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Abstract: In recent years, frequent severe haze weather has formed in China, including some of the
most populated areas. We found that these smog-prone areas are often relatively a “local climate”
and aim to explore this series of scientific problems. This paper uses remote sensing and data
mining methods to study the correlation between haze weather and local climate. First, we select
Beijing, China and its surrounding areas (East longitude 115◦20′11′′–117◦40′35′′, North latitude
39◦21′11′′–41◦7′51′′) as the study area. We collected data from meteorological stations in Beijing and
Xianghe from March 2014 to February 2015, and analyzed the meteorological parameters through
correlation analysis and a grey correlation model. We study the correlation between the six influencing
factors of temperature, dew point, humidity, wind speed, air pressure and visibility and PM2.5, so as
to analyze the correlation between haze weather and local climate more comprehensively. The results
show that the influence of each index on PM2.5 in descending order is air pressure, wind speed,
humidity, dew point, temperature and visibility. The qualitative analysis results confirm each other.
Among them, air pressure (correlation 0.771) has the greatest impact on haze weather, and visibility
(correlation 0.511) is the weakest.

Keywords: haze; local climate; PM2.5; grey correlation analysis

1. Introduction

With the progress of technology and industry development, the term “haze” has
gradually entered the news media’s vision and the general public in recent years. Haze
often occurs when dust and smoke particles accumulate in relatively dry air. In recent
years, with the frequent occurrence of haze weather, people’s health, daily life, production,
and labor have been affected to varying degrees [1–5]. Due to the increasingly severe
air pollution, the number of haze days in China has increased. As a result, China’s
Meteorological Bureau has added haze in the severe weather warning and forecast [6–10].

In the current studies of haze weather impact factors, they use source analysis technol-
ogy to analyze. Analytical technology includes two aspects: the source diffusion model
and receptor model, including a diffusion model based on pollution sources as the research
object, due to the diffusion model needing to know the advanced list of sources of pollution,
thus to some extent hindered its application in the field of haze weather factor [11,12].
The receptor model is based on contaminated areas. The source analysis technology can
obtain the types, chemical component characteristics, and contribution of different pol-
lution sources in the haze. The influence degree of each impact factor on haze weather
can be measured accordingly. The receptor model can be subdivided into two different
methods: chemical method and microscope method [13–17], in which the chemical method
also includes enrichment factor method, chemical mass balance method, factor analysis
method, UNMIX model, and rough set theory [18–21]. Although a small part of research
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on haze factors has adopted the microscope method, the chemical method in the receptor
model is more widely used in researching haze impact factors.

Globally speaking, there are still few studies on particulate matter impact factors
using the microscope. As a result, many scholars are still more inclined to focus on the
conservation of chemical mass and combine mathematical statistics with chemical methods
to study haze impact factors.

The scholars [22] adopted the chemical mass balance method to conduct the research.
They determined that the main influencing factors of atmospheric particulate matter in
cities Zhejiang Province were urban dust and motor vehicle exhaust. Lu et al. [23] used a
chemical transport model to investigate the response of secondary inorganic aerosols (SIA)
to chemical processes and their precursor emissions over northern and southern city-clusters
of China in January 2014. Unexpectedly, SIA concentrations with low precursor emissions
were much higher over the southern regions than those over the northern region with high
precursor emissions, based on ground observations and high-precision simulations.

The factor analysis model is another method widely used in haze research. The main
principle is to extract the common factor in variable data and then calculate the load by
correlating the chemical composition of particulate matter. Based on factor weight and
knowledge of characteristic elements, the influence degree of each factor in the particulate
matter on haze weather is judged. Taking four Chinese cities (Beijing, Tianjin, Shanghai,
and Chongqing) as examples [24], Yao et al. studied the reasons for fog and haze caused by
multi-factor coupling. Firstly, the contribution of four factors to fog and haze in Tianjin
was analyzed. Then, these four cities were compared to explore the impact of the same
factor on fog and haze in different regions. Secondly, the functional relationships between
these four factors and the air quality index (AQI) were obtained based on statistical data.
Finally, a sensitivity analysis was carried out to get the dominant factor of fog and haze in
these four cities. Gan et al. [25] used 287 cities’ panel data from 1998 to 2016, and PM 2.5
represents haze pollution. The spatial Durbin model explores the role of the economy and
population agglomeration on smog pollution. Wu et al. [26] propose using the improved
method of the degree of grey slope incidence to analyze the weight factors of the effects of
haze on irradiance. The exponential-linear model is used to describe the impact of haze on
the amount of irradiance.

