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Abstract: The early stages of a tropical cyclone can be a challenge to forecast, as a storm consolidates
and begins to grow based on the local and environmental conditions. A high-resolution ensemble
of the Hurricane Analysis and Forecast System (HAFS) is used to study the early intensification of
Hurricane Dorian, a catastrophic 2019 storm in which the early period proved challenging for forecasters.
There was a clear connection in the ensemble between early storm track and intensity: stronger members
moved more northeast initially, although this result did not have much impact on the long-term track.
The ensemble results show several key factors determining the early evolution of Dorian. Large-scale
divergence northeast of the tropical cyclone (TC) appeared to favor intensification, and this structure
was present at model initialization. There was also greater moisture northeast of the TC for stronger
members at initialization, favoring more intensification and downshear development of the circulation
as these members evolved. This study highlights the complex interplay between synoptic and storm
scale processes in the development and intensification of early-stage tropical cyclones.

Keywords: hurricane; tropical cyclone; ensemble; intensification

1. Introduction

Understanding the processes underlying tropical cyclone intensity change continues to
be a major goal of research in tropical meteorology. Predicting tropical cyclone (TC) intensity
change is important for many reasons, including providing accurate warnings of potential
impacts. TC intensity can also affect the track a TC will take [1], and the interplay between
them can prove to be very difficult in some forecast scenarios. In this study, we examine the
complexities associated with the early intensification of Hurricane Dorian (2019), one of the
most devastating and powerful tropical cyclones of the 21st century [2]. The study explores
key factors that allowed Dorian to intensify in the Eastern Caribbean despite the presence of
marginal to hostile environmental conditions (including dry air), and the connection between
the track and intensity of the TC during this critical early period.

The link between TC structure and forecast errors of track and intensity, and sources
of forecast uncertainty, are both topics of interest in the tropical meteorology community.
Davis and Bosart [3] studied numerical simulations of Hurricane Diana (1984), and found
that its track was sensitive to the cumulus scheme chosen, because of how the associ-
ated precipitation and outflow affected the large-scale steering of the storm. Bassill [4]
found a similar sensitivity of the modeled track of Hurricane Sandy (2012) to cumulus
parameterization. Torn and Snyder [5] found that initial position uncertainty tends to be
higher for weaker storms (when the vortex may be broad and ill-defined). Alaka et al. [6]
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used an ensemble of Hurricane Weather Research and Forecasting (HWRF) model runs
to study the evolution of Hurricane Joaquin (2015). They found that the track of the TC
did not seem to be sensitive to the initial vortex location or intensity, but rather was much
more sensitive to subtle differences in the synoptic environment. Nystrom et al. [7] also
examined Hurricane Joaquin, using an ensemble of WRF runs. They found that the track
of the TC was most sensitive to differences in the initial conditions 600–900 km from the
TC center, while intensity was most sensitive to initial conditions in the 300 km closest to
the TC. What is clear from these studies is that TC track and intensity can be sensitive to a
number of environmental and local perturbations, and the relative contributions of local
and large-scale factors can be different for different cases. Here, we explore which factors
were most important for allowing Dorian to intensify and move further northeast than
initially forecasted in the Eastern Caribbean.

Ensemble systems are a useful tool for studying the uncertainty of certain TC forecasts
and setups. Zhang and Krishnamurti [8] was an early study that used an ensemble setup
to study TC track forecasts and the sensitivity to perturbations in both TC location and the
environment around the TC. More recent studies have utilized an ensemble approach to
elucidate details of TC intensification and evolution, especially in sheared or otherwise
hostile environments. Leighton et al. [9] used an ensemble of HWRF forecasts to examine
the intensification of Hurricane Edouard (2014) and found that both vortex-scale processes
(like vortex tilt and eddy radial vorticity flux) as well as environmental factors (such as envi-
ronmental moisture) were key in distinguishing between intensifying and non-intensifying
members. Rios-Berrios et al. [10] similarly demonstrated the importance of moisture to the
intensification of Hurricane Katia (2011) using the ensemble of Advanced Hurricane WRF
(AHW). As these and other studies demonstrate, ensembles are a useful tool for evaluating
complex and uncertain processes in TC formation and evolution. Such complex processes
were at work in the early evolution of Dorian.

Here, we make use of an ensemble set based on the Hurricane Analysis and Forecast
System (HAFS), which uses the nested version of the finite-volume cubed sphere (FV3)
dynamical core. Similar versions of high-resolution nested FV3 have been used both for real-
time prediction [11] and comparison with observational datasets [12], and demonstrated
the capability of this model for high-resolution TC prediction. HAFS is a developing
component of the Unified Forecast System (UFS) [13].

