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Abstract: Global reanalysis dataset estimations of climate variables constitute an alternative for
overcoming data scarcity associated with sparsely and unevenly distributed hydrometeorological net-
works often found in developing countries. However, reanalysis datasets require detailed validation
to determine their accuracy and reliability. This paper evaluates the performance of MERRA2 and
ERA5 regarding their monthly rainfall products, comparing their areal precipitation averages with
estimates based on ground measurement records from 49 rain gauges managed by the Institute of
Hydrology, Meteorology, and Environmental Studies (IDEAM) and the Thiessen polygons method in
the Sinu River basin, Colombia. The performance metrics employed in this research are the correla-
tion coefficient, the bias, the normalized root mean square error (NRMSE), and the Nash–Sutcliffe
efficiency (NSE). The results show that ERA5 generally outperforms MERRA2 in the study area.
However, both reanalyses consistently overestimate the monthly averages calculated from IDEAM
records at all time and spatial scales. The negative NSE values indicate that historical monthly
averages from IDEAM records are better predictors than both MERRA2 and ERA5 rainfall products.

Keywords: rainfall; reanalysis; ERA 5; MERRA 2; Thiessen polygons

1. Introduction

Appropriate knowledge of the rainfall regime in a watershed is a determining factor
in quantifying and adequately managing the water resources available for irrigation of
crops, domestic consumption, industrial uses, environmental flows, and planning actions
to control or minimize the impact of floods, and erosive processes. Because of its ability
to produce surface runoff and recharge groundwater, rainfall is likely the most critical
variable in hydrological studies [1]. Reliable and spatially well-distributed hydrological
information covering an extended period is fundamental for adequate water resource
management, accurate modeling, and effective planning related to variability and climate
change [2–4]. Usually, the most precise source of reliable precipitation records corresponds
to the rain gauges [5]; however, in large parts of the world, especially in developing
countries, hydrometeorological networks rarely follow the standards of the World Meteoro-
logical Organization (WMO) [6], and systematic or human-made errors might affect them.
Therefore, correctly operated rainfall gauges are usually scarce and scattered over vast
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areas [7,8]. Additionally, records commonly present significant gaps, and the maintenance
of the stations is an expensive and onerous enterprise that is proportional to the network’s
size [9,10].

Estimations from satellite data and reanalysis datasets are low-cost alternatives to
overcome this absence of data, both of which have advantages and limitations. The scientific
literature shows no clear consensus on the usability of the reanalysis and the satellite
datasets, as their accuracy varies depending on specific products, location, and variables
under analysis [11,12]. Their principal shared advantage is their extensive spatial coverage
and temporal resolution. Satellite data can provide intra-hourly resolution, and besides
the sensor characteristics, their data acquisition and accuracy depend on atmospheric
conditions and technical issues [10]. The satellite data gathering and processing procedures
are in constant evolution to solve these shortcomings, as they are particularly relevant
regarding estimations in complex terrains, coastlines, high latitudes, and the capturing of
precipitation extremes, which is crucial for flood management [5,13].

On the other hand, reanalysis data combine multiple sources to generate constant
data assimilation schemes and models that produce consistent time series (usually in map
form) of numerous essential climate variables at once [14–16]. The previously mentioned
spatiotemporal resolution has allowed reanalysis datasets to be considered a proxy to
ground measurements in hydrological and atmospheric modeling [11,16–18], and even a
direct data source for renewable energy research [19–22]. Still, they require calibration to
assess their accuracy and to obtain meaningful time series [13,15].

In Colombia, gridded products from satellite estimations dominate studies deal-
ing with indirect precipitation measurements. For instance, the Climate Hazards Group
InfraRed Precipitation with Stations data version 2.0 (CHIRPS v2.0), developed by the
University of California in Santa Barbara and the American Geological Service [23,24], has
been employed to evaluate rainfall patterns in different Colombian regions [25–28]. This
choice was justified because the CHIRPS v2.0 dataset utilized information from 338 IDEAM
(Institute of Hydrology, Meteorology, and Environmental Studies) rainfall stations to cali-
brate their estimations, resulting in high correlation values (R = 0.97) and a moderate mean
average error (MAE = 38 mm) [29].

In contrast, reanalysis precipitation products remain relatively unexplored in stud-
ies related to Colombian watersheds. A Scopus document search with the query string
(TITLE-ABS-KEY(reanalysis Colombia)) AND (rainfall OR precipitation) showed only a
total of 24 results in August 2021. This paper assesses the performance of two reanal-
ysis rainfall products in a river basin in the Colombian Caribbean. The choice of the
dataset was based on this paper’s corresponding authors’ research interests and previous
publications [19,21,30–32], including the ERA5 reanalysis from the European Center for
Medium-Range Weather Forecasts (ECMWF) [33], and the Modern-Era Retrospective Anal-
ysis for Research and Applications, Version (MERRA2), with the latter being produced
by NASA’s Global Modeling and Assimilation Office (GMAO) [34]. Other authors have
also simultaneously included MERRA2 and ERA5 in performance evaluations of indirect
rainfall estimations in similar studies across the world [35–38].

