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Abstract: As a kind of air pollution, haze has complex temporal and spatial characteristics. From
the perspective of time, haze has different causes and levels of pollution in different seasons. From
the perspective of space, the concentration of haze in adjacent areas will affect each other, showing
some correlation. In this paper, we construct a multi-convolution haze-level prediction model for
predicting haze levels in different areas of Beijing, which uses the remote sensing satellite image of
the Beijing divided into nine regions as input and the haze pollution level as output. We categorize
the predictions into four seasons in chronological order and use frequency histograms to analyze
haze levels in different regions in different seasons. The results show that the haze pollution in the
southern regions is significantly different from that in the northern regions. In addition, the haze
tends to be clustered in adjacent areas. We use Global Moran’s I to analyze the predictions and
find that haze is related to the geographical location in summer and autumn. We also use Local
Moran’s I, Moran scatter plot, and Local Indicators of Spatial Association (LISA) to study the spatial
characteristics of haze in adjacent areas. The results show, for the spatial distribution of haze in
Beijing, that the southern regions present a high-high agglomeration, while the northern regions
exhibit a ‘low-low agglomeration. The temporal evolution of haze on the seasonal scale, according to
the chronological order of winter, spring, and summer to autumn, shows that the haze gradually
becomes agglomerated. The main finding is that the haze pollution in southern Beijing is significantly
different from that of northern regions, and haze tends to be clustered in adjacent areas.

Keywords: convolution neural network; Moran’s I; LISA aggregation graph; haze; spatial
autocorrelation

1. Introduction

In recent years, haze has attracted the media’s attention, and that of the government
and population of various countries. It has triggered a wide-ranging discussion on how to
coordinate economic development and environmental protection. However, this started
a public panic about air pollution and how this affected the physical health of people.
Moreover, haze predicts human damage from air pollution [1,2]. For these reasons, haze
has aroused the concern of researchers. Therefore, a large amount of experimental data and
theoretical reasoning are focused on the cause of haze [3–8], the scope of pollution [9–16],
the hazards [2,11,17–22], spatial and temporal distribution, and prevention measures.

With the establishment of many ground detection stations, the detection data of PM2.5
and PM10, which are the primary pollutants of haze, gradually increase, which facilitates
the study of its spatial and temporal characteristics [8,14,15,20,22–25]. Researchers have
performed analyses of the spatial and temporal evolution of haze in different areas based on
satellite images [4,14,26–28]. Gehrig et al. [29] studied the long-term observations of PM2.5
and PM10 in seven regions of Switzerland and obtained the range of PM2.5 concentrations
in different regions. Although there were different haze concentrations in different regions,
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the correlation between daily PM2.5 and PM10 concentrations was very high in all regions.
In terms of time characteristics, the haze pollution in the Swiss region in winter is the
most severe of the four seasons, and the haze pollution in the spring is the lightest. Zhang
et al. [30] analyzed the PM2.5 concentration data of 190 cities in China. They found that
the significant seasonal variation of PM2.5 occurred in winter and the lowest in summer
on the time scale. In terms of the geographical distribution, the PM2.5 concentrations in
the northern region are generally higher than in the south. Zhao et al. [27] collected PM2.5
and PM10 concentrations from 30 ground detection stations in Beijing and analyzed haze
concentrations’ temporal and spatial distribution in winter and spring. The results showed
that the concentration of haze in the northern mountains area is lower than that in the
south of Beijing, and the haze pollution in urban and rural areas is quite different. The time
characteristics of haze showed that there is serious pollution in winter and slight pollution
in spring, the highest concentration of PM2.5 and PM10 appears in January, and the lowest
concentration appears in April. Zhao et al. [31] compared the time characteristics of urban
and rural areas in Beijing.