The UNMIX model, enrichment factor method, and rough set theory in the chemical
method have also made corresponding contributions to the study of influence factors
of particulate matter. Zheng et al. [27,28] analyzed the source of haze. They found the
classification relation of the element content of haze particles. Thus, they could determine
the impact of emission sources on haze weather.

In addition to using a single model for the study of particulate matter, the above
methods can also be combined to discuss the impact factors of particulate matter. For ex-
ample, to quantify regional sources contributing to submicron particulate matter (PM1)
pollution in haze episodes, Tang et al. [29] conducted online measurements combining two
modeling methods, namely, positive matrix factorization (PMF) and backward Lagrangian
particle dispersion modeling (LPDM), for one month in urban Nanjing, a city located in the
western part of Yangtze River Delta (YRD) region of China. When Baosheng Z. et al. [30]
studied the haze particles, they adopted diffusion and comprehensive receptor models.
They found that the coking, sintering, and smelting dust sources of iron and steel had the
most significant impact on the haze particles influencing factors. Cai et al. [31] calculated
and decomposed the regional differences of haze pollution intensity distribution in China
using the index method. At the same time, they established the convergence model of haze
pollution intensity to test the regional differences of haze pollution intensity distribution
in China.

At present, there are many kinds of research on haze particulate matter around the
world, but these researches have their limitations. For example, the diffusion model
takes the pollution source as the research object. Using the WRF-FLEXPART atmospheric
diffusion model, He et al. [32] simulated the pollutant diffusion processes of two steel
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industries from October 2018 to March 2019 in Caofeidian district, and then analyzed
the pollutant diffusion characteristics, the impacts of atmospheric circulation and local
circulation on pollutants diffusion, the contribution of steel industry emissions on air
quality nearby emission sources and air quality observation stations. As the diffusion
model needs to know the list of pollution sources in advance, its application in haze
weather impact factors is hindered to some extent [11].

The method of studying haze pollution through satellite data has also been widely
used in academia [33]. Sorek-Hamer et al. [34] proposed the strategy of using satellite
products to simulate PM2.5 and short-term pollution events in 2020. Mishra, R.K. et al. [35]
uses Landsat 8 satellite data to predict the ground PM2.5 concentration in Delhi.

The pollution source determines the formation of haze weather. It is closely related
to the meteorological parameters of the research area during the research time in certain
factors. Meteorological parameters have an impact on the dispersion and transformation
of pollutants in the atmosphere. Under relatively stable pollution sources, meteorological
parameters are an essential factor for aerodynamics studying haze weather.

This paper studies the influencing factors of haze weather starting from the influence
of aerodynamics and meteorological conditions. First, through the correlation analysis
between the hourly concentration difference data of the smog component PM2.5 (the differ-
ence between the observation points in the main urban area and the observation points in
the outer suburbs) and the meteorological factor data difference (the difference between
the observation points in the main urban area and the observation points in the outer
suburbs), we get the influence relationship between the temperature difference, humidity
difference, dew point difference, wind speed difference, and PM2.5 difference. Then, using
gray correlation analysis from the perspective of multi-factor interaction, it is found that
the impact of each indicator on PM2.5 from large to small is air pressure, wind speed,
humidity, dew point, temperature, and visibility. This result mutually confirms the results
of qualitative analysis.

2. Data and Study Area

In this paper, Beijing and its surrounding areas (115◦20′11′′–117◦40′35′′,
39◦21′11′′–41◦7′51′′) were selected as the study area. In addition, two meteorological
stations (urban station and Xianghe station) were selected. The monitoring data are di-
vided into eight categories: air temperature, air pressure, evaporation, precipitation, wind
speed and direction, sunshine duration, 0 cm ground temperature, and relative humidity.
Limited by monitoring conditions, only Beijing and Xianghe stations had continuous AOD
detection values in the study area.

As a whole, the selected study area is flat in the southeast and higher in the northwest.
Beijing in the study area is located at the junction of plain and mountain terrain, surrounded
by mountains in the west, north, and northeast. The plain facing Bohai Sea in the southeast
constitutes a special terrain of sea back mountains. Its climatic conditions are short in spring
and autumn, high temperature and rainy in summer, cold and dry in winter, characterized
by a warm temperate sub-humid continental monsoon climate.