2. Experiments
2.1. Hurricane Dorian Background

Hurricane Dorian was the strongest hurricane of the 2019 Atlantic Hurricane season, and
also the strongest hurricane to impact the Bahamas in recorded history [2]. Dorian was a small
storm that formed in the Central Atlantic, and then moved into the Eastern Caribbean Sea
and then the Southwest Atlantic. It rapidly intensified and became a Category 5 Hurricane
before impacting the northern Bahamas with devastating wind, rain, and storm surge. Dorian
slowed to a crawl, stalled, and then recurved and impacted the Outer Banks of North Carolina
as a Category 1 hurricane. One of the biggest forecast challenges with Dorian was the motion
and intensity change early in its lifecycle, while the storm was moving through and past the
Lesser Antilles. This period included a “jump” of the center north of the previous position [2].
During this time, Hurricane Dorian also intensified more than most forecasts suggested [2],
and became a hurricane while moving northwest through the Virgin Islands. This early period
of intensification, the factors that led to this unexpected intensification, and the connection to
the track of the TC will be explored in this study.
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2.2. Model Setup

This study uses the global-nested Hurricane Analysis and Forecast System [14]. This
model (referred to as HAFS-globalnest hereafter) is based on a nested version of FV3GFS [15]
that features two-way feedback between the nested grid and the global domain. The nested
grid layout is the same as that used in a large set of real-time forecast experiments from the
2019 Atlantic Hurricane Season. See Figure 1 for details of the nest layout.
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Figure 1. Hurricane Analysis and Forecast System (HAFS)-globalnest static nest domain (illustrated by terrain height,
shaded) covering the North Atlantic.

HAFS-globalnest uses physics parameterizations that are similar to the operational
GFS model, with some key modifications to account for changes in the tropical cyclone
environment. The convective parameterization [16] is used on the global domain, but not
on the 3-km nest. The GFS EDMF planetary boundary layer (PBL) scheme [17] is used,
with modifications to be more consistent with observed eddy diffusivity and PBL structure
in the TC environment [18,19]. For radiation, HAFS-globalnest uses the rapid radiation
transfer model for GCMs (RRTMG) [20]. The microphysics scheme is the 6-class single
moment GFDL microphysics [21]. The surface scheme accounts for changes in drag
coefficient at high wind speeds in the TC core [22].

For the analysis in this study, an 80-member ensemble is used, created by initializing
the model from 80 different members from the Global Ensemble Forecast System (GEFS),
which uses an 80-member Ensemble Kalman Filter (EnKF) data assimilation system [23].
A similar methodology was applied to initialize a 40-member HFV3 (a nested FV3GFS
predecessor to HAFS) forecast ensemble to study the rapid intensification of Hurricane
Michael (2018) [14]. The ensemble forecasts for Hurricane Dorian were initialized at 00 UTC
on 27 August 2019, when the TC was approaching the island of Barbados. The forecasts were
run for 168 h. All 80 members use the same surface analysis from the GFS analysis, including
sea surface temperature (SST). Currently, HAFS-globalnest is not coupled to an ocean model
to account for dynamic ocean cooling, although that capability is in development.
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3. Results
3.1. General Ensemble Results
3.1.1. Track/Intensity Comparison between All Members

Figure 2 shows the track and intensity forecasts from all 80 ensemble members ana-
lyzed in this study. There were a wide range of track outcomes, ranging from a turn east of
the Bahamas to a landfall in the Florida Peninsula. A later study will examine synoptic
influences on the longer-range track (near the Bahamas and Florida) in these simulations.
This study will focus on the observed track that was mostly outside of the ensemble group
in the early part of the forecast period. This bias was seen in several operational ensemble
systems as well, including the GFS ensemble (which was used for the initialization of this
set) and even the European Center for Medium-Range Weather Forecasting (ECMWF)
ensemble (not shown). The intensity forecasts showed a large range, with some members
keeping the TC as a weak tropical storm for several days, with others more correctly
showing the intensification into a major hurricane. Although the middle of the ensemble
group was generally too weak throughout the period, several members did capture the
early intensification, and these members will be the focus of detailed analyses for much of
the paper. As will be discussed in the next section, the weak bias of the ensemble mean
may also be connected to the fact that the ensemble mean track was west of the Best Track,
given the relationship between track and intensity that will be discussed.

3.1.2. Correlation between Track and Intensity Errors

A later study of this ensemble set will be examined in detail in terms of the synoptic-
scale influences on Dorian’s track, and which factors were most important for causing the
storm to stall in the Bahamas rather than continuing westward into Florida. Here, we focus
on the relationship between the early intensification and the track during this time period
(0–48 h). Figure 3 shows the correlation between cross-track errors and intensity errors at
each forecast hour. Note that the intensity bias is used to represent the intensity error, such
that negative bias indicates a forecast that was too weak.

From hours 42 to 96, there is a statistically significant relationship (based on a t-test),
with members that were too weak having larger cross-track errors. As can be seen in
Figure 2, this result means that weaker members were too far southwest compared to the
stronger members which were farther northeast and closer to the Best Track. Some of
this relationship is partially due to the effects of land interaction with Puerto Rico and
Hispaniola—tracks that were further northeast had less land interaction and therefore
provided more opportunity for the TC to strengthen. However, the track and intensity
relationship was already apparent even before the period of land interaction (around hours
36–42), as can be seen in the track plots with intensity overlaid in this time period (Figure 4).
The next section will explore some of the key large-scale factors that led to this relationship
between track and intensity in this early period.
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Figure 2. (a) Tracks of all 80 members in the HAFS ensemble initialized at 00 UTC 27 August 2019,
run for 168 h. The colors are the forecast hour. The Best Track is shown in black. (b) Intensity
(minimum pressure, hPa) of all 80 members, run for 168 h. (c) As in (b), but for maximum sustained
wind speed (kt, 1 kt = 0.51 ms−1). The Best Track is shown in black.
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Figure 3. Correlation coefficient between across-track errors and intensity bias at each forecast hour
from the ensemble set. Negative correlation means that larger cross-track errors are correlated with a
weak intensity bias, and positive correlation means that larger cross-track errors are correlated with a
strong intensity bias. The triangles indicate forecast hours where the relationship was statistically
significant (p < 0.05).
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3.2. Synoptic Influences on Early Intensity and Track
3.2.1. Examination of Environmental Variables and Correlation with Early Intensity