The current research interest in verifying the validity and accuracy of reanalysis
datasets is associated with their relative novelty, cost-effectiveness, and potential to man-
age uncertainty and understand better hydrometeorological variables. With this back-
ground, this paper aims to answer the following research question: Do the MERRA2 and
ERA5 global reanalysis datasets reproduce the spatially distributed monthly average rain-
fall estimations found through Thiessen polygons in the Sinu River basin, Colombia?
To answer this question, and based on similar previous studies in other regions of the
world [8,17,39–41], we will use the correlation coefficient, the bias, the normalized root
mean square error (NRMSE), and the Nash–Sutcliffe efficiency (NSE) as performance
metrics in this assessment. The results provide insights into the potential of these two
reanalyses for hydrologic modeling or climatological studies.
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2. Materials and Methods
2.1. Study Area

Located in the northwestern part of Colombia, as shown in Figure 1, the Sinu River
basin covers approximately 13,950 km2, extending between coordinates 7◦05′ N and 9◦30′

N and between 75◦15′ W and 76◦35′ W [42]. Having a south to north direction and being
about 438 km long, the Sinu river has its source in the Paramillo Massif and is the third
most important river out of those discharging in the Colombian Caribbean [43]. It is the
primary water system in the Cordoba Department, and the annual flooding of its valley
is essential for agricultural and livestock activities in one of the most fertile regions in
Colombia [44].

Figure 1. Location of the Sinu River basin and subbasins. The dark area in the lower subbasin
corresponds to the metropolitan area of Monteria.

Based on its physical and biotic characteristics, the Autonomous Regional Corporation
of the Valleys of Sinú and San Jorge (CVS) considers the watershed divided into three
subbasins: Upper, Middle, and Lower Sinú [43]. According to official maps, about 33%
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of the watershed area corresponds to the Upper Sinu, 28% to the Middle Sinu, and 39%
to the Lower Sinu [45–47]. The Urrá hydropower dam defines the Upper Sinú subbasin,
which has a reservoir covering an area of 74 km2, capable of providing approximately 4%
of Colombia’s total annual electricity demands. This subbasin also includes a significant
portion (~83%) of the 4600 km2 of the Paramillo National Natural Park and is the home
of the indigenous Embera-Katio community. This isolated area is characterized by low
government presence and investment; subsistence-level agriculture; extreme poverty; and
ethnic, social, and political conflicts [48]. The Middle Sinú subbasin begins downstream
of the Urrá dam and extends up to the proximities of the town of San Pelayo and part
of Monteria, the capital city of the Córdoba Department. Besides extensive swamps
and marshes, the Lower Sinú subbasin presents relatively fertile soils of alluvial origin,
primarily used for agriculture and livestock [44]. This subbasin also includes Monteria’s
metropolitan area.

As in most of the country, the precipitation regime in the Sinu River basin follows a
unimodal distribution, with a dry season between December and March and a rainy season
extending from April to November, with the latter accounting for more than 80% of the
total annual rainfall [42]. A short dry period called “Veranillo de San Juan” occurs between
July and August in the Colombian Caribbean. This midsummer drought is characterized
by an increase in the northeast trade winds, which temporarily reduces rainfall [49], and its
effects are likely influenced by the warm east Pacific waters and low-level jets at 15◦ N over
the Caribbean [50]. In the Lower and Middle Sinú, the average annual precipitation ranges
between 1000 mm/year and 2000 mm/year, with temperatures above 24 ◦C over the year.
In the Upper Sinú, rainfall variates between 2000 mm/year and 4000 mm/year [51], with
temperatures between 6 ◦C and 24 ◦C, increasing from the highest part of the basin to the
area of the Urrá dam [43].

The Cordoba Department has been a conflict zone since the 1950s, suffering from the
presence of illegal armed groups, including the Revolutionary Armed Forces of Colom-
bia (FARC) and the People’s Liberation Army (EPL). Even with peace agreements and
demobilization processes, criminal bands still operate in the area, aiming to control the
zone and its cocaine production and distributions routes [52]. This situation interferes with
new investments and the optimal management of the hydrometeorological network in
the department, especially in the Upper Sinu. As previously mentioned, this basin region
includes the Urrá hydropower dam and a large portion of the Paramillo National Natural
Park, both significant landmarks of the country and heavily dependent on the available
water resources and precipitation patterns in the watershed.

2.2. Datasets
2.2.1. Observed Rainfall

The observed rainfall for this study corresponds to a set of available daily precipitation
time series over the period between 1985 and 2019, registered at 49 hydrometeorological
stations in the Sinu River basin and its proximities. This information is freely available at the
IDEAM [53], the institution responsible for administering and supervising the Colombian
hydrometeorological network and the quality of its records [54]. The selection of these
stations followed two criteria: (1) the missing values must not exceed 10% of the time series;
(2) their Thiessen polygons (or Voronoi diagrams) cover a fraction of the Sinu River basin.
Appendix A presents the main characteristics of these stations (Table A1), as well as the
elevation map and resulting Thiessen polygons for the Sinú River watershed (Figure A1).

2.2.2. MERRA2

Produced by NASA’s Global Modeling and Assimilation Office (GMAO), the Modern-
Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2), has been
in operation since 2015 [55]. MERRA2 uses the Goddard Earth Observing System Version 5
(GOES-5). Similarly to its predecessor (MERRA), the reanalysis model focuses on conduct-
ing a historic climate analysis, providing estimations based on numerous satellite observa-



Atmosphere 2021, 12, 1430 5 of 19

tions, general circulation models, and ground measurements from hydrometeorological
stations across the globe to parameterize initial conditions [35,41]. Other improvements
compared to MERRA include the assimilation of aerosol observations—a more accurate
representation of the stratosphere, water cycle, and cryospheric processes—and minimizing
biases and the occurrence of falsely detected trends [55]. The MERRA2 data are freely
available on the Goddard Earth Sciences Data and Information Services Center [34]. The
dataset starts in 1980, with a temporal resolution of one hour or lower, at a 0.5◦ × 0.625◦

spatial resolution [11].