The concentration prediction of PM2.5 and PM10 as the primary pollutants of haze
is also one of the most concerning areas, and researchers have proposed many different
prediction models. In the early days of haze prediction, Fuller et al. [32] used empirical
models to predict the daily average concentrations of PM2.5 and PM10 in some regions of
the U.K., but the scalability was poor due to the model being based on observations in local
areas. Dong et al. [33] proposed a hidden Markov-based prediction model to predict PM2.5
concentration. After training, the hidden Markov model can finally predict the PM2.5
concentration value in the next 24 h. Lee et al. [34] combined the MODIS aerosol optical
depth (AOD) over England with ground monitoring data to predict haze concentrations
in specific areas. As neural networks began to show solid complex-fitting capabilities,
researchers began to apply different neural networks to predict haze. Ordieres et al. [35]
compared the performance of three neural network structures—multilayer perceptron,
radial basis function neural network, and squared multilayer perceptron—with classic
predictive models in daily average PM2.5 concentration predictions. The neural networks
are significantly better than the classic approaches. Marzano et al. [36] established a
recurrent neural network to predict climate phenomena with input from remote sensing
satellite imagery.

Unlike previous prediction models, which mainly predict PM2.5/PM10 concentration
in a single area [37], this paper proposed a multi-convolution haze-level prediction model
to simultaneously predict PM2.5 concentration levels in multiple adjacent areas. This paper
used remote sensing satellite images from Beijing as the model’s input. The images are
cut into nine blocks of the same size and applied in various data processing methods,
including radiation correction, geometric correction, area extraction and synthesis, RGB
image synthesis, and image cutting. This paper then uses the daily PM2.5 level of nine
blocks as output.

In addition to predicting the haze levels in different blocks in Beijing, we also analyzed
haze’s temporal and spatial characteristics in different areas. Previous researchers have
focused on the temporal and spatial characteristics of haze in one area while ignoring the
haze correlation between areas bordering each other. Therefore, this paper divided the
predicted results into four seasons in chronological order and used frequency histograms
to analyze the haze levels in different regions. Furthermore, this paper used the Global
Moran’s I to obtain the correlation between haze in different seasons and geographic
locations. It used the Local Moran’s I, Moran scatter plot, and Local Indicators of Spatial
Association (LISA) to study the spatial characteristics of haze in adjacent regions.

2. Data Processing and Calibration
2.1. Remote Sensing Image Processing

In the haze spatial evolution, the haze in the immediate vicinity will be highly cor-
related to the appropriate length of time. In order to analyze the temporal and spatial
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evolution characteristics of haze, the input of the model needs to involve different regions.
Therefore, we chose Beijing as the research object according to the administrative division.
Beijing is the capital of China and has severe haze pollution [28]. There are 36 air pollutant
monitoring stations relatively evenly distributed in different parts of Beijing, which provide
us with historical haze concentration data for different regions [1]. Based on the available
data from the ground stations, the time span is chosen as 2013 to 2015.

In this paper, we collect two types of dataset:

(1) Real-time PM2.5 concentration was released by ground monitoring stations in Beijing
in 2013 and 2014. The data in 2014 are converted into haze levels according to the
correspondence table of haze concentration and haze level, which formed a training
set of multi-convolution combined haze-level prediction models. The data in 2015 is
also converted to haze levels to test model accuracy.

(2) MOD02_1km data for the Beijing area in 2013 and 2014. The MOD02_1km data is a
remote sensing satellite image containing latitude and longitude information in the
Beijing area and is the model input.

We preprocess the remote sensing satellite images in Beijing to improve the model’s
classification prediction accuracy and data consistency. We use ENVI 5.0 software (L3Harris
Geospatial, Boulder, CO, USA) to process satellite images: radiation correction, geometric
correction, area extraction and synthesis, RGB image synthesis, and image cutting.

(1) Radiation correction. We use ENVI 5.0 to automate the radiation correction of
MOD02_1km data.

(2) Geometric correction. We use the MODIS data processing tool, Georeference MODIS
in the ENVI software, to geometrically correct the data of the emissivity channel. In
the calibration, we select the Beijing coordinate system in World Geodetic System 1984
(WGS-84) standard to geometrically correct the emissivity file and establish Ground
Control Points (GCPS) as the standard for other channels to maintain consistent
geometric correction results. Then we use GCPS generated by the emissivity to correct
the reflectance file. After reading the GCPS, the Triangulation correction method
and the Bilinear resampling method are selected so that the correction result of the
reflectance can match the emissivity.