Next, the ensemble data is used to explore some of the key early factors that allowed
Dorian to intensify in the early period. The “early intensity” is defined as the intensity
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at 42 h, which was right before many members passed over or near Puerto Rico and
Hispaniola. This allowed for the early intensity to be examined without the complicating
influences of land interaction (which certainly played a role in some members after this
early period). The first analysis involved examination of a number of synoptic-scale
environmental variables that were calculated from the ensemble data, and their relationship
with the intensity at 42 h. These variables are similar to those used to drive the Statistical
Hurricane Intensity Prediction Scheme (SHIPS) [24], and are listed in Table 1. The linear
correlations between each of these variables at each lead time from 0 to 42 h and the intensity
(minimum pressure) at 42 h are shown in Figure 5. Even at this early time, there was a
large spread in forecast intensity, with the minimum pressure in the members ranging
from 982 hPa to 1009 hPa. Several interesting patterns stand out from the correlation. First,
almost all of the variables show little correlation at early lead time (~0 to 6 h), indicating
that differences in the environment at model initialization were not directly responsible
for the later intensity differences, but the evolution of the environment and TC vortex
throughout the forecast was important. It should be noted, however, that some of the
variables are likely related (humidity and upper divergence, for example), so it is difficult to
fully examine each variable independently. One notable variable that did show a significant
relationship was the upper-level zonal wind near the TC, indicative of some difference in
upper-level anticyclone structure between the members at the initialization time that will
be examined in more detail. The vertical shear at early lead times was not well-correlated
with intensity at 42 h, but the relationship improved closer to that forecast hour as the
environment around the TC evolved. The variables that were most significantly correlated
with intensity at 42 h, with 12–24 h lead time, were the moisture (in all layers), the upper-
level divergence, and the mid-level (850–500 hPa) shear. These correlations generally
peaked at around 12–30 h, suggesting that this period after spin-up was key to determining
the intensity and structure of Dorian in the different members.

Table 1. Large-Scale Environmental Variables Calculated From the HAFS Ensemble Data.

Variable Variable Description Variable Definition

SHRD Deep-layer vertical
wind shear

850–200 hPa Wind Shear (kt)
Calculated in an annulus 200–800 km from the tropical cyclone center (r = 200–800)

SHRS Mid-level vertical wind shear 850–500 hPa Wind Shear (kt)
(r = 200–800)

RHHI Upper-level humidity Relative humidity (%) Averaged over the 500–300 hPa Layer (r = 200–800)

RHMD Mid-level humidity Relative humidity (%) Averaged over the 700–500 hPa Layer (r = 200–800)

RHLO Low-level humidity Relative humidity (%) Averaged over the 850–700 hPa Layer (r = 200–800)

D200 Upper-level divergence Divergence (s−1) at 200 hPa (r = 200–800)

U200 Upper-level Zonal Wind Zonal wind (kt) at 200 hPa (r = 200–800)

U20C Upper-level Zonal
Wind Near TC

Zonal wind (kt) at 200 hPa calculated in a radius 0–500 km from the TC center
(r = 0–500)

V20C Upper-level Meridional
Wind Near TC Meridional wind (kt) at 200 hPa (r = 0–500)

PENV Environmental sea-level pressure Mean sea level pressure (r = 200–800)

The SHIPS-like variables are useful for assessing the overall importance of large-scale
synoptic factors, but because of the large spatial averaging involved, it can be difficult
to ascertain the exact nature of the large-scale features responsible for influencing the
TC intensity [9]. Thus, the structure of the synoptic environment early in the lifecycle
of Dorian is examined next. In order to tease out the relationship with intensity change,
composites of the 20 strongest and 20 weakest members (as defined by the minimum
pressure at 42 h) are compared. Figure 6 shows the differences in 200-hPa height between
the strong composite and the weak composite, as well as the difference in the composite
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wind vectors, at 0 h (initialization), 24 h (near when most variables showed peak correlation
with 42 h intensity), and 42 h. There are clear differences even at the initial time, with the
strong group having a much stronger anticyclone to the north and east of the TC center.
This difference is significant based on a t-test. The vector difference shows that there is
stronger upper-level divergence in this region (including at/near the TC center), and the
upper-level low pressure area to the north of the TC is weaker at initialization in the
strong group (see a later section for an individual example from two members). As time
went on, this difference in the upper-level fields became even more pronounced, with
a stronger upper-level anticyclone over and especially to the east of the TC center in
the strong group, and a weaker upper-level low due north of the TC (as seen in the
dipole pattern in Figure 6c). This difference in the upper-level wind and height fields was
clear at the initial time and grew with time in the forecasts, with an apparent positive
feedback between the upper divergence and convection on the north and east sides of
the TC. This difference is also reflected in the mid-to-upper-level moisture field (Figure 7).
There is slightly higher moisture initially to the northeast of the TC center in the strong
composite, seemingly coupled with the area of stronger upper divergence. As time went
on, this difference became more pronounced. Interestingly, while the strong group has
higher overall humidity due to the large difference on the east side, the strong group also
has a pronounced area to the southwest where there is lower humidity. This implies a
preferred location for convection to the northeast in the strong group, and to the southwest
in the weak group, which will be seen in the individual members examined later.
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3.2.2. Examination of Structural Variables and Correlation with TC Intensity