2.2.3. ERA5

In March 2019, the European Center for Medium-Range Weather Forecasts (ECMWF)
released the ERA5 reanalysis to replace their ERA-Interim product, one of the best perform-
ing products in hydrological studies [56,57]. ERA5 estimations are based on the Integrated
Forecasting System (IFS) Cycle 41r2, and this reanalysis incorporates new input variables,
such as sea surface temperature, sea ice, and aerosols, aiming at making it appropriate for
climate simulation. The ERA5 data is freely available on the ECMWF website [33], with
precipitation estimates from 1979 onwards, although for some meteorological variables
the dataset provides information for the period since 1950 [35,56]. ERA5 has a maximum
temporal resolution of one hour and a 0.25◦ × 0.25◦ spatial resolution [16].

2.3. Method

This paper conducts a performance evaluation of the two selected gridded reanalysis
rainfall products against the average precipitation over the Sinú River basin estimated
through tessellation based on IDEAM records for years 1985–2019. Figure 2 shows the
steps followed in this research to validate the MERRA2 and ERA5 rainfall products.

Figure 2. Diagram representing the method adopted in this research to assess MERRA2 and
ERA5 rainfall products in the Sinú River basin and subbasins.

First, the missing data in the IDEAM total daily precipitation time series are completed
using the closest station method, which consists of multiplying the corresponding value
from the nearest station by the ratio of the long-term precipitation average between the
missing site value to the mean at the closest station. Then, the accumulated monthly
rainfall for each IDEAM station is employed to create the Thiessen polygons [58] and the
corresponding areal estimation of the average precipitation over the Sinú River watershed,
using a spatial resolution of approximately 0.14 km2 per grid cell. Similarly, the gridded
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precipitation datasets from MERRA2 and ERA5 allow the monthly rainfall areal estimates
obtained from these reanalyses to be validated, using the nearest neighbor method to
create the finer grids for both datasets with minimal changes in the information. This
study employs four statistical metrics to evaluate the performance of the MERRA2 and
ERA 5 reanalysis datasets to match the average monthly precipitation estimations in the
Sinú River basin through areal methods based on IDEAM records. These metrics are the
normalized root mean square error (NRMSE), bias (BIAS), Spearman correlation coefficient
(ρS), and Nash–Sutcliffe efficiency coefficient (NSE). The selection of these performance
measures is based on their robustness, applicability, and recommended usage in similar
research studies worldwide [8,11,17,39,59]. Over the following lines, we briefly describe
these metrics and their equations, where O corresponds to observed data (IDEAM), E
indicates the reanalysis dataset under comparison (MERRA2 or ERA5), and N is the
available data points i = 1, 2, . . . , N (months).

• NRMSE: The normalized version of the root mean square error (RMSE) in terms of the
average of measured data allows datasets to be compared with different scales and pro-
vides a better idea of the reliability of the reanalysis datasets [39]. When NRMSE < 0.50,
the estimations are deemed reliable. On the other hand, an NRMSE ≥ 0.50 denotes
unreliable estimates for the corresponding region and season [60]. NRMSE values
range from 0.00 to +∞.

NRMSE =

√
1
N ∑N

i=1(Oi − Ei)
2

O
. (1)

• BIAS: With an optimum value of 0, this metric reflects the average tendency of the
estimations datasets to overestimate (positive bias) or underestimate (negative bias)
the observed data records [8,61,62].

BIAS =
∑N

i=1(Ei −Oi)

∑N
i=1 Oi

. (2)

• ρS: The simple definition for correlation coefficients is that they are metrics that
quantify the strength of the linear association between two bivariate variables—in
our case, reanalysis rainfall and observed rainfall. Correlation measures the degree to
which a change in one variable tends to match a shift in the other [63]. The Spearman’s
rank correlation coefficient (ρS), also known as the Spearman’s Rho, can be defined as
similar to the Pearson correlation (or simple correlation), although it uses the ranks
instead of the actual values. This modification allows the relationship between two
variables that do not follow a normal distribution or are affected by extreme values to
be assessed, such as the time series employed in this research. The ρS values of −1.00,
0.00, and +1.00 indicate that reanalysis and observed rainfall are negatively, poorly,
and positively correlated, respectively [39].

ρS =
∑N

i=1

[
Rank(Ei)− Rank E

]
·
[
Rank(Oi)− Rank O

]
(

∑N
i=1

[
Rank(Ei)− Rank E

]2
·∑N

i=1

[
Rank(Oi)− Rank O

]2
)1/2 · (3)

• NSE: This normalized statistic quantifies the relative magnitude of the residual vari-
ance, or mean square error, compared to the measured data variance (IDEAM obser-
vations) [61,64]. An NSE = 1 would imply a perfect match between estimates and
observed rainfall. An NSE value of 0 indicates that the estimations are only as good
as the mean of the observations, while negative NSE values denote a poor match
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between the datasets, indicating that the mean square error between measurements
and estimates is higher than the mean of the measurement dataset [39,63].