(3) Area extraction and synthesis. According to the administrative area of Beijing:
39.4◦ N–41.1◦ N; 115.4◦ E–117.4◦ E, we cut the administrative regional geographic
graphic files in ENVI software to obtain satellite images of the Beijing area. Next,
we use the same method to cut the emissivity file and reflectivity file of the satellite
image, then place the file of the emissivity channel on the top, and the reflectivity
channel file on the bottom. Finally, we synthesize the image to obtain the full channel
satellite image with the same administrative scope and uniform size.

(4) RGB image synthesis. The processed satellite image contains multiple channels,
where channels 1–7 monitor the edge of the land and cloud. The wavelength and
spatial resolution of each channel are shown in Table 1. We want to convert satellite
images into three-channel RGB images by combining multiple suitable channels. The
wavelength range of red light is between 622 and 780; green light is between 492
and 577; blue light is between 455 and 470. Comparing the visible light and satellite
channel information, we synthesize the satellite’s channel 1, channel 4, and channel 3,
and the synthesized results are shown in Figure 1a,b.

(5) Image cutting: We cut the satellite image into nine equally sized blocks, as shown
in Figure 1c. Every block of the image contains an actual region of Beijing. Thus,
different blocks are adjacent from spatial relationships, which helps us study the
haze’s spatial evolution.

After the synthesized RGB satellite image Figure 1b is cut, Figure 1c contains nine
blocks of the same size, and we sort them from left to right and from top to bottom in
Block 1 to Block 9. The administrative divisions contained in different blocks are shown in
Table 2.
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Figure 1. (a) is the satellite image with full channel information, and (b) is the synthesized RGB image. (c) is cut into nine 
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Figure 2. The structure of the multi-convolution neural network. 

 

Figure 3. Spatial adjacency diagram. 
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Figure 1. (a) is the satellite image with full channel information, and (b) is the synthesized RGB image. (c) is cut into nine
equally sized blocks based on (b).

Table 1. Spatial resolution and wavelength interval of each channel in MOD021KM.

Channel Wavelength Interval (nm) Spatial Resolution (m)

1 620–670 250
2 841–876 250
3 459–479 500
4 545–565 500
5 1230–1250 500
6 1628–1652 500
7 2105–2155 500

Table 2. Correspondence between block and administrative divisions.

Block Administrative Divisions

1 Yanqing
2 Huairou
3 Miyun
4 Changping + Haidian (Metropolitan Area)
5 Shunyi + Chaoyang (Metropolitan Area)
6 Pinggu
7 Mentougou + Fangshan
8 Metropolitan Area + Daxing
9 Tongzhou

2.2. Haze Level Transformation

The haze-level prediction model outputs haze levels in different regions. Therefore,
we divide the collected PM2.5 concentration in Beijing into 10 levels. Level 1: 0–35 µg/m3,
air quality is good, basically no pollution; level 2: 36–70 µg/m3, acceptable; level 3:
71–105 µg/m3, mild pollution; level 4: 106–140 µg/m3, moderate pollution; level 5–7:
141–245 µg/m3, severe pollution; level 8–10: 245–500 µg/m3, severe pollution. We use the
one-hot vector to label the training set, as in (1).

yi = [p, c1, c2, . . . cn] (1)

The p-bit of the first element in the vector indicates whether there is a cloud layer effect
and whether haze characteristics can be extracted. If p = 1, it means that haze characteristics
are undetectable. In this case, the parameter optimization is to ignore the subsequent
elements so that the adjustment of the parameters will not be affected in training; if p = 0, it
means that the haze characteristics can be detected. When n represents the number of haze
level, the subsequent cn represent the corresponding haze level. If the number of c4 is 1, it
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indicates the corresponding haze level of the input data is 4. i indicates the serial number
of the region where the PM2.5 concentration is located, and i ranges from 1 to 9. Hence, the
ground truth corresponding to each satellite image is as shown in (2).

y =
[

p1 c1
1 . . . c1

10 . . . p9 c9
1 . . . c9

10
]

(2)

3. Method
3.1. Joint Structure of Multi-Convolution Neural Networks

In order to identify haze grades for finer spatial scales and study the temporal and
spatial evolution of haze in different regions of Beijing, we use a multi-convolution network
structure to segment the haze data and then classify it. The multi-convolution neural
network structure includes an input layer, block layer, convolution layer, pooling layer,
local full connection layer, and classification layer [37], as shown in Figure 2. In this
network, we use unified input and unified output.
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Figure 2. The structure of the multi-convolution neural network. 
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Figure 2. The structure of the multi-convolution neural network.