In this paper, the data were selected from the temperature, humidity, dew point, wind
speed, and PM2.5 concentration of Beijing urban area and Xianghe monitoring station
at 10 and 16 o’clock every day from March 2014 to February 2015. Since grades monitor
the observed values of wind speed indicators, a random number method is adopted to
preprocess them according to the wind speed range represented by each grade.

Source of data set: daily observation data set of China Meteorological Element station,
resource and environmental science data center of Chinese Academy of Sciences (https:
//www.resdc.cn/data.aspx?DATAID=230, accessed on 10 October 2016).

https://www.resdc.cn/data.aspx?DATAID=230
https://www.resdc.cn/data.aspx?DATAID=230
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3. Methods

This section introduces the spatial autocorrelation method and the gray correlation
analysis model, which are used to analyze the influence of meteorological factors on the
haze in the study area.

3.1. Spatial Autocorrelation

The research entities are interrelated, and the degree of such association is gradually
enhanced with the shortening of distance [36]. Haze weather also follows the first law
of geography. The haze weather in the research area will be spatially affected by the
surrounding area.

Spatial autocorrelation refers to the correlation and dependence between a unit of a
research area and the observed data of the surrounding area within a specific research area,
which can generally be divided into global spatial positive correlation and local spatial
positive correlation. At the same time, spatial autocorrelation can be divided into positive
and negative correlations [37–39].

Global Spatial Autocorrelation

Global autocorrelation refers to the spatial patterns and characteristics of the research
parameters reflected in the whole research area. In the study of this section, we choose the
most common Moran’s I index to represent the changes of global spatial autocorrelation
characteristics in the study area.

Moran’s I index represents the similarity of research parameters in adjacent regions
in space in the research area, similar to the correlation coefficient. The range of this
index is (−1, 1). When the index range is (0, 1), then the research area in the whole
research space for positive correlation, and the index value is close to 1, the stronger
the positive correlation, namely the research area of observation properties displayed on
the spatial pattern of “the areas surrounding the high concentrations of pollutants-high
concentrations of pollutants” (later referred to as “high-high”) “the areas surrounding the
high concentrations of pollutants-high concentrations of pollutants” (hereinafter referred
to as “low-”) after the agglomeration pattern; When the index range of (1, 0), then the
research area in the whole research space for negative correlation, and the index value,
the closer to 1, the stronger the negative correlation, the observed attributes of the study
area in the whole space pattern present in high concentrations of pollutants—“study area
around the low pollutant concentration” (later referred to as “high-low”) research area
pollutant concentration low-high concentrations of pollutants around “(later referred to as
“low-high”)” of agglomeration pattern; if the index is 0, then there is no autocorrelation.
Global autocorrelation Moran’s I index calculation Formula (1) as shown below:

I =
∑n

i=1 ∑n
j=i wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=i wij

(1)

In the formula, I is the global autocorrelation Moran’s I index, xi is the observed value
in the study area, wij is the spatial weight matrix, S2 = 1

n ∑i (xi − x)2, x = 1
n ∑n

i=1 xi.
The calculated global autocorrelation Moran’s I index must also be tested, as shown

in Formula (2), where Z is a standardized statistic.

Z =
I − E(I)√

var(I)
(2)

If the null hypothesis is Y, there is no autocorrelation between all the study parameters
in the study area. Calculate the standardized statistic Z to test the significance of Y.

3.2. Grey Relational Analysis Model

Grey relational analysis belongs to the grey system, which means to quantitatively
analyze the development trend of the dynamic process and judge the degree of correlation
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by comparing and analyzing the correlation of the change of factor curve. The closer
the change rate and direction of the experimental sequence and the theoretical curve are,
the more significant the correlation between the experimental sequence and the theoretical
value will be. Thus, many factors cause the increase of haze weather frequency, and the
secondary and primary factors can be identified through gray correlation analysis.

In order to find out the main influence factors and the interrelation of each factor,
we need to analyze the distance between comparison sequence and reference sequence by
grey correlation and then determine the difference and relation between them.

