2.02) and Ti (1.05) were between 1 and
3, demonstrating minor enrichment, and the EF value of Zn (5.28) ranged between 5 and
10, suggesting a moderate–severe level of enrichment. This means that Zn was caused
by vehicular activities. The results of the PCA and the EF indicated that Se and Mn were
of lithological (natural) origin, while the elements B, Ti, and Zn in street dust were of
vehicular origin.

The PC3 component was dominated by Cd, and this factor contributed 9.2% to the
total variance. Sources of Cd in street dust could be from diesel fuel, brake pads, and car
paints [21]. In addition, the EF value of Cd (3.85) revealed moderate enrichment. This
suggested that human activities may have influenced the concentration of Cd in street dust.

3.2.3. Cluster Analysis

Cluster analysis was used to reveal the differences between the potentially toxic
elements and the differences among sampling sites for street-dust samples from the study
area. The Euclidean distance method was used in the clustering of variables and row
dendrograms. The results are represented as a heat map in Figure 4c. The top dendrogram
shows the similarity between potentially toxic elements while the left dendrogram shows
the clustering of the sampling sites. Two clusters of elements were identified: Mn, Zn, and
Ti in cluster 1 and Se, Sb, Cd, Mo, B, Sn, As, Co, Ni, V, Pb, Cr, and Cu in cluster 2 (Figure 4c).
The left dendrogram provides detailed information about the street-dust samples from
which spatial differences were inferred. The cluster analysis results indicate two clusters
of sampling sites: (1) D3, D4, and D5; (2) D1, D6, D8, D10, D2, D7, and D9, in terms of
similarities (Figure 4c).

3.3. Pollution Indices
3.3.1. The Geo-Accumulation Index (Igeo)

Igeo values were computed to assess the levels of accumulation of the metals in street
dust (Figure 5a). The results show that Co, Se, Mn, Ti, and V were classified as uncon-
taminated, as the Igeo values of Co (−0.39 ± 0.22), Se (−0.25 ± 0.4), Mn (−0.1± 0.37), Ti
(−0.08 ± 0.34), and V (−0.07 ± 0.25) were less than 0. The mean values of Igeo computed for
As (0.15 ± 0.19), Ni (0.34 ± 0.38), B (0.87± 0.24), Sb (0.89 ± 0.59), and Cr (0.95 ± 0.4) belong
to the uncontaminated-to-moderately-contaminated class. For Pb, Cd, Cu, Sn, Mo, and Zn,
the Igeo values ranged from 1 to 2 (Pb (1.21 ± 0.67), Cd (1.37 ± 1.07), Cu (1.72 ± 0.61), Sn
(1.79 ± 0.81), Mo (1.85 ± 0.56), and Zn (2 ± 0.99)), indicating a moderately contaminated
level. Similar Igeo results for Pb, Cu, and Zn have been reported by Shahab et al. [18]. The
mean Igeo value was the highest for Zn (2 ± 0.99) and increased in the following order: Co
(−0.39 ± 0.22) < Se (−0.25 ± 0.4) < Mn (−0.1± 0.37) < Ti (−0.08 ± 0.34) < V (−0.07 ± 0.25)
< As (0.15 ± 0.19) < Ni (0.34 ± 0.38) < B (0.87± 0.24) < Sb (0.89 ± 0.59) < Cr (0.95 ± 0.4) <
Pb (1.21 ± 0.67) < Cd (1.37 ± 1.07) < Cu (1.72 ± 0.61) < Sn (1.79 ± 0.81) < Mo (1.85 ± 0.56)
< Zn (2 ± 0.99), with higher Igeo values indicating greater levels of contamination. High
Igeo values for Zn and Pb in the study can be linked to traffic activities. Among the 16
target metals, Zn was the biggest contributor to the potential ecological risk. The location
exposed to the highest potential risk was D3.
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3.3.2. Enrichment Factor (EF)

The EF values for each metal were determined to distinguish anthropogenic from
natural sources and to evaluate the contamination level [62]. From Figure 5b, the mean
values of the EF were ranked in the order Zn (5.28 ± 3.24) > Sn (4.27 ± 2.21) > Mo
(4.21 ± 1.70) > Cu (3.86 ± 1.64) > Cd (3.85 ± 2.17) > Pb (2.75 >1.21) > Cr (2.18 ± 0.60) > Sb
(2.17 ± 0.86) > B (2.02 ± 0.32) > Ni (1.42 ± 0.44) > As (1.27 ± 0.39) > V (1.05 ± 0.17) > Ti
(1.05 ± 0.24) > Se (0.95 ± 0.32) > Co (0.84 ± 0.13) > Mn (0.70 ± 0.18). The mean values
of the EF index of Mn (0.7), Co (0.84), and Se (0.95) were below 1, indicating that these
elements were categorized as showing no enrichment. The EF values of Ti (1.05), V (1.05),
As (1.27), Ni (1.42), B (2.02), Sb (2.17), Cr (2.18), and Pb (2.75) were between 1 and 3, thereby
demonstrating minor enrichment. The EF values of Cd (3.85), Cu (3.86), Mo (4.21), and Sn
(4.27) were between 3 and 5, revealing moderate enrichment by these elements. The EF
value of Zn (5.28) ranged between 5 and 10, suggesting moderate–severe enrichment levels.
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This suggests that in our sampling area, Cd, Cu, and Zn might be affected by anthropogenic
activity. This indicates that human sources are very important [39].