The input layer accepts the processed satellite images in the Section 2 as inputs to
obtain more spatio-temporal data.

The block layer is a sliding window, whose size is 60 × 60 × 3. The sliding step is 60,
so the original 180 × 180 × 3 images can be divided into 9 blocks from the upper to the
lower, from left to right, and then input into the different convolution neural networks.

Nine convolution layers acquire image features of nine different regions. Because
different regions have different background information, such as geographical environment,
the separated convolution layer can distinguish the fine-grained differences of different
regions and provide the haze levels of different regions.

The pooling layer can help reduce the size of the model and increase the speed of the
operation. First, we set padding with 0 and choose the maximum pooling function. Max
pooling uses the maximum value of the region to replace all the elements in the region.

The locally full connection layer prevents cross-contamination of the different layer
outputs at the fully connected layer, preserving the characteristics of each region. Each
locally full connection corresponds to a soft-max classification layer. The classification layer
consists of 99 nodes corresponding to nine regions. The marking and representation of
data is the same as in Equation (2).
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3.2. Spatial Autocorrelation Analysis of Haze Concentration

Global spatial autocorrelation analysis can reflect the relationship between haze con-
centration and spatial distribution. Suppose a piece of data is related to geographic location.
In that case, the distribution of the data in geographic space is also correlated, and the
degree of correlation is inversely proportional to the region’s distance. Its distribution
methods are clustering, random distribution, and regular distribution. Through the spatial
autocorrelation analysis of haze, this phenomenon can be better understood. Its essence is
to analyze haze distribution in different geographic spaces and the correlation between
different regions. In this section, the specific forms of using the matrix notation method to
mark the data of the nine blocks are from top to bottom, and from left to right are Block 1
to Block 9.

3.2.1. Global Moran’s I

We use the Global Moran’s I to study the overall spatial characteristics of haze, indi-
cating whether the haze is related to space, as in (3).

I =
n ∑n

i=1 ∑n
j=1 wij(pi − p)

(
pj − p

)
∑n

i=1 ∑n
j=1 wij·∑n

i=1 (pi − p)2 (3)

This paper cuts the satellite image into nine sub-regions of the same size, so n = 9
in the Equation. pi, pj denote the average levels for Block i and Block j in one of the
seasons. p denotes the average haze level for all blocks in a given season. wij represents the
weight between Block i and Block j. Since the image is equally divided, the areas on the
diagonal are not considered to be adjacent. Then its spatial adjacency graph is as shown
in Figure 3 below:
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Figure 3. Spatial adjacency diagram.

From the adjacency relationship in the above figure, we can obtain its spatial adjacency
matrix, the weight matrix in this section. We set each side to be 1, and the weight between
two blocks is 1, as in Equation (4), and the weight matrix is as shown in Equation (5).

wij =

{
1 if Block i is adjacent to Block j
0 other

(4)

W =



0 1 0
1 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 0
1 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 0
1 0 1
0 1 0


(5)
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In this section, the essential reason for using the Moran’s I is to analyze and indirectly
reflect the correlation between the two spatially adjacent areas of the haze concentra-
tion level. In order to facilitate the analysis and use of the Moran’s I, we use (6)–(8) to
simplify (3).

S0 = ∑n
i=1 ∑n

j=1 wij (6)

zi = (pi − p) (7)

zT = [z1, z2, . . . , zn] (8)

The simplified global Moran’s I is given by (9).

I =
n
S0

∑n
i=1 ∑n

j=1 wijzizj

∑n
i=1 z2

i
=

n
S0

zTWz
zTz

(9)

The range of the global Moran’s I is between [−1, 1]. If I > 0, the haze has a positive
correlation with the space and, the closer the value is to 1, the stronger the correlation,
and there is a strong positive correlation between haze and space. Conversely, if I < 0, the
haze is negatively correlated with space, and the closer the value is to −1, the stronger the
negative correlation.