When gray correlation analysis is adopted, the system characteristic sequence can be
expressed as Equation (3) [37]:

X0 = (x0(1), x0(2), . . . . . . , x0(n)) (3)

The correlation factor sequence is as Equation (4):

Xi = (xi(1), xi(2), . . . . . . , xi(n)) (4)

Firstly, dimensionless processing is applied to the sequence of related factors and
system feature sequences. γ(X0, Xi) is used to represent the grey relational degree of x0
and xi, and γ(x0(k), xi(k)) is used to represent the correlation between x0 and xi in K as
shown in Equation (5):

γ(X0, Xi) =
1
n ∑n

k=1 γ(x0(k), xi(k)) (5)

Any two behavior sequences correlate with the gray system, therefore

0 < γ(X0, Xi) ≤ 1 (6)

When X0 = Xi, gamma γ(X0, Xi) = 1. The grey relational degree varies with different
environments, so it may not satisfy the principle of symmetry. Then, we have Equations (7)
and (8).

Xi, Xj ∈ X = {Xs|s = 0, 1, 2, . . . . . . , m; m ≥ 2} (7)

where
γ
(
Xi, Xj

)
6= γ

(
Xj, Xi

)
, i 6= j (8)

However, for the grey correlation set with only two sequences, the sequences are more
symmetric, as Equation (9):

γ
(
Xi, Xj

)
= γ

(
Xj, Xi

)
⇔ X =

{
Xi, Xj

}
(9)

According to the above principle, the grey relational degree of two sequences is
closely related to the closeness of sequence curves. According to the basic principle of grey
relational analysis, the grey relational degree depends on the closeness of two sequence
curves. The smaller |x0(k)− xi(k)| is, the larger γ(x0(k), xi(k)) is. Equation (10) is the
calculation of the correlation coefficient:

ξi(k) =
minimink|y(k)− xi(k)|+ ρmaximaxk|y(k)− xi(k)|
|y(k)− xi(k)|+ ρmaximaxk|y(k)− xi(k)|

(10)

Write ∆i(k) = |y(k)− xi(k)|, then we can get Equation (11)

ξi(k) =
minimink∆i(k) + ρmaximaxk∆i(k)

∆i(k) + ρmaximaxk∆i(k)
(11)

where ρ represents the resolution coefficient, which generally varies with the specific
situation. When less than or equal to 0.5463, take ρ = 0.5, at which point the best resolution
is obtained.
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4. Results
4.1. Correlation Analysis of PM2.5 and Aerodynamic Factors

Due to the dimensionality of significant differences among all kinds of data, For-
mula (12) is first used to normalize the data. At the same time, considering that a large
number of point data are used in the analysis, we set the sliding step K to process the
mean value of the original point data. First, we calculate the mean value of K with K as the
count. Then, we take the mean value successively increasing to form a series of continuous
observation mean values. In this section, we take the step size K = 35.

X =

[
Xi −min

(
X123...j

)][
max

(
X123...j

)
−min

(
X123...j

)] (12)

4.1.1. Temperature Difference

Usually, there is no direct physical correlation between PM2.5 and air temperature.
The correlation between air temperature and haze weather affects the migration and
diffusion of PM2.5 by affecting atmospheric stability. The exchange intensity between upper
air and lower air increases with the increase of atmospheric temperature. The concentration
of PM2.5 also decreases with the increase of its diffusion in the vertical direction of the
atmosphere. Conversely, the concentration of PM2.5 increases as its diffusion decreases.
The correlation between temperature difference and PM2.5 difference is shown in Figure 1.
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Figure 1. Correlation between temperature difference and PM2.5 difference.

As shown in Figure 1, the correlation analysis of the difference between the temper-
ature and PM2.5 data collected by the two stations in the study area (data collected by
the urban stations minus data collected by the Xianghe station) shows that the correlation
coefficient R = 0.1334, showing a weak positive correlation between the two. The main
reason is that the concentration of inhalable particulates in the atmosphere is different from
the optical thickness of aerosol. Furthermore, the concentration of inhalable particulates is
also related to other characteristic weather in the study area (Beijing) and specific human
activity factors, such as sand-prone weather in Beijing in spring and central heating in
autumn and winter. In addition, the annual general temperature of urban stations is higher
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than that of suburban stations, and the PM2.5 concentration detected by urban stations is
also higher than that of suburban stations in most of the study time.