NSE = 1− ∑N
i=1(Ei −Oi)

2

∑N
i=1
(
Oi −O

)2 · (4)

In an approach similar to Lemma et al. [39], we assess the performance of the two
reanalysis datasets in the Sinú River basin for the whole area and each subbasin. This
consideration will allow the performance of the metrics in these areas to be compared with
different densities in terms of hydrometeorological stations (see Table A1).

3. Results
3.1. Complete Sinú River Basin

Table A1 indicates that the density of the hydrometeorological network for the
whole Sinú River basin is 271 km2/station on average, with a standard deviation of
511 km2/station. This wide range is observable in Figure A1, with the Upper Sinu subbasin
being the most scarce in terms of stations, a common feature in mountainous areas [8,65].
The Lower Sinú subbasin exhibits the highest density of meteorological stations.

In terms of precipitation over the 13,950 km2 of the Sinú River watershed, the estima-
tions from the Thiessen method indicate a normally distributed regime, with an annual
average of 1810 mm/y and a standard deviation of 194 mm/y. Figure 3 displays the
monthly rainfall behavior for the three datasets. It shows that the two reanalysis products
can follow and represent the dry and rainy seasons in the watershed, including the “Ve-
ranillo de San Juan” phenomenon around July–August, although with significant biases.
Even if both datasets have their largest bias in November, the results in Table 1 reveal
that biases and NRMSE values of ERA5 and MERRA2 compared to IDEAM are opposed;
ERA5 tends toward higher overestimations during the dry season, while MERRA2 exhibits
higher values of these two performance metrics mainly during the rainy season. For all the
subbasins and time scales (individual months, total annual, and the complete time series
between 1985 and 2019), the negative NSE values suggest that the averages from IDEAM
are closer to the IDEAM values than the reanalysis estimations [63].

Figure 3. Average monthly rainfall in the whole Sinú River basin based on the three datasets for
1985–2019. In this boxplot, the extremes of the box are the first (Q1) and third (Q3) quartiles; the bar
indicates the median; the whiskers correspond to Q1—1.5 IQR (interquartile range) and Q3 + 1.5 IQR.
The points are potential outliers.
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Table 1. Performance results for the tested reanalysis products for average areal rainfall estimations in the whole Sinú River
basin for 1985–2019.

Time Scale
OBSERVED: IDEAM vs. ESTIMATES: MERRA2 OBSERVED: IDEAM vs. ESTIMATES: ERA5

ρS NRMSE BIAS NSE ρS NRMSE BIAS NSE

Jan 0.132 2.889 2.303 −41.843 0.528 0.942 0.765 −3.553
Feb 0.317 2.268 1.862 −20.536 0.632 0.924 0.733 −2.576
Mar 0.427 1.898 1.597 −17.209 0.816 0.978 0.846 −3.841
Apr 0.590 1.836 1.655 −53.417 0.519 0.778 0.720 −8.776
May −0.037 1.879 1.732 −105.142 0.094 0.516 0.450 −7.000
Jun 0.373 2.142 1.969 −86.448 −0.121 0.488 0.410 −3.541
Jul 0.331 2.039 1.881 −50.935 0.243 0.566 0.462 −2.997

Aug 0.070 2.124 2.020 −95.291 0.334 0.387 0.309 −2.197
Sep −0.141 2.794 2.658 −186.425 0.158 0.524 0.469 −5.580
Oct −0.271 2.831 2.657 −158.160 0.122 0.692 0.629 −8.499
Nov 0.210 3.381 3.115 −216.470 0.565 0.851 0.808 −12.765
Dec 0.503 3.179 2.917 −41.152 0.753 0.868 0.798 −2.141

Annual 0.378 2.232 2.176 −446.237 0.405 0.560 0.544 −27.187
Complete 0.536 2.538 2.128 −16.956 0.633 0.661 0.519 −0.219

The match between interannual variability results indicate moderate correlation (ρS
in Table 1) for the complete 1985–2019 time series (see Figure 4), even if this does not
translate to the individual months or cumulative annuals. It is worth highlighting that
many individual months exhibit insignificant correlations and even anticorrelations for the
whole basin and subbasins for some months.

Figure 4. Correlation (ρS) maps for the study area: (a) Correlation between MERRA2 and ERA5;
(b) Correlation between IDEAM and ERA5; (c) Correlation between IDEAM and MERRA2.

Figure 4 shows that in the Sinú River basin, both MERRA2 and ERA5 present their
maximum correlation values in the coastal region and the minima in the most elevated
parts of the watershed and near the Urra reservoir. The largest ρS variability appears in
the upper subbasin. The low correlation patch in the proximities of the Urra reservoir in
Figure 4a,b suggests an anomaly in the ERA5 rainfall estimations in this area. Figure 4b,c
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show that in the Middle and Lower Sinú subbasins, the lowest ρS values are located in
the influence area of Loma Verde Station (13050030) (see Table A1), suggesting that the
consistency of the IDEAM records in this station should be revised.

3.2. Upper Sinú River Basin

The Upper Sinú encompasses only four meteorological stations that satisfy the adopted
eligibility criterion of missing values not exceeding 10% of the time series. All of these
stations are conventional (non-recording). The Campo Bello weather station accounts for
approximately 3600 km2 (>80% of the subbasin), with the other relevant rain gauges in the
subbasin located in the proximities of the Urrá Dam. The average density of stations in
the subbasin (1401 km2/station) is well above the 250 km2/station recommended by the
WMO [6] for conventional stations in mountain areas.