The analysis methods of spatial autocorrelation generally consist of the following
three types: 1. Local Indicators of Spatial Association (LISA); 2. G statistics; 3. Moran
scatter plot; the first is the method of local spatial analysis, which will be used in the
following experiment. In the global analysis, the Moran scatter diagram is adopted as
the analysis method, and its four quadrants respectively represent the spatial relationship
between the four blocks and their neighboring blocks, and the corresponding relationships
are as follows:

As shown in Figure 4, the Moran scatter plot consists of four quadrants representing
four different spatial association types. The relationship of the first quadrant is high–high,
indicating that the haze concentration level of the area and the surrounding area are both
high, and the spatial difference is slight. The spatial relationship is a positive correlation.
The relationship of the second quadrant is low–high, indicating that the haze level of the
area and the surrounding area differs significantly. The level of the area is low, and the
haze level around it is high. The spatial relationship is now negatively correlated. The
relationship of the third quadrant is low–low, indicating the haze concentration in this
area is low, and the spatial relationship is positive. The relationship between the fourth
quadrant is high–low, indicating that the haze level in the area is high. However, the haze
concentration level in the surrounding area is low. The spatial relationship is negatively
correlated. Quadrant 1 and quadrant 3 reveal positive local spatial autocorrelation, and
quadrant 2 and quadrant 4 reveal negative local spatial autocorrelation.
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3.2.2. Local Moran’s I

Like the global Moran’s I, the local Moran’s I focuses on a specific block to describe
the similarity between Block i and its adjacent areas, as shown in (10).

Ii =
n(pi − p)∑n

j=1 wi,j
(

pj − p
)

∑n
i=1 (pi − p)2 =

nzi ∑n
j=1 wi,jzj

zTz
(10)

The standardized statistics for local Moran’s I monitoring are specified in the following form:

Z(Ii) =
Ii − E(Ii)√

Var(Ii)
(11)

This formula can be used to study the spatial heterogeneity of each region, and can also
study and analyze the relative spatial relationship and its changes, where E(Ii) represents
the mathematical expectation of the Local Moran’s I of the i-th Block under the condition of
no spatial autocorrelation, and its formula is expressed as:

E(I) = − 1
n − 1

(12)

√
Var(Ii) represents the standard deviation of the Local Moran’s I in the region. Since

the LISA method is relatively intuitive, in the local analysis the Local Moran’s I of LISA is
used for spatial analysis.

By comparing the sign of Z(Ii) and the value of the local correlation coefficient Ii, the
spatial units whose local correlation index reaches a certain threshold can be divided into
four types of spatial autocorrelation relationships, as shown in the following Table 3.

Table 3. Corresponding values of time–space relationship.

Ii Z(Ii) < 0 Z(Ii) > 0

Positive low-high high-high
negative low-low high-low

Among these, the local Moran’s I, whose significance level reaches a certain threshold,
indicates a positive correlation in the spatial relationship. If it is significantly negative,
it indicates a negative correlation between the two research areas in the space–time rela-
tionship. Combined with the standardized measurement Z, the time–space relationship
can be analyzed. The high–high type indicates that the haze density level of area i and its
neighboring blocks are relatively high. This area is a point where haze occurs frequently.
The low–low type indicates that the haze concentration levels of the research block i and
the surrounding adjacent blocks are relatively low. It indicates an area with lighter haze
pollution. The other two types, low–high and high–low respectively, indicate that the
high-pollution area surrounds the polluted area, and the high-pollution area is surrounded
by the low-pollution area, showing a negative correlation. Compared with the spatial
analysis obtained by general actual monitoring sites, the research in this section has the
advantage that the research areas are distributed in equal blocks in time and space, and the
distances are equal. Therefore, the accuracy of the weight matrix is higher.