4.1.2. Dew Point Difference

When the pressure is fixed, the temperature at which gaseous water in the atmosphere
is converted to a liquid state by saturation is the dew point. The dew point is often associ-
ated with relative humidity, and the dew point approaches the temperature gradually with
the increase of relative humidity. Thus, when the dew point is constant, the temperature
is inversely proportional to the relative humidity. The correlation between the dew point
difference and PM2.5 difference is shown in Figure 2.
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By observing Figure 2, the law of dew point and PM2.5 concentrations are relatively
significant, with the correlation coefficient R = 0.3046, which may be due to the effect of
this factor and other parameters on pollutant concentration.

4.1.3. Humidity Difference

In aerodynamics, humidity is a measure of the amount of water vapor in the atmo-
sphere. Generally, low atmospheric humidity means that the weather is clear and the air is
dry, the atmosphere is stable, the diffusion is poor, and the concentration of PM2.5 tends
to be high. Conversely, higher air humidity leads to a decrease in PM2.5 concentrations.
The analysis results in this section are not consistent with this. However, some studies also
believe there is a positive correlation between PM2.5 concentration and humidity, with the
correlation coefficient R = 0.3128. In this regard, we make the following analysis:

1. Humidity influences the diffusion and migration of PM2.5 and the composition
of PM2.5.

2. When the composition of PM2.5 is different, humidity has different effects on its
concentration. Secondary particles such as nitrate and sulfate are more likely to be
generated when humidity is high. Some studies have pointed out that the culprit for
haze weather is such secondary particles.
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3. When the atmospheric state is relatively stable, water vapor in the high-humidity
atmosphere is adsorbed on the suspended PM2.5, causing haze weather.

4. The influence of humidity on PM2.5 concentration exists complex and different
mechanisms in different threshold ranges.

Then, we made the humidity difference according to the different humidity of the two
stations and made a correlation analysis with the corresponding difference of PM2.5 to
further analyze the correlation between local climate and haze weather. The correlation
between humidity difference and PM2.5 difference is shown in Figure 3.
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In Figure 3, the correlation analysis of the difference between the humidity and
PM2.5 data collected by the two stations in the study area shows the correlation coefficient
R = 0.3128, showing a positive correlation between the two. The difference in humidity
showed that it increased to the peak and immediately began to decline within the whole
year. The concentration of particulate matter fluctuated within the range of higher values
throughout the year. In the early summer, the difference of PM2.5 gradually decreases and
then starts to rise again after the end of summer. Since then, humidity difference data and
particulate concentration values show a trend of up and down oscillation.

4.1.4. Wind Speed Difference

From the perspective of aerodynamics, the essential factor affecting PM2.5 is wind
speed. In contrast, other factors affect it through wind speed, manifested as diffusion, trans-
mission, and re-dusting. With the enhancement of wind speed, the PM2.5 concentration
increases. In diffusion and dilution, the concentration of PM2.5 decreases. On the contrary,
a large amount of PM2.5 is easy to gather under the condition of low wind speed, forming
haze weather. However, when the wind speed is in a higher range, the PM2.5 that sinks on
the ground will be blown up again, forming a re-dusting effect. The correlation between
wind speed difference and PM2.5 difference is shown in Figure 4.
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Correlation analysis of the difference between wind speed and PM2.5 data collected
by two stations in the study area (data collected by urban stations minus data collected by
Xianghe station) shows a strong positive correlation between the two, with the correlation
coefficient R = 0.3456. As shown in Figure 4, the wind speed difference fluctuates back
and forth throughout the year. Meanwhile, the difference of PM2.5 concentration increases
with the increase of wind speed. In other words, when the urban wind speed is high,
the concentration of PM2.5 is relatively low. Conversely, the concentration of PM2.5 is
relatively high when the urban wind speed is low.

4.2. Grey Correlation Analysis of PM2.5 and Aerodynamic Factors

The above uses a variety of impact factors to analyze the correlation between local
climate and haze weather. Next, we study the most critical and meteorological factors that
can most affect haze weather.