The above analysis highlighted some of the composite synoptic variables that were
important for the early evolution of Dorian. Next, some of the storm-scale structural
metrics that have been shown to be important for other TCs were examined to see which
ones correlated with the intensity of the TC in the ensemble members. For this analysis,
a precipitation partitioning algorithm was used that has been applied to radar data in sev-
eral previous studies [25,26] to distinguish between stratiform and convective precipitation.
The algorithm also sorts convective precipitation into shallow, moderate, and deep convec-
tion based on height and reflectivity thresholds. Originally developed by Steiner et al. [27],
the partitioning algorithm has also been applied to numerical model output by Rogers [28].
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As in that study, some adjustments to several thresholds and tuning parameters were made
due to differences in model simulated reflectivity and observed reflectivity from aircraft
data. These differences can include model bias as well as attenuation in the aircraft radar
observations. Table 2 lists several key height and reflectivity thresholds used in the model,
and compares this with the radar method of Steiner et al. [27]. The radar thresholds are
also applied to the observed NOAA P-3 aircraft radar data used for comparison with the
model data.
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Table 2. Parameters for the Precipitation Partitioning Algorithm.

Parameter Model Value Radar Value

Height Initially Analyzed 2 km 2 km

Convective Reflectivity Threshold 50 dBZ 40 dBZ

Stratiform Reflectivity Threshold 20 dBZ 20 dBZ

“Convective peak” Tuning Parameter 55 dBZ 45 dBZ

Height Threshold for Moderate Convection 6 km 6 km

Height Threshold for Deep Convection 10 km 10 km

Echo Top Reflectivity Threshold 30 dBZ 20 dBZ

In this analysis, we examine time series of the evolving inner-core precipitation structure.
To do this, a metric chosen is eyewall closure, similar to that discussed in Matyas et al. [29]
and Hazelton et al. [14]

Closure =
∑360

◦

0◦ α (i f ptype ≥ threshold)

∑360◦

0◦ α
(1)

The threshold is based on the integer value of the precipitation type in the algorithm
(one for weak echo, two for stratiform, three for shallow convection, four for moderate
convection, five for deep convection). Thus, a closure of one indicates a perfectly closed
ring, and a closure of zero indicates no precipitation meeting the required threshold.
The region analyzed is the eyewall, defined as r* = 0.75 RMW2 km to r* = 1.25 RMW2 km
(as in Rogers et al. [30] and Hazelton et al. [31]). RMW2 km is the azimuthal mean radius of
maximum winds at 2-km altitude.

A few other dynamic and thermodynamic variables were also examined. The local
Rossby number is related to both the size and magnitude of the incipient vortex [32], and is
defined as

Ross =
Vt|RMW10 m

f ∗ RMW10 m
(2)

Vt|RMW10 m
is the tangential wind at the 10-m RMW, RMW10 m is the 10-m RMW

(similar to but usually slightly different from the 2-km RMW due to eyewall slope [33]),
and f is the Coriolis parameter. Another variable examined is the magnitude of the inner-
core temperature anomaly, which is related to the developing TC warm core and defined
similarly to Zhang et al. [34] as

TMPA = MAX
(
T0−15 − T200−300

)
(3)

T0–15 is the temperature in the 0–15 km radius from the TC center, while T200–300 is
the temperature in the 200–300 km radius from the TC center. The warm core magnitude
is taken as the maximum of this difference in the 0–18 km vertical layer. A final dynamic
variable examined is the vortex tilt. The tilt is examined in two layers, 2–5 km and 2–10 km,
with the center defined based on the vorticity centroid at each height. Table 3 lists the
structural variables examined, including their abbreviations and definitions.
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Table 3. Storm-scale structure variables calculated from the HAFS ensemble data.

Variable Variable Description Variable Definition

PWEI Percentage of the area in the eyewall that
has weak echoes

Percentage of the area from r* = 0.75–1.25 that has weak echoes based on
the precipitation partitioning algorithm

PSTI Percentage of the area in the eyewall that
is stratiform precipitation

Percentage of the area from r* = 0.75–1.25 that has stratiform
precipitation based on the precipitation partitioning algorithm

PSHI Percentage of area in the eyewall that is
shallow convection

Percentage of the area from r* = 0.75–1.25 that has shallow convection
based on the precipitation partitioning algorithm

PMOI Percentage of area in the eyewall that is
moderate convection

Percentage of the area from r* = 0.75–1.25 that has moderate convection
based on the precipitation partitioning algorithm

PDEI Percentage of area in the eyewall that is
deep convection

Percentage of the area from r* = 0.75–1.25 that has deep convection based
on the precipitation partitioning algorithm

CLST Closure of the eyewall by
stratiform precipitation

Percentage of the eyewall enclosed by at least one grid point of stratiform
precipitation based on the precipitation partitioning algorithm

CLSH Closure of the eyewall by
shallow convection

Percentage of the eyewall enclosed by at least one grid point of shallow
convection precipitation based on the precipitation

partitioning algorithm

CLMO Closure of the eyewall by
moderate convection

Percentage of the eyewall enclosed by at least one grid point of moderate
convection based on the precipitation partitioning algorithm

CLDE Closure of the eyewall by
deep convection

Percentage of the eyewall enclosed by at least one grid point of deep
convection based on the precipitation partitioning algorithm

RMW2 Radius of Maximum Winds at z = 2 km Radius of maximum azimuthal-mean 2-km tangential wind

ROSS Local Rossby Number See Equation (2)

TMPA Inner-core temperature anomaly The maximum temperature difference between the average in the
0–15 km radius and the 200–300 km annulus

TMVM Mid-level vortex tilt Vortex tilt based on vorticity centers at 2 km and 5 km

TMVD Deep-level vortex tilt Vortex tilt based on vorticity centers at 2 km and 10 km

Figure 8 shows the correlations between these structural metrics and the 42 h intensity
of the TC in the ensemble members, again defined as the minimum central pressure.