4. Results
4.1. Analysis of Output Multi-Convolutional Neural Network

We divide the haze prediction results of Beijing in 2014 into nine regions. Further, to
visually observe the spatial distribution of haze and the temporal evolution characteris-
tics at the seasonal scale, we divide the results into four seasons and plot the frequency
histograms of the haze level. We analyze the overall frequency of haze, some areas with
obvious haze characteristics in different seasons and the similarity between different re-
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gions. The frequency histograms of haze levels in winter, spring, summer, and autumn are
respectively shown in Figure 5a–d.
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Then the results are analyzed in three aspects:
(1) Frequency of overall haze; (2) Analysis of the highest and lowest grade areas;

(3) Similarity between blocks.
Figure 5a shows that:

1. The concentration of haze in winter is generally high, especially in Block 7, Block 8, and
Block 9. Block 7 is average in different levels and has the most severe haze pollution.

2. There is a high similarity among Block 3, Block 4 and Block 5, and they have the
lowest average of haze levels.

3. There is a haze with super-high concentration levels in the middle and southern
regions, and these areas have more daily pollution such as that from vehicle emission
and urban construction due to high population density.

The frequency histograms of haze levels in spring show:

1. Overall haze levels in spring are low. Block 1 has the lowest haze level, mainly
concentrated between level 1and level 2. The concentration in the blocks adjacent to
Block 1 is low, and the trend of increasing concentration follows the increasing speed
of distance.

2. The most extensive average haze level among the nine blocks occurs in Block 7, whose
haze levels are concentrated at levels 3 and 4. Block 7 also has severe haze and has
low similarity to the surrounding area.
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3. Block 1 and Block 4 have high similarities. Likewise, block 2 is similar to Block 3, and
there is a high similarity between Block 5 and Block 8 and Block 9.

Figure 5c shows:

1. Summer is the season with the weakest pollution in a year. In haze distribution, the
pollution in the central region is more severe than in the upper region and weaker
than in the lower region. The lower region has the most polluted air and the pollution
decreases towards the upper region.

2. All the haze levels in summer are under level 5. The Block with the lowest average con-
centration is still Block 1. Block 7 and Block 9 have the highest average concentration.

3. Blocks 4, 7, 8, and 9 exhibit a high correlation, and Blocks 1, 2, and 3 show a high similarity.

Analyzing the frequency histograms in autumn, we can draw the following conclusions:

1. The concentration of haze in autumn is generally high with decreasing low levels and
increasing severe haze pollution.

2. Blocks 1, 2, and 4 have mainly low levels, while other blocks have higher haze levels,
such as level 8 or level 9.

3. Block 1 and Block 4 have high similarity, Block 2 and Block 3 have high similarity,
Block 5 is similar to Block 6, and the three blocks in the south have high similarity.

From the degree of haze pollution at a seasonal scale, Beijing’s pollution intensity is in
the order: autumn > winter > spring > summer.

If the generation of data is related to the geographical location, the spatial distribution
of the data is also location-dependent, and the correlation is positive to the distance. There
are three distribution forms: clustering, random distribution, and rule distribution. Haze
is a kind of data related to location. We conducted a spatial autocorrelation analysis of
the prediction results to analyze the distribution of haze in different geographies and the
correlation between different regions. We used Global Moran’s I and Local Moran’s I to
analyze the global and local spatial characteristics of haze, respectively.

4.2. Results of Spatial Autocorrelation Experiment

In this experiment, Moran scatter plot and the LISA plot were used to analyze and
study the spatial relationship of haze in different seasons. Then, the total spatial auto-
correlation during the period was analyzed. The global Moran’s I result are shown in
Table 4:

Table 4. Global Moran Index Table.

Season Winter Spring Summer Autumn

global Moran’s I 0.071 0.052 0.375 0.349

The Moran’s I of the haze of Beijing in winter, spring, summer, and autumn is 0.071,
0.052, 0.375, and 0.349. It shows that the haze concentration in the four seasons is positively
correlated with the geographical area. This relationship is the strongest in summer and
autumn, indicating that the spatial correlation in these two seasons is more prominent.
Moran’s I in winter and spring is very close to zero, indicating that the haze randomly
occurs in nine blocks in these two seasons, while in summer and autumn, the haze has the
characteristics of regional accumulation.