Based on the IDEAM records and the Thiessen method, the average precipitation in
the Upper Sinú is 2481 mm/y, with a standard deviation of 381 mm/y. These values are in
line with those found in previous studies in the subbasin [43,51,66]. As evidenced in Table 2,
this subbasin exhibits the lowest correlation for the complete series for both reanalyses, and
it also presents the highest biases and NRMSE values for MERRA2, which overestimates
more than four times the rainfall during the rainy season. Additionally, Figure 5 shows
that there is no correspondence between the wetter months for the three datasets.

Table 2. Performance results for the tested reanalysis products for average areal rainfall estimations in the Upper Sinú River
basin for 1985–2019.

Time Scale
OBSERVED: IDEAM vs. ESTIMATES: MERRA2 OBSERVED: IDEAM vs. ESTIMATES: ERA5

ρS NRMSE BIAS NSE ρS NRMSE BIAS NSE

Jan 0.047 4.380 3.577 −85.102 0.381 0.923 0.716 −2.827
Feb 0.345 3.205 2.706 −38.501 0.591 0.882 0.711 −1.992
Mar 0.532 2.650 2.340 −27.962 0.514 0.985 0.814 −3.000
Apr 0.464 2.993 2.730 −101.392 0.251 0.808 0.646 −6.465
May 0.051 2.950 2.753 −103.291 −0.271 0.576 0.339 −2.972
Jun 0.139 3.318 3.051 −112.184 −0.264 0.504 0.288 −1.614
Jul 0.032 2.990 2.705 −128.263 −0.235 0.541 0.326 −3.225

Aug −0.077 3.370 3.174 −107.743 0.232 0.507 0.296 −1.464
Sep 0.099 4.476 4.252 −234.409 0.218 0.682 0.576 −4.470
Oct −0.122 4.552 4.279 −165.530 −0.005 0.720 0.516 −3.165
Nov 0.338 5.554 5.140 −293.861 0.339 0.919 0.749 −7.076
Dec 0.347 4.885 4.296 −98.837 0.557 0.802 0.624 −1.692

Annual 0.258 3.491 3.384 −532.402 0.045 0.564 0.514 −12.914
Complete 0.489 3.968 3.384 −53.797 0.566 0.694 0.514 −0.675

3.3. Middle Sinú River Basin

Sixteen Thiessen polygons cover the Middle Sinú subbasin, i.e., approximately one
station every 240 km2. Based on the WMO recommendations for interior plains and urban
areas [6], the density of the rain gauge network in this region suggests a relatively well-
instrumented subbasin; however, as signaled by the standard deviation of 202 stations/km2,
this average is influenced by the presence of Monteria, the capital of the department,
and the weather stations within it. The areal estimation based on IDEAM records for
1985–2019 results in average rainfall of 1633 mm/y, with a standard deviation equal to
158 mm/year, as in previous reports [43,66]. Similar to the Upper Sinu, Figure 6 illustrates
that both MERRA2 and ERA5 significantly overestimate the precipitation in September
and October.
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Figure 5. Average monthly rainfall in the Upper Sinú River basin based on the three datasets for
1985–2019. In this boxplot, the extremes of the box are the first (Q1) and third (Q3) quartiles; the
bar indicates the median; the whiskers correspond to Q1—1.5 IQR and Q3 + 1.5 IQR. The points are
potential outliers.

Figure 6. Average monthly rainfall in the Middle Sinú River basin based on the three datasets for
1985–2019. In this boxplot, the extremes of the box are the first (Q1) and third (Q3) quartiles; the
bar indicates the median; the whiskers correspond to Q1—1.5 IQR and Q3 + 1.5 IQR. The points are
potential outliers.

As previously found for the whole basin, Table 3 confirms that on average, MERRA2 es-
timations have lower biases in the dry season than in the rainy season, opposite to ERA5.
Both reanalysis datasets are able to represent the “Veranillo de San Juan” in July, which is
more visible for MERRA2.
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Table 3. Performance results for the tested reanalysis products for average areal rainfall estimations in the Middle Sinú
River basin for 1985–2019.

Time Scale
OBSERVED: IDEAM vs. ESTIMATES: MERRA2 OBSERVED: IDEAM vs. ESTIMATES: ERA5

ρS NRMSE BIAS NSE ρS NRMSE BIAS NSE

Jan 0.175 3.673 1.361 −44.248 0.520 0.920 0.633 −1.836
Feb 0.215 1.191 0.703 −2.920 0.498 1.027 0.634 −1.916
Mar 0.494 1.186 0.740 −5.146 0.775 0.910 0.737 −2.619
Apr 0.554 1.131 0.887 −15.945 0.507 0.785 0.714 −7.158
May 0.001 1.426 1.195 −45.083 0.007 0.491 0.398 −4.463
Jun 0.356 1.502 1.244 −31.088 0.029 0.398 0.277 −1.254
Jul 0.084 1.323 1.079 −27.105 0.144 0.458 0.319 −2.371