Unsurprisingly, the precipitation organization, vortex strength, and warm core anomaly
all correlated strongly (and statistically significantly) with the intensity at 0 lead (42 h). As with
the synoptic variables, though, several variables show strong relationships at earlier leads.
In particular, the percentages/closure of moderate and deep convection at hours 015 and
onward are strongly correlated with the 42 h TC intensity. Similarly, the Rossby number and
warm-core magnitude around this time (15 h) is well-correlated with the intensity over a day
later. This further highlights that, in addition to the large-scale differences, vortex-scale and
convective structural differences between members were critical in determining the evolution
in the Eastern Caribbean. Inner-core structure has been shown to be a critical component
of RI onset in moderately-sheared environments. A decrease of RMW10 m, which leads to
a larger Rossby number, is one such structural change that has been linked to RI onset [32].
Precipitation symmetry has also been shown to be a critical part of conditioning a vortex
for rapid intensification [35,36], and these relationships imply that was true in the early
intensification of Dorian. There is also a strong relationship (r = 0.88) between the initial
intensity in the simulations and the intensity at 42 h, implying that some of the structure
differences (and perhaps some of the large-scale initial differences discussed above) were tied
to the initial state of the TC. More details of the structural evolution are highlighted in the
comparison of two members in the next section.
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3.3. Detailed Examination of Two Divergent Members

In order to further explore the details of the synoptic and vortex-scale factors that
were responsible for Dorian’s evolution in the period of its lifecycle near the Antilles,
two individual members are next examined in detail.

3.3.1. Track/Intensity Comparison between Two Members

Figure 9 shows the tracks of the two members as well as Best Track. One of the
members, member 57 (the “weak member”), was an outlier on the weak and southwest
side of the ensemble envelope, showing very little development in the first few days and
passing between Puerto Rico and Hispaniola. This was similar to the forecast from several
operational and experimental models at this point during Dorian’s lifecycle (not shown).
On the other hand, member 72 (the “strong member”) was on the right side of the ensemble
envelope, one of a few members to predict a track that was close to the observed path.
It was also one of the stronger members during this early time period, correctly predicting
intensification as the TC moved to the northwest and passed over St. Croix and east of
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Puerto Rico. As shown in Figure 9, the track and intensity of the strong member was very
close to the “Best Track” for this early period. The fact that neither of these members was
directly impacted by a large land mass during this period also helps with the analysis of
the processes responsible for intensity change.
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Figure 9. Tracks from the weak member (gray line with circles) and strong member (gray line with
triangles) in the early forecast period in the northeast Caribbean. The observed track from Best Track
is shown on the black line with “L” symbols. The tracks are shaded by maximum wind speed in kt
(1 kt = 0.51 m s−1).

To provide another illustration of the evolution of intensity in these two members
compared to the observed TC, Figure 10 shows the time series of maximum wind speed
and minimum central pressure from both members, as well as from the “Best Track”
observations. The two members followed each other and the Best Track closely for the first
12 h of the forecast. However, just after 12 h, a divergence began to occur, with the weak
member continuing to stay basically flat in intensity while the pressure began falling and
the winds began to increase in the strong member as well as in the observed TC. The rate
of intensification was slightly quicker initially in the strong member than observations,
with more fluctuations (which is typical of noisier model data) and a slightly different
pressure-wind relationship than the observed. However, by the end of this 48-h period the
strong member was close in intensity (~75 kt) to the observed intensity (70 kt), while the
weak member remained weak (35–40 kt) through the entire forecast period. Looking back
at Figure 9, 012–15 h was when the tracks of the two members started to diverge as well.
At 12 h (5th forecast point), both members (and Best Track) showed the center of the TC
near St. Lucia. The trajectories of the members diverged from this point forward, however.
The coincidence of the divergence in both track and intensity around this point is consistent
with the full ensemble results discussed above. The environmental and structural changes
leading to this difference are discussed next.
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Figure 10. Maximum sustained wind speed (kt, 1 kt = 0.51 m s−1) in the solid lines and minimum central pressure (hPa) in
the dashed lines for the weak member (blue), the strong member (red), and Best Track for Dorian (black) from 0 to 48 h of
the simulation. The time series are smoothed for plotting.