4.2.1. Moran Scatter Plot Results and Analysis

The point in the Moran scatter plot represents an area, and the slope of a linearly fitted
curve is equal to the global Moran’s I. According to the global Moran’s I results, there
is a high correlation between haze and spatial position in summer and autumn, and the
correlation in spring and winter is low. Moran scatter plots for summer, autumn, winter,
and spring are shown in Figure 6a–d.
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Figure 6a shows that four blocks are in the first quadrant, one block is in the second
quadrant, and four blocks are in the third quadrant, and there are generally positive
correlation characteristics. Blocks 5, 7, 8, and 9 are in the first quadrant, exhibiting the
characteristics of high–high, which means that the haze levels in these four blocks are
high, and there is a high positive correlation. Block 4 is in the second quadrant and
has a characteristic of low–high. Blocks 1, 2, 3, and 6 are located in the third quadrant,
exhibiting a low–low characteristic, and the haze levels of the four blocks are low. In
general, the overall characteristics of haze in summer are aggregation type, including high
concentration aggregation and low concentration aggregation.

Figure 6b shows two blocks in the first quadrant, two blocks in the second quadrant,
three blocks in the third quadrant, and two blocks in the fourth quadrant, which generally
show a positive correlation. Blocks 8 and 9 located in the first quadrant exhibit high–high
characteristics. Block 4 and Block 6 are in the second quadrant, exhibiting the characteristics
of low–high. Blocks 1, 2, and 3 are in the third quadrant, exhibiting low–low characteristics.
Finally, Blocks 5 and 7 are in the fourth quadrant exhibiting a ‘high–low’ characteristic.
In general, the haze aggregation in autumn is worse than in summer, but there are fewer
isolated points, and the overall appearance is aggregated.

The global Moran’s I is small in spring and winter, and the correlation between haze
and geographic location is generally weak. There is no block with ‘high–high’ charac-
teristics in the spring, and the other three characteristics are evenly distributed. The
coefficient of positive correlation of the overall haze is also low, and the distribution
is discrete. There is no high–high characteristic in winter, but there are more low–low
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blocks, and the correlation is better than in spring. The remaining low-concentration
areas surround two high-concentration areas, and the overall distribution shows low
concentration aggregation.

4.2.2. Results and Analysis of LISA Cluster Map

We also use the LISA to visualize the haze aggregation characteristics of the nine
blocks. The autoregressive analysis of the local space of nine blocks, combined with the
block information table in Table 1, explains the specific spatial location and the saliency
of agglomeration. The saliency is the Z value used in the theoretical introduction. In the
experiment of this section, the Geoda tool is used for LISA analysis. We use red for H-H,
blue for L-L, pink for H-L, and purple for L-H. The LISA maps of winter, spring, summer,
and autumn are shown in Figure 7a–d.
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From the LISA map of Figure 7a, the low agglomeration area is in northern Beijing in
winter, and the high agglomeration area is in the south of Beijing. The low agglomeration
area is larger than the high agglomeration area. Thus, the central area of Beijing is the L-H
type, where the haze concentration in the winter is far lower than the haze concentration of
the surrounding area.

Compared with the winter, the concentration in Block 8 becomes the ‘L-H’ type,
and the ‘Fangshan’ in Block 7 becomes the ‘H-L’ type. As a result, the haze pollution in
the middle part of the high-concentration area in spring is degraded, so that the ‘H-H’
agglomeration area disappears in the spring, and the ‘L-L’ low-concentration area is the
same as the winter consisting of the four areas of the northern area.

As shown in Figure 7c, the agglomeration characteristics in summer are apparent, and
the northern blocks are still low-concentration areas. However, the haze concentration in
southern Beijing begins to rise, forming an H-H agglomeration area.

Figure 7d shows that the central area of Beijing has become a high-aggregation pattern,
which further expands into the south. In contrast, the haze concentration in the north has
been in the ‘L-L’ agglomeration type.

The LISA maps for the above four seasons all pass the 5% significance level test, and
spatial correlation types of regions in different seasons are shown in Table 5.

Table 5. Spatial correlation types of regions in different seasons.