Aug 0.138 1.379 1.252 −35.340 0.138 0.359 0.215 −1.459
Sep −0.104 2.239 2.061 −109.419 0.100 0.511 0.433 −4.744
Oct −0.176 2.362 2.137 −75.382 0.080 0.734 0.643 −6.385
Nov 0.362 2.849 2.548 −99.749 0.415 0.938 0.885 −9.921
Dec 0.498 2.196 1.789 −16.575 0.700 0.932 0.836 −2.166

Annual 0.330 1.518 1.453 −253.366 0.280 0.508 0.480 −27.440
Complete 0.515 1.940 1.453 −10.717 0.631 0.627 0.480 −0.222

3.4. Lower Sinú River Basin

The density of the rain gauge network in this coastal subbasin is around 160 km2/station
on average, with a standard deviation of 115 km2/station, which is adequate based on
the WMO recommendations regarding minimum densities [6]. The areal estimation using
the Thiessen method with IDEAM records results in average rainfall of 1392 mm/y, with
a standard deviation equal to 170 mm/year, as in previous reports based on individual
stations and areal estimations [42,43,67].

Likely because of the higher presence of rain gauges to feed the reanalysis models and
topographical characteristics, Table 4 and Figure 4 demonstrate that this subbasin presents
the highest correlations and the lowest biases and NRMSE values of the four cases. Still,
the negative NSE values indicate that the averages of the ground measurements are closer
to the actual values than the reanalysis estimations [63], even if some NRMSE values are
below 0.50 [60]. Based on the medians, Figure 7 shows that ERA5 reproduces the rainfall
behavior (in terms of the dryer and wetter months) of the IDEAM records better than
MERRA2, whose wettest month corresponds to September for all subbasins.

Table 4. Performance results of the tested reanalysis products for average areal rainfall estimations in the Lower Sinú River
basin for 1985–2019.

Time Scale
OBSERVED: IDEAM vs. ESTIMATES: MERRA2 OBSERVED: IDEAM vs. ESTIMATES: ERA5

ρS NRMSE BIAS NSE ρS NRMSE BIAS NSE

Jan 0.326 0.986 0.330 −1.808 0.455 1.755 1.002 −7.884
Feb 0.270 1.021 0.365 −2.898 0.528 1.620 0.974 −8.821
Mar 0.485 0.966 0.485 −2.499 0.706 1.666 0.995 −9.397
Apr 0.430 0.758 0.402 −4.188 0.641 0.888 0.765 −6.117
May 0.390 0.897 0.718 −16.290 0.372 0.665 0.584 −8.485
Jun 0.163 1.043 0.812 −19.665 0.331 0.745 0.678 −9.542
Jul 0.084 1.323 1.079 −27.105 0.144 0.458 0.319 −2.371

Aug 0.068 1.041 0.890 −21.645 0.443 0.456 0.344 −3.339
Sep −0.126 1.289 1.096 −27.838 0.096 0.469 0.359 −2.817
Oct −0.039 1.375 1.150 −48.663 0.487 0.741 0.692 −13.433
Nov 0.514 1.248 1.086 −11.841 0.427 0.935 0.783 −6.211
Dec 0.556 1.506 1.099 −5.090 0.732 1.182 1.007 −2.754

Annual 0.324 0.924 0.863 −57.858 0.647 0.667 0.604 −29.709
Complete 0.572 1.259 0.863 −3.153 0.669 0.778 0.604 −0.586
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Figure 7. Average monthly rainfall in the Lower Sinú River basin based on the three datasets for
1985–2019. In this boxplot, the extremes of the box are the first (Q1) and third (Q3) quartiles; the
bar indicates the median; the whiskers correspond to Q1—1.5 IQR and Q3 + 1.5 IQR. The points are
potential outliers.

4. Discussion

The rain gauge network in the Sinú River basin follows the pattern shown in most
South American watersheds [13], i.e., the network is denser closer to the coastline and
alongside the main river courses. One of the main reasons for this is how the populations
are distributed in South America, as it is difficult to install and operate a large number of sta-
tions in mostly uninhabited areas unless the stations are highly automated. These sparsely
settled zones typically coincide with deserts, polar regions, or tropical forests [6]—in our
case, the Paramillo National Natural Park. Nevertheless, it is worth mentioning that
IDEAM [53] has records of at least 14 additional precipitation gauges in the Upper Sinú
subbasin, although they did not satisfy the adopted eligibility criterion of missing values
not exceeding 10% of the time series between 1985 and 2019, as they were decommissioned
in the 1990s and 2000s.

The irregular distribution of stations likely induces higher uncertainty and biases in
the regional rainfall estimates, as Clarke et al. [68] explained. Our results support this
statement, as the parallel performance of the two reanalysis datasets under consideration
in this study exhibit better results as the hydrometeorological network gets denser, even if
the results do not accurately represent the areal estimations based on IDEAM records. Both
MERRA2 and ERA5 described the overall precipitation regime in the Sinú River basin, as
the dry and rainy seasons can be easily differentiated, and they follow similar behavior
to that estimated using the Thiessen method and IDEAM records, including the seasonal
pattern represented by the “Veranillo de San Juan” phenomenon. Some authors argue that
evaluations using Thiessen polygons and other areal estimations methods are better suited
for areas covered with numerous and uniformly distributed stations [39], although this is
not a restriction [8,56,69,70].