3.3.2. Synoptic Differences between Two Members

In this section, we dig deeper into the synoptic-scale processes that were responsible for
the intensity divergence between the two members. As shown in the composites above, one of
the key differences appeared to be the early evolution of the subtropical ridge to the northeast
of the storm, and the upper-level low to the northwest. The interplay between these two
features, while somewhat subtle, appeared to play a major role in determining the intensity
and structural evolution of the TC in the Eastern Caribbean. Figure 11 illustrates this point,
showing the 200-hPa height and wind at initialization/0 h, 24 h, and 36 h for the weak and
strong members. While the key synoptic features are similar in both members, the differences
in their structures were important. In the strong member, the upper-level low to the north of
Dorian was weaker than in the weak member at initialization, and the upper-level anticyclone
to the north and east of the TC (around 20 N, 50–55 W) was stronger at initialization as well.
These differences persisted and grew throughout the forecast. This contributed to the slightly
stronger environmental shear in the weak member, and the tendency for more precipitation
on the east side of the strong member (discussed later), helping the evolving TC circulation to
develop closer to the convection on the east side.

As another way of visualizing the large-scale differences between the two members,
the 200-hPa potential vorticity (PV) at 24 h is shown in Figure 12. This variable highlights
the key synoptic features impacting Dorian in the early lifecycle. The large-scale pattern was
very similar in the two members, but some key subtle differences were apparent, especially
in the difference plot (Figure 12c). The PV streamer (upper low) was farther southeast
(closer to the TC) in the weak member, and there was a generally larger area of low PV
surrounding the TC in the strong member, associated with the larger/stronger upper-level
anticyclone seen in the ensemble composites. Both of these differences provided a more
favorable environment for convection development in the strong member. The oddity of
this point is explored next in a detailed analysis of the shear structure near Dorian in these
two members.
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Figure 11. (a) 200-hPa height (dm, shaded) and wind (kt, wind barbs, 1 kt = 0.51 m s−1) at 0 h for
the weak member. The white hurricane symbol shows the forecast position of Dorian. (b) As in (a),
but for the strong member. (c) As in (a), but for 24 h. (d) As in (b), but for 24 h. (e) As in (a), but for
36 h. (f) As in (b), but for 36 h.

Although the upper-level wind fields evolved differently in the strong and weak
members, the earlier correlations (Figure 5) also showed that the mid-level shear was
a distinguishing factor for the TC intensity as well. Some previous studies have in fact
suggested that shallower, mid-troposphere shear can actually be a greater detriment to
intensification than deep-layer shear [37]. Figure 13 shows the mid-level (850–500 hPa)
shear in the two members in the area near and around the TC, at initialization and 24 h
into the forecast.

The shear distributions in the two members were similar initially, with the dominant
feature related to the circulation of the TC itself. At 24 h, the TC circulation is also evident
(this circulation is removed in the shear calculated for Figure 5), but there is also noticeably
stronger environmental westerly mid-level shear west and northwest of the TC, so there
is stronger environmental shear in addition to the changes due to vortex structure. As the
correlations show, this large mid-level shear contributed to the slower intensification in the
weak member. The structural impacts of slightly stronger shear (both mid and upper level) in
the weak member, including precipitation and vortex tilt, are discussed in the next section.
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Figure 12. (a) 200-hPa potential vorticity (PV) (PVU, 1 PVU = 10−6 m−2 s−1 K kg−1) for the weak
member at 24 h. The model TC location is shown in blue. (b) As in (a), but for the strong member
(shown in red). (c) PV difference at 24 h between the weak member and the strong member, with the
TC locations shown in blue (the weak member) and red (the strong member).
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strong member. (c) As in (a), but for 24 h. (d) As in (b), but for 24 h.

3.3.3. Structure Comparison between Two Members and with Observations

Due to its proximity to land for much of its lifecycle, as well as the length of time that
it spent in the Western Atlantic, Dorian was one of the most directly-observed tropical
cyclones in modern history, including 15 missions [38] from the NOAA WP-3D Orion
Hurricane Hunter aircraft, which collected Doppler radar data from the tail radar of
the plane. This radar data was used for comparison between the model results and the
observed TC, to understand how realistic the structural changes observed in each member
were, and how these structure changes may have been related to the intensity differences
in the modeled TCs. Figure 14 shows the comparison between the modeled and observed
precipitation and wind structure around hour 24 of the simulations, while Figure 15 shows
the comparison 24 h later (a new flight, near forecast hour 48).



Atmosphere 2021, 12, 93 18 of 26Atmosphere 2021, 12, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 14. (a) Left: weak member (initialized 00 UTC 27 August 2019) 750-hPa reflectivity and 
wind barbs (kt, 1 kt = 0.51 m s−1) at 24 h. Right: weak member 750-hPa wind (shaded, kt, 1 kt = 0.51 
m s−1), 750-hPa streamlines (black), 450-hPa streamlines (gray), and shear vector (blue) at 24 h. (b) 
As in (a), but for the strong member. (c) Left: NOAA WP-3D radar observations of 2-km reflectiv-
ity (dBZ) and wind barbs. Right: NOAA P-3 radar observations of 2-km wind (shaded, kt, 1 kt = 
0.51 m s−1), 2-km streamlines (black), 5-km streamlines (gray), and shear vector (green) for the 
flight period from 2225 UTC 27 August 2019 to 0140 UTC 28 August 2019. 

a)

b)

c)

Figure 14. (a) Left: weak member (initialized 00 UTC 27 August 2019) 750-hPa reflectivity and wind
barbs (kt, 1 kt = 0.51 m s−1) at 24 h. Right: weak member 750-hPa wind (shaded, kt, 1 kt = 0.51 m s−1),
750-hPa streamlines (black), 450-hPa streamlines (gray), and shear vector (blue) at 24 h. (b) As in (a),
but for the strong member. (c) Left: NOAA WP-3D radar observations of 2-km reflectivity (dBZ) and
wind barbs. Right: NOAA P-3 radar observations of 2-km wind (shaded, kt, 1 kt = 0.51 m s−1), 2-km
streamlines (black), 5-km streamlines (gray), and shear vector (green) for the flight period from 2225
UTC 27 August 2019 to 0140 UTC 28 August 2019.
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Figure 15. As in Figure 14, but for the forecasts at 48 h (a,b) and the observations (c) from the flight
period from 2118 UTC 28 August 2019 to 0016 UTC 29 August 2019.