Seasons H-H H-L L-L L-H

Winter Fangshan, Daxing Mentougou, Tongzhou Yanqing, Huairou,
Miyun, Changping Metropolitan Area

Spring - Mentougou,
Fangshan, Tongzhou

Yanqing, Huairou,
Miyun, Changping Daxing

Summer Mentougou, Fangshan,
Daxing, Tongzhou - Yanqing, Huairou, Miyun -

Autumn
Mentougou, Fangshan,

Daxing, Tongzhou,
Metropolitan Area

- Yanqing, Huairou,
Miyun, Changping -

The results in Table 5 are arranged in chronological order from top to bottom. Thus,
we can analyze the temporal evolution of haze at the seasonal scale.

(1) The Yanqing, Huairou, and Miyun in the north of Beijing are stable low-concentration
areas. As a result, the overall pollution level is low, and the seasonal impact is
small. Changping is also relatively stable and only becomes a non-aggregation zone
in summer.

(2) Fangshan in winter is the ‘H-H’ agglomeration area, which became the ‘H-L’ ag-
glomeration area in the spring, indicating the concentration of haze in the vicinity of
Fangshan has decreased in the spring.

(3) Mentougou and Tongzhou have high haze concentrations in summer and autumn,
affecting the haze level of the surrounding areas, forming a high concentration area
in southern Beijing and the Fangshan and Daxing.

(4) The areas belonging to ‘H-L’ and ‘L-H’ are easily affected by the haze around them
and become high or low accumulation areas in summer and autumn, improving
spatial autocorrelation.

5. Discussion

In this paper, we propose a multi-convolution haze-prediction model to predict the
daily haze pollution level in different areas of Beijing. We divide the predictions into nine
regions and four seasons to study the fine-grained haze pollution and time characteristics.
We use the haze level frequency histograms to present the results. From the degree of haze
pollution at the seasonal scale, the intensity of haze pollution in Beijing is in the order:
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autumn > winter > spring > summer. From the distribution of the pollution, the overall
pollution in northern Beijing is weak, and the seasonal changes are also small. On the other
hand, the haze pollution in the southern regions is intense and shows an aggregation trend.

Moreover, we use the global Moran’s I to measure the correlation between haze and
geographical location. The results show that, in general, haze in summer and autumn has
regional aggregation characteristics, while in winter and spring the haze distribution is
relatively random.

Since the global Moran’s I can only reflect the overall correlation between the haze
and the geographical location, we use the local Moran’s I, the Moran scatter plot and the
Local Indicators of Spatial Association (LISA) to study the spatial characteristics of haze in
the vicinity. The results show that there are obvious agglomeration areas in summer and
autumn, while the aggregation effects in spring and winter were relatively weak. Thus, the
spatial distribution of haze in Beijing is as follows: the southern region presents a high-high
agglomeration, while the northern region exhibits a low-low agglomeration. The temporal
evolution of haze on the seasonal scale is according to the chronological order of winter,
spring, and summer to autumn, the haze gradually becoming agglomerated.

6. Conclusions

Inspired by the idea of YOLO and other object detection convolutional neural net-
works, this paper cuts the remote sensing image, analyzes the haze concentration in
different areas qualitatively and quantitatively, and derives the spatial laws of different
seasons to predict and analyze the haze in a finer time dimension. This paper first proposes
the structure of the multi-convolution joint neural network, classifies the spatio-temporal
data of haze in the Beijing area by block level, and carries out the frequency statistical
analysis method on the output results of the multi-convolution joint neural network. First,
the frequency of occurrence of haze levels was displayed and analyzed accordingly. Then,
to analyze the results more finely, the Moran’s I of spatial autocorrelation analysis was used
in subsequent research to analyze the spatial relationship between each block. Then, to
analyze the haze’s temporal and spatial evolution more intuitively, the spatial variation of
the haze is analyzed in the LISA cluster map on the time unit of the seasonal scale. Finally, it
is concluded that the temporal and spatial distribution of haze in the Beijing area is high in
the south and low in the north. Moreover, its temporal and spatial evolution characteristics
on a seasonal scale are that, according to the time changes from winter, spring, summer
to autumn, the relationship of the haze concentration between each sub-region gradually
changes from a discrete state to a concentrated state.
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