For the upper basin of the Sinú River, in which the Campo Bello station represents
>80% of the watershed area, the results obtained were highly unreliable. In addition to the
inclusion of more stations (although they would present gaps greater than those admitted
in this research), more advanced geostatistical interpolation methods could allow better
estimates in this type of region with vast height differences and a low density of stations.
For instance, Kriging methods use additional parameters (e.g., topography) to improve
accuracy in estimating spatial and temporal rainfall variability, which in some studies has
duplicated that from using Thiessen polygons [71].
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The datasets under analysis do not follow a normal distribution, which is the primary
justification for using Spearman’s ρS instead of Pearson’s correlation coefficient as con-
ducted in other studies [20,41,72]. The ability of the reanalyses to describe the dry and
rainy seasons in the Sinú River basin results in moderate correlation values [71] for the
entire time series in the four spatial scales considered. As evidenced by the correlation
results for the individual months, this long-term correlation might be misleading, mainly if
the novice researcher or consultant uses them directly to reconstruct specific events such as
extreme floods or droughts. Other authors [68,73] express a similar warning regarding the
inadequacy of correlation-based metrics as the only statistic to evaluate the goodness-of-fit
of hydrological models.

Regarding the relative magnitude, both reanalysis datasets consistently overestimate
the areal rainfall averages calculated from the Thiessen polygons at all spatial and time
scales. ERA5 presents lower biases than MERRA2, but contrary to the latter, it performs
better during the dry months, similar to the behavior observed in Turkey for ERA5 by
Amjad et al. [74]. MERRA2 exhibits its worst performance in the Upper Sinú subbasin,
as all bias values indicate that estimations from this reanalysis product are at least twice
as big as the values estimated from the IDEAM time series. This poor performance by
MERRA2 in scarcely instrumented and complex areas follows findings from previous
studies for other world regions, such as those by Pedreira et al. [41], Quagraine et al. [35],
and Mao et al. [75]. On the other hand, the ERA5 performance for monthly rainfall
estimations in mountain areas has shown mixed results. For instance, Gleixner et al. [76]
and Amjad et al. [74] found that ERA5 shows substantial differences in areas with larger
slopes in Asia and Africa, while Tarek et al. [56] indicate that this reanalysis product
provided adequate input for hydrological simulation in mountainous regions of North
America. In the Alps area, both MERRA2 and ERA (although ERA-Interim) precipitation
products exhibited the highest biases in the continent in a study comparing five satellite
and reanalysis datasets [17]. Consequently, other authors have evaluated how including
the elevation in the interpolation of areal precipitation estimates could improve reanalysis
performance, with their results often showing no significant differences [70]. In our case,
the lowest correlation corresponds to the Upper Sinú, but NRMSE and bias values only
show slight differences between the three subbasins.

An additional cross-correlation analysis sought to identify the similarity of information
between peak values—in this case the annual cycles of the datasets—to determine whether
there were time shifts (also called lags) between them [77]. Within a 50-month window,
the analysis found statistically significant (at a 10% level) cross-correlation results between
IDEAM and ERA5 at lags −24, −12, 0, 12, and 24, as expected from the monomodal
precipitation regime in the Sinú River basin. When MERRA2 is compared to IDEAM and
ERA5, the significant lags occurred at −24, −13, −12, −1, 0, 11, 12, and 24. The lags −13,
−1, and 11 suggest that for some years, MERRA2 rainfall peak estimations are shifted
by a month contrasted with IDEAM and ERA5, which partially explains the behavior in
Figures 3 and 5–7. This type of lag in reanalysis rainfall estimates has been previously
reported in the literature [76].

Rain gauges remain the most accurate and reliable measurements, even if they are
subject to systematic and human-made errors [5,6]; thus, investments in the national
hydrometeorological networks are essential for adequate water and natural resource plan-
ning and management. Our results indicate that both reanalysis datasets are inaccurate
in reproducing the rainfall estimations from rain gauges in the Sinú River basin; how-
ever, the literature suggests that a point-to-point approach [39], the use of bias correction
techniques [78,79], mathematical regression, and geostatistics [8] might improve their per-
formance. These adjustments might allow them to serve as boundary conditions or create
scenarios for integrated modeling of natural processes, as they offer consistent time series
of multiple hydrometeorological variables [17,56,76,80].
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5. Conclusions

Reanalysis datasets have become relevant among scientists because of their cost-
effectiveness, ample spatial coverage, and their long and consistent time series for multiple
hydrometeorological variables. However, their low spatial resolution and variable accuracy
across world regions are their most significant drawbacks compared with satellite data or
ground measurements. This paper statistically evaluated the performance of MERRA2 and
ERA5 reanalysis rainfall products in the Sinú River basin, comparing the average monthly
precipitation estimated from these gridded datasets with the areal estimation of monthly
precipitation through Thiessen polygons based on IDEAM records from 49 hydromete-
orological stations. The four statistical metrics (ρS, NRMSE, bias, and NSE) used in this
evaluation were chosen based on previous studies conducted across the world. ERA5 gen-
erally outperformed MERRA2; however, both reanalyses consistently overestimated the
monthly averages calculated from IDEAM records at all time and spatial scales. The nega-
tive NSE values indicate that historical monthly averages from IDEAM records are better
predictors than both MERRA2 and ERA5 rainfall products, even if both reanalyses show
modest correlations with IDEAM. Therefore, these two reanalysis datasets have limited
application for hydrologic modeling or climatological studies regarding rainfall estimations
in this area.