At 24 h, differences between the two members were already apparent. The mid-level
vortex was tilted in both members and in observations. However, it was tilted about 40 km
to the southeast in the strong member and observations, while in the weak member it
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was tilted about 70 km to the southeast. In addition, while an asymmetric precipitation
structure was present in both members and observations, more precipitation wrapped
around the upshear side in the strong member. Neither member had as much precipitation
on the west side of the TC as was observed, but the strong member was closer to reality.
From these analyses, it appears that some of the structural changes in Dorian (vortex
tilt and precipitation symmetry) related to intensity change were similar to those seen in
sheared TCs [10,14,39], although the large-scale shear was moderate at this point (7 kt in
the strong member and observations, 10 kt in the weak member).

At 48 h (Figure 15), the differences between the two members are even more apparent.
At this point, while the TC was near the end of this “early intensification” period, the large-
scale shear was almost identical in the two members and observations (10–11 kt from the
southwest), but the weak member was still extremely asymmetric, with almost all of the
precipitation on the east side of the low-level center. In contrast, while the large-scale
precipitation pattern in the strong member was somewhat asymmetric (and in the aircraft
radar data as well), there was a small, symmetric core at the center. This small but robust
circulation was seen in both the reflectivity and velocity fields. In addition, while the
vortex tilt was still at around 70 km in the weak member, it was largely reduced and the
TC vortex had become nearly vertically aligned in the strong member. The radar data also
showed that the observed TC had become vertically aligned by this time. Clearly, despite
similar initial intensities and positions, the evolution of TC structure diverged significantly
between these two members, and it should prove insightful to further examine synoptic-
scale and storm-scale details of the evolution of these two members, to understand how
Dorian was able to intensify in the Eastern Caribbean.

3.3.4. Storm-Scale Structure Differences between Two Members

This section examines some of the key storm-scale differences between the two di-
vergent members, to identify some of the smaller-scale details that were important for
Dorian’s evolution in the Eastern Caribbean. One key difference was seen in the precipita-
tion structure of the two members. Figure 16 shows the reflectivity at z = 2 km, as well as
the precipitation types, for the weak member and the strong member at 24 h, 33 h, and 48 h.
Observed reflectivity and precipitation types from the NOAA P-3 at times correspond-
ing to 24 h and 48 h are also shown. For the weak member, the precipitation is initially
extremely disorganized, showing a sheared pattern with almost all moderate and deep
convection displaced to the south and east of the low-level center. At 33 h, a strong band of
precipitation forms and begins to wrap around the center, but this symmetrization does
not last, and by 48 h the pattern is back to that of a highly asymmetric and disorganized
system. In contrast, the symmetrization process progresses much more effectively in the
strong member. At 24 h, a comma-shaped curl of deep and moderate convection forms
on the northeast (downshear) side and is beginning to wrap around the center of the TC.
By 33 h, this precipitation has effectively symmetrized into a developed inner core vortex,
with much more symmetric stratiform precipitation, that is maintained for the next 6 h
and beyond. Interestingly, a symmetric rainband can also be seen propagating away from
the TC between 33 h and 39 h (not shown) in the strong member, likely a result of the
diurnal cycle described by Dunion et al. [40]. In the observed radar data, the structure of
the TC consists of 1–2 curved convective bands wrapping around the TC at 24 h, that then
grow into a small but robust and symmetric inner core by 48 h, with moderate to deep
convection surrounding a small eye. A prominent rain band is evident in the observations
as well. It is clear from this comparison that the development of the TC core in the strong
member was much more in line with observations.
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Figure 16. (a) Left—HAFS simulated reflectivity (dBZ) at z = 2 km for the weak member at 24 h. Right—HAFS precipitation
type derived from simulated reflectivity for the weak member at 24 h. (b) As in (a), but for the strong member. (c) As in (a), but
for 33 h. (d) As in (b), but for 33 h. (e) As in (a), but for 48 h. (f) As in (b), but for 48 h. (g) Observed NOAA P-3 radar reflectivity
and precipitation type from a swath across Dorian at 0024 UTC 28 August. (h) As in (g), but for 0003 UTC 29 August.