Different ground meteorological impact factors have different aerodynamic principles
on PM2.5, which results in their varying degrees of influence on PM2.5. This section
uses the grey correlation method to analyze the joint influence of humidity, air pressure,
wind speed, dew point, temperature, and visibility on PM2.5 concentrations. The sys-
tem’s characteristic sequence and influencing factor sequence are, respectively, hourly
concentration of PM2.5 and the observed values of humidity, air pressure, wind speed,
dew point, temperature, and visibility in the same period. After considering the dimen-
sionality of the significant difference between the data, Formula (15) was used to conduct
range normalization processing of the data before analysis.

4.2.1. Grey Correlation Analysis Based on Time Window

After analysis, we found that the influence of various parameters on the concen-
trations of PM2.5 in different seasons is not consistent, so in this section, we use “time
window value” grey correlation analysis: specify the first gray analysis sample size K as
“time window”, starting from the first observation, with K as the sample size calculation
correlation K1, again from the second set of observations, in turn, calculating correlation
K2, and then through the analysis of (K1 Smoothing and mean processing of correlation
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degree sequence of Kn). Finally, the average value of the daily data of the two stations
is taken as the meteorological parameter. Then, the correlation analysis between each
meteorological parameter and PM2.5 is carried out based on the grey correlation of the
time window, as shown in Figure 5.
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In the whole year, the influence of temperature on PM2.5 concentration fluctuates
greatly, manifested as a strong influence in spring and winter, gradually increasing influ-
ence in autumn with the decrease of temperature and low influence in summer. Among
the four seasons, the influence degree of winter is the highest.

Among the remaining factors, the influence of dew point on PM2.5 is close to the
temperature, shows strong influence in spring and winter, and low influence in summer.
The influence of humidity on PM2.5 concentrations is shown as a sharp weakening and
strengthening in late spring and early autumn, while it is always in a high influence
area in spring. The influence of air pressure on PM2.5 concentration fluctuates greatly.
Spring and summer are always within the high influence range. As the temperature drops
into autumn and winter, the influence degree gradually falls into the low-value region.
The influence of wind speed on PM2.5 concentration has no significant difference with
seasonal changes in the whole year. It is always in the high influence area, with an average
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of around 0.7 and slightly higher than the other three seasons in summer. Visibility has a
different effect on PM2.5 concentrations than other aerodynamic factors: the level of PM2.5
concentrations directly affects visibility. However, visibility does not directly affect the
concentration of PM2.5, and visibility appears only as a metric. Therefore, its influence
on PM2.5 concentration ranks the last and only fluctuates within the range of 0.5 in the
whole year.

4.2.2. Average Grey Correlation

In order to calculate the degree of influence of various meteorological parameters on
haze weather, the grey correlation method was used to calculate the correlation degree,
which were R1 = 0.587 (temperature), R2 = 0.621 (dew point), R3 = 0.689 (humidity),
R4 = 0.771 (pressure), R5 = 0.762 (wind speed), and R6 = 0.511 (visibility). Figure 6 shows
that haze weather strongly influences air pressure and wind speed, and the weakest
correlation between visibility.
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Air pressure had the most potent effect on PM2.5 concentrations, but this was not
consistent with previous single-correlation analyses. From the perspective of aerodynamics,
atmospheric pressure is closely related to the stability of the atmospheric structure. When
low pressure plays a leading role, the airflow rises, pushing the low-pressure center with
the surrounding high pressure. At this time, the atmosphere is extremely unstable and
prone to strong wind speed, promoting the diffusion of PM2.5. On the contrary, it is not
conducive to the dilution of PM2.5 in the atmosphere and a relatively high concentration,
causing haze weather.

Wind speed is the leading cause of PM2.5 dilutions, diffusion, and re-dust, and its
influence on PM2.5 concentrations is also complex. When the wind speed is low, PM2.5
gradually spreads, and the concentration decreases due to the push of the wind. However,
when the wind speed exceeds a specific range, PM2.5 is picked up again by the strong
wind. As a result, it enters the atmosphere, resulting in higher concentrations and haze
whether—the correlation between the two changes into a positive correlation.

The effect of humidity on PM2.5 concentrations is more complicated than that of wind
speed. At present, there are two opinions: first, a large amount of precipitation caused
by high humidity will significantly reduce the concentration of PM2.5 in the atmosphere
due to the scouring effect, presenting a negative correlation; on the other hand, sulfate
and nitrate and other secondary particles are generated in large quantities with higher
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air humidity, which plays a significant role in promoting the formation of haze weather,
showing a positive correlation.