The three different densities of the rain gauge network and the similar size of each
subbasin make for an interesting case study for similar studies with additional satellite
or reanalysis products and hydrometeorological variables. Instead of Thiessen polygons,
point-to-point validation and employing different spatial interpolation techniques such as
Kriging could provide further insights regarding the performance of reanalysis in this basin.
Besides the previously mentioned assessment of other variables, future follow-up studies
might include evaluating how regressions, other bias correction techniques described in
the literature, and additional mathematical and statistical techniques could improve the
performance of these reanalysis datasets in this basin.
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Appendix A IDEAM Stations and Thiessen Polygons

Table A1 presents the main characteristics of the hydrometeorological stations em-
ployed for validating the precipitation estimates from MERRA2 and ERA5 in the Sinú
River basin. Figure A1 displays the resulting Thiessen polygons and the watershed’s
elevation map.
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Table A1. Characteristics of the IDEAM’s hydrometeorological stations employed for validating reanalysis datasets in
the Sinú River basin. The elevation is given in meters above sea level (masl). Stations that include the suffix Aut signify
automatically recording stations.

Station Name [IDEAM CODE] Latitude
(Degrees)

Longitude
(Degrees)

Elevation
(masl)

Thiessen
Polygon

Area (km2)

Area in
Lower

Sinú (%)

Area in
Middle

Sinú (%)

Area in
Upper

Sinú (%)

AEROPUERTO LOS GARZONES [13035501] 8.826 −75.825 20 25.918 100
AGUAS MOHOSAS [13070450] 9.251 −75.492 75 76.958 100
BOCA DE LA CEIBA [13070070] 8.830 −75.856 20 90.732 100

BUENOS AIRES [13060020] 8.476 −75.765 55 314.776 100
BUENOS AIRES 1 [13070170] 8.773 −75.750 9 56.499 100

CALLEMAR [13070120] 8.698 −75.678 95 128.330 100
CAMPO BELLO [13015030] 7.983 −76.233 78 3972.089 0.59 99.41

CARAMELO [13060030] 8.266 −75.904 60 459.341 100
CARRILLO [13070180] 8.984 −75.832 20 385.131 100
CARRIZAL [13070110] 8.682 −75.754 40 111.282 99.91 0.09

CENTRO ALEGRE [25015010] 8.181 −75.632 170 99.290 100
CERETE [13070050] 8.890 −75.786 20 94.646 100
CHIMA [13075010] 9.151 −75.622 20 319.723 100

CHINU—AUT [25020470] 9.118 −75.393 125 87.128 100
CIENAGA DE ORO [13077070] 8.873 −75.626 10 144.375 100

COLOMBOY [25025170] 8.741 −75.499 125 51.013 100
COROZA 2 [13070190] 8.805 −75.765 9 45.094 100

CRISTO REY—AUT [12045020] 9.071 −76.224 15 3.249 100
DOCTRINA LA [13080060] 9.300 −75.883 4 467.361 100

GALAN [13055030] 8.659 −75.973 30 372.649 55.84 44.16
LIMON EL [13070010] 9.336 −75.938 3 187.366 100

LOMA VERDE [13050030] 8.502 −76.175 100 407.425 54.27 45.73
MARACAYO [13065020] 8.411 −75.884 25 426.375 0.01 99.99

MOMIL [13070020] 9.234 −75.688 20 328.587 100
PEZVAL [13040030] 8.262 −76.169 80 641.702 100

PLANETA RICA—AUT [25025190] 8.399 −75.584 90 66.321 100
PUERTO LIBERTADOR [25010010] 7.890 −75.680 55 216.258 100

RABOLARGO [13070040] 8.951 −75.742 19 228.119 100
REPRESA URRA [13015040] 8.014 −76.203 300 675.751 55.47 44.53

SABANAL [13070280] 8.789 −75.751 10 13.320 100
SAHAGUN [25020140] 8.951 −75.452 60 147.691 100

SAJONIA HACIENDA—AUT [25020600] 8.490 −75.601 100 22.326 0.01 99.99
SALADO EL [13075020] 8.914 −75.582 40 238.833 100

SAN ANTERITO [13060010] 8.558 −75.861 75 261.556 1.94 98.06
SAN ANTONIO [13080010] 8.936 −75.953 50 342.045 100

SAN BERNARDO [13085030] 9.371 −75.949 22 74.134 100
SAN CARLOS [13070090] 8.791 −75.701 60 93.644 100

SAN FRANCISCO [25010100] 8.129 −75.760 160 259.788 100
SANTA CRUZ HACIENDA [13050020] 8.668 −76.124 220 218.157 100

SANTA LUCIA [13050010] 8.849 −76.045 120 258.157 100
SANTA ROSA [13070100] 8.741 −75.601 140 120.803 100

TAMPA [13070290] 8.625 −75.767 20 181.126 75.67 24.33
TIERRALTA [13030010] 8.187 −76.053 100 559.329 99.66 0.34

TREMENTINO [25021210] 8.818 −75.474 136 62.723 100
TURIPANA [13075030] 8.840 −75.802 20 31.465 100

UNIV DE CORDOBA [13075050] 8.794 −75.862 15 172.213 100
URE [25010060] 7.788 −75.538 200 119.650 100

VENECIA [13070430] 9.195 −75.541 50 186.400 100
VILLA MARCELA [13070440] 9.352 −75.719 40 85.684 100
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Figure A1. Thiessen polygons and elevation map of the Sinú River basin.
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