Figure 17 shows the evolution of the closure metric for the weak and strong members,
and also shows the observed values of eyewall closure based on P-3 radar data. In the
strong member, the stratiform precipitation has high closure initially and remains high.
The closure of shallow and moderate precipitation increases through the first 48 h. In the
weak member, there is less stratiform precipitation initially, and the overall trend in closure
is downward. The overall shallow, moderate, and deep convective trends in the weak
member were all flat as well, despite the “spike” at 33 h that did not persist. Looking at the
observed radar data, there were some fluctuations (likely tied to both convective pulses and
data quality), but the overall trend was for an increase in closure of all precipitation types
between the flight around 24 h and the flight around 48 h. The evolution of these metrics in
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the strong member was more consistent observations. Clearly, the symmetrization process
was much more efficient in the strong member than in the weak member, helping the
storm to form a compact but robust inner core that allowed it to intensify despite the
relatively dry environment around the TC. As can be seen in the evolution between
Figures 13 and 14, the mid and upper level vortices in the strong member became aligned
more quickly than in the weak member, which was consistent with the observed evolution
of the TC. This evolution of the two members, with the stronger member having stronger
downshear convection near the TC center, earlier vortex alignment, and then greater
symmetrization of precipitation (and increase in closure of stratiform precipitation prior to
intensification), is consistent with the evolution of Hurricane Edouard 2014 as shown in
both an observational study by Rogers et al. [41] and an ensemble study by Alvey et al. [35],
and also with the intensification of Hurricane Earl (2010) in simulations [42].
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level anticyclone more favorably placed over the TC in the stronger members, insulating 

Figure 17. (a) Eyewall closure based on stratiform precipitation (green), shallow convection (yellow),
moderate convection (orange), and deep convection (red) for the weak member from 3 to 48 h. The stars
show the observed values from the NOAA P-3 radar data. (b) As in (a) but for the strong member.

4. Discussion

This study highlights the utility of an ensemble technique using HAFS to study the
evolution and intensification of a complex tropical cyclone. This builds off of prior studies
using ensembles to study tropical cycle evolution, using FV3-based models [13] or other
models such as WRF or HWRF [4,7,8] Ensembles allow for the study of both statistics
in a large group of members as well as detailed examination of case studies within the
ensemble group, and this is the method applied in this study.
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The analysis presented here highlights several of the key factors leading to the early
intensification of Hurricane Dorian in the Eastern Caribbean. Tropical cyclones are unique
systems that span a variety of scales, and the evolution of Dorian appeared to be con-
nected to processes on several different scales, including synoptic-scale, vortex-scale,
and convective-scale. The synoptic environment, especially over and to the northeast of
the TC, was significantly different between strong and weak members from the time of the
analysis, and this difference grew over time. The stronger members had a large-scale envi-
ronment characterized by stronger upper-level divergence and larger values of upper level
moisture, which likely promoted convective growth especially on the northeast side of the
developing circulation. Over time, this large-scale flow evolved into a larger upper-level
anticyclone more favorably placed over the TC in the stronger members, insulating it from
the shear due to a PV streamer to the west. This feature was present in both the strong and
weak members, but subtle location and strength differences of the anticyclone appeared to
be key to the intensity evolution of the TC. It is worth noting that some of the differences
in composite synoptic flow near the mean TC position could be partially due to the differ-
ences in TC intensity, as the more favorable synoptic conditions in the stronger members
positively feedback on a stronger TC circulation. For example, the greater upper-level di-
vergence in the stronger member(s) promoted a stronger secondary circulation, which leads
to increased convection [43] and latent heat release, which then, in turn, further strengthens
the upper-level anticyclone and associated upper divergence. The exact timing of the
related changes in synoptic flow and storm-scale convective structure can be difficult to
determine, but as the precipitation analyses showed, the favorable synoptic pattern in the
strong member did appear to be connected to a more organized core convective structure
favorable for intensification.

The favorable synoptic environment appeared to precondition the atmosphere to
allow a more symmetric convective structure to develop in the stronger ensemble members.
The development of an symmetric core is key to tropical cyclone rapid intensification [44],
and this was reflected in this ensemble set (and also consistent with the observed data).
The visual, qualitative comparisons with aircraft data provided evidence of the importance
of the core formation in the intensification of Dorian. Calculation of structure metrics
allowed for a more quantitative analysis of this aspect of the forecast. Both precipitation
symmetry and metrics related to vortex intensity are unsurprisingly closely related to the
intensity when the TC is in the northeast Caribbean, but the correlations at earlier lead time
highlight the importance of TC core formation early in this period to the overall intensity
evolution. This was highlighted in the comparison of two diverging members, with a small,
increasingly symmetric inner core forming in the more realistic member, while only pulsing
convection with lack of consistent organization was occurring in the weaker member.

5. Conclusions and Future Work

In this study, we demonstrated the usefulness of a HAFS ensemble system to analyze
a complex system like Hurricane Dorian. Detailed examination of the ensemble members
in both composite and individual frameworks highlighted several of the key synoptic-
scale features that evolved and allowed Dorian to intensify in the Eastern Caribbean.
These factors included enhanced upper-level divergence and moisture northeast of the
TC as it moved into the Caribbean, as well as the TC’s more northeast location keeping
it farther away from an upper-level low and its associated shear. The more favorable
upper-level pattern also allowed a more robust and symmetric inner core to develop and
enhance the intensification of the TC in the Eastern Caribbean. This enhanced core structure
and convection (seen in the precipitation plots) may have also contributed to reducing
the shear around the TC [45]. Inner-core structure metrics related to the convective and
vortex structure (including tilt and eyewall closure) also showed strong correlation to the
intensity at 42 h (as the storm reached the edge of the Caribbean). The strong member that
was analyzed in detail became vertically aligned with symmetric precipitation, while the
weaker member remained vertically tilted and highly asymmetric. This analysis highlights
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the importance of processes across multiple scales for TC intensification, and the complex
interplay between these processes.

Future work will explore how the early intensification was related to the track differ-
ences at later periods in the ensemble set, and whether the track differences were mostly
due to synoptic-scale or storm-scale processes.
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