Temperature acts on the horizontal and vertical diffusion of PM2.5 in the atmosphere
through its influence on atmospheric stability. In particular, when there is a temperature
inversion phenomenon of low temperature on the lower ground and high temperature on
the upper, the vertical movement of the atmosphere almost stops. PM2.5 agglomerates
in one place and causes haze weather. When temperatures are low in winter, heavy coal
consumption is also a significant source of PM2.5.

5. Discussion

This study takes Beijing as the main object. It uses grey relational analysis model
to study the correlation of meteorological parameters to haze weather and local climate.
Based on aerodynamics and data mining methods, we analyze the four meteorological
data (temperature difference, dew point difference, humidity difference, and wind speed
difference) in the local climate to comprehensively study its relevance and relevance
to haze weather. By analyzing and calculating the correlation coefficient between the
variation trend chart of meteorological parameters and PM2.5 difference, we found a weak
positive correlation between temperature, dew point, and PM2.5 concentration. There
was a strong positive correlation between humidity difference, wind speed difference,
and PM2.5 concentration difference. The haze weather is most affected by air pressure
and wind speed, mainly on the diffusion of inhalable particles. The haze weather’s
weakest degree of influence is visibility. The correlation between the analysis and PM2.5
concentration difference is not listed separately because the atmospheric pressure difference
is insignificant in the local climate.

This paper takes Beijing as the main object, using remote sensing methods, spatial
autocorrelation, gray correlation analysis, and other methods to study the correlation
between haze weather and local climate. However, due to limited conditions, there are
still many shortcomings in the research process, and we will continue to improve these
shortcomings in the future:

1. The research mainly focuses on PM2.5, but NOx is also an essential part of the haze
pollution components. As accurate data cannot be obtained in this paper, the analysis
of this influence factor is abandoned. However, with the escalation of environmental
monitoring in my country, we will continue participating in NOx research [37].

2. In future research, we will try to use the technology of combining PM2.5 and satellite
data [31–36,40] to obtain data, and study the correlation of more factors with PM2.5.

3. This article analyzes the impact of human activities on smog pollution. However,
there is a lack of in-depth discussion on developing the social economy rationally,
and further research is needed in future research [41].

6. Conclusions

This paper analyzes various meteorological data in the local climate and studies its rel-
evance to haze weather based on aerodynamics. Using the data mining method, this study
starts with the hourly concentration data of PM2.5 and conventional meteorological data,
avoids the more complex process of chemical experiment in the general haze research,
saves a lot of time.

Through the analysis of the change trend graph of the difference of various mete-
orological parameters and the difference of PM2.5 and the calculation of its correlation
coefficient, we found that there is a weak positive correlation between the temperature
difference, the dew point difference, the PM2.5 concentration difference, the humidity
difference, and wind speed difference, and there is a strong positive correlation between
the difference in PM2.5 concentrations. Therefore, the grey correlation analysis is carried
out again. The strongest influence on haze weather is air pressure and wind speed, which
mainly affect the diffusion of inhalable particles. The weakest influence on haze weather
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is visibility. As there is little difference in air pressure in the local climate, the correlation
between the analysis and the difference in PM2.5 concentrations are not separately listed.

Compared with traditional mathematical statistical methods such as variance analysis,
regression analysis, and principal component analysis, grey relational analysis has the
following characteristics:

(1) The requirements for the amount of data are broad. The gray relational analysis can
use fewer data to obtain relevant results. The minimum amount of data that can be
calculated is 4, which can be applied to irregular random data.

(2) Traditional methods such as analysis of variance have requirements for the sequence
itself. For example, the sample sequence must have probability distribution character-
istics. There is no correlation between the sequences, which significantly limits the
range of sequences that can be analyzed.

(3) Grey relational analysis is relatively concise in modeling, and the amount of calcula-
tion is small.

(4) Grey relational analysis has high accuracy and can be highly consistent with the
results of qualitative analysis. That is, the quantitative results will fit the objective
laws of the system and the interrelationships between elements.

Given the current status of statistical data: the gray scale of the data is large, the amount
of data is limited, and there is no typical probability distribution characteristic. Due to the
large fluctuations in the data caused by human activities, the effect of using traditional data
statistical methods is poor, while the gray correlation analysis can be greatly improved.
To overcome the above problems and improve the accuracy of statistical analysis.
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