3.3.3. Pollution Load Index (PLI)

A summary of the Pi and PLI values of the 16 target metals is shown in Figure 5c. The
street-dust samples showed low pollution by Co (PCo = 1.2), Se (PSe = 1.3), V (PV = 1.4),
Mn (PMn = 1.4), Ti (PTi = 1.5), As (PAs = 1.7), and Ni (PNi = 2.0) and moderate pollution by
B (PB = 2.8), Sb (PSb = 3.0), and Cr (PCr = 3.0). The remaining elements, Pb (PPb = 3.8), Cd
(PCd = 5.3), Cu (PCu = 5.3), Mo (PMo = 5.8), Sn (PSn = 5.9), and Zn (PZn = 7.3) were found
to show heavy pollution. Kamani et al. [63] calculated the values of Pi for heavy metals
in street dust in Tehran, Iran, obtaining values for Cd (PCd = 4.77), Pb (PPb = 4.78), Cu
(PCu = 10.22), and Zn (PZn = 10.37), that indicated heavy pollution. Hayrat and Eziz [41]
also revealed that dust samples from Korla, China were heavily polluted by Cr (PCr = 3.33),
Cu (PCu = 5.81), Pb (PPb = 7.32), and Cd (PCd = 35.0), with the degree of pollution associated
with anthropogenic activity. Another study conducted by Wahab et al. [21] in Malaysia
presented the Pi values of metals in street dust in the Tunku Abdul Rahman road, Kuala
Lumpur, where Zn (PZn = 3.94), Pb (PPb = 4.20), Cr (PCr = 5.78), and Cu (PCu = 8.43) showed
high levels of pollution. The PLI values of metals in street dust fluctuate from 1.6 to 4.0,
and an average value of 2.6 indicates moderate pollution (Figure 5c). Similar results have
been reported by Dytłow and Górka-Kostrubiec [60] and Kabir et al. [22], who studied the
toxic metals in street dust in Poland and Bangladesh.

3.4. Potential Ecological Risk (PER)

The PER data were calculated by summing the cumulative effects of all metals. The
PER results for different locations are presented in Figure 6a. The mean level of the PER for
the calculated metals in the street-dust samples was 207.43, and the values ranged from
111.17 to 431.53, suggesting a high potential ecological risk. Similarly, Kormoker et al. [61]
found that the level of ecological risk from heavy metals (i.e., Cd, As, Pb, Cu, Ni, and Cr) in
Lokhikol, Bangladesh was very high (PER = 270). Kamani et al. [63] conducted their study
in the center of Tehran and revealed that the highest PER values were associated with bad
traffic jams. The PER ranged from 81.93 to 508.2 with a mean value of 234.0, indicating
a high level of potential ecological risk. Comparing the sampling sites, the highest PER
value was at D4 and the lowest value was at D9. In this study, the average contribution of
individual metals to the PER (Figure 6b) decreased in the following order for the elements:
Zn (40.7%) > Mn (33.5%) > Cu (11.4%) > Cr (6.4%) > Pb > (4.1%) > Ni (2.4%) > Co (0.7%) >
As (0.6%) > Cd (0.2%). The results suggest that Zn and Mn could be the main contributors
to the ecological risk in our sampling area. Since Zn and Mn are known to be released from
anthropogenic sources [48], it is necessary to control their emission to limit any threats to
the ecosystem.

Figure 7 shows the relationship between the PER and the EF of nine metals (Cd, Co,
Cr, Ni, Cu, Pb, As, Mn, and Zn). The R2 values of Cu, Zn, and Mn were 0.9098, 0.8208,
and 0.7563, respectively. This suggests that the EF values of Cu, Zn, and Mn were closely
related to the PER. In contrast, no obvious correlation was found for Cd, Cr, Co, Ni, As,
and Pb with regard to PER.
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4. Conclusions

This study was conducted to evaluate the concentration of 16 metals (Se, Cd, Sb, Mo, B,
Sn, As, Co, Ni, V, Pb, Cr, Cu, Mn, Zn, and Ti) in street dust from Ha Noi highway, HCM City.
The mean concentrations of all metals were higher than the background values. Compared
to the other metals, the highest concentration was observed for Ti (676.3 ± 155.4 mg/kg)
and the lowest concentration for Se (0.4 ± 0.1 mg/kg). The metal concentrations decreased
in the following order: Ti > Zn > Mn > Cu > Cr > Pb > V > Ni > Co > As > Sn > B >
Mo > Sb > Cd > Se. The PCA and EF results revealed that Se, Mn, and Co were derived
from a lithological (natural) origin, while most of the metals were significantly affected
by anthropogenic activities, including industrial and vehicular sources. The PLI values of
metals in street dust range from 1.6 to 4.0 and an average value of 2.6 indicates moderate
pollution. We found that the value of PER (207.43) showed a high potential ecological risk.
The results suggested that Zn (40.7%) and Mn (33.5%) could be the major contributors to the
ecological risk. Although only a small number of samples were collected, the outcomes of
this study will be useful for scientists to fill the information gap on the pollution of various
metals in street dust from Vietnam, where there is a lack of available observational data.
Furthermore, a large-scale survey including various areas with different characteristics is
needed, as a future study, to better understand the pollution levels and emission sources of
heavy metals in street dust.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12121548/s1, Figure S1: The scree plot of PCA; Table S1: Location and GPS coordinates
of sampling (D) and background sites (BG); Table S2: The geo-accumulation index classification,
standard criteria of enrichment factors, and pollution load index classification for the assessment
of the pollution status of sampling sites; Table S3: The potential ecological risk index (Ei) and the
potential ecological risk (PER) classification for ecological risk assessment; Table S4: Concentrations
(mg/kg) of metals in street dust for the different sampling sites; Table S5: Results of principal
component analysis for 16 heavy metals in street dust from Ha Noi highway, Ho Chi Minh City.
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