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Abstract: The penetration of renewable energies has increased during the last decades since it has
become an effective solution to the world’s energy challenges. Among all renewable energy sources,
photovoltaic (PV) technology is the most immediate way to convert solar radiation into electricity.
Nevertheless, PV power output is affected by several factors, such as location, clouds, etc. As PV
plants proliferate and represent significant contributors to grid electricity production, it becomes
increasingly important to manage their inherent alterability. Therefore, solar PV forecasting is a
pivotal factor to support reliable and cost-effective grid operation and control. In this paper, a stacked
long short-term memory network, which is a significant component of the deep recurrent neural
network, is considered for the prediction of PV power output for 1.5 h ahead. Historical data of PV
power output from a PV plant in Nicosia, Cyprus, were used as input to the forecasting model. Once
the model was defined and trained, the model performance was assessed qualitative (by graphical
tools) and quantitative (by calculating the Root Mean Square Error (RMSE) and by applying the
k-fold cross-validation method). The results showed that our model can predict well, since the RMSE
gives a value of 0.11368, whereas when applying the k-fold cross-validation, the mean of the resulting
RMSE values is 0.09394 with a standard deviation 0.01616.

Keywords: solar energy; climate change; photovoltaic power forecasting; machine learning; stacked
LSTM network

1. Introduction

In the last century, fossil fuels were the most widely used sources for electrical energy
generation, and at present, electrical energy still depends on them significantly. Never-
theless, the constant draw of the fossil fuel reserves, which are already of limited supply,
directly affects global climate change (global warming or greenhouse effect) with con-
sequentially various human activities all over the planet [1,2]. According to the World
Health Organization (WHO), climate change is one of the greatest health threats of the 21st
century [3].

More recently, in 2015, during the United Nations Climate Conference (COP21),
195 countries came together to work on the limitation of global warming. This milestone,
also known as the Paris Agreement, stresses the necessity to generate energy through
renewable sources so as to provide a better world for the next generation [4]. In this
direction, the European Union (EU) is pursuing a set of distinct climate and energy targets.
Specifically, the EU has set the goal of the total energy generated from renewable energy
sources (RES) to be 30% by 2030 and 100% by 2050.

Among RES, the exploitation of solar energy, along with wind energy, are both the
most acceptable and promising. These two sources have the highest chances of getting
into the energy market due to their increased potential and availability [1]. Solar energy
is the most abundant one since the amount of energy received from the sun is more than
the world’s energy consumption requirement. Therefore, solar energy has gathered wide
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interest and over recent years, remarkable progress has been made in the use of solar
technologies for the production of electricity [5].

The utilization of photovoltaic (PV) systems is the most immediate and technologically
attractive way to convert solar radiation into electricity [6] and PV systems are mostly
preferred due to their numerous advantages; the ability to store the surplus of generated
energy in batteries, being environmentally friendly, and having uncomplicated structures
and easy applications. Furthermore, the industrial generation of electric power using PV
systems requires less labor and machines and has lower carbon emission [6,7]. Hence, the
global PV market has experienced enormous growth during the past decade, whereas in
some countries, it has emerged to noticeably contribute to the national electricity portfolio
as an essential part. In fact, PV solar power represents 7.8% of the annual share in Italy,
close to 6.5% in Germany, and more than 1% in 22 other countries [1].

Nevertheless, the power output of the PV power plant exhibits variability at all
timescales (from seconds to years) as it is a function of the location, the time, the PV
technology used, the cover area of the panels, and their orientation [8,9]. Moreover, power
output relies on unpredictable and ungovernable environmental parameters such as solar
irradiance, atmospheric temperature, cloud cover, module temperature, wind pressure
and direction, and humidity. For instance, PV output escalates in the morning, reaches
maximum generation during mid-day, and falls off at dusk due to the sun’s movement.
Therefore, the total power generation of a PV dynamically changes in a specified future
time period [10,11].

As noted by Rettger et al. [12], even if the terrain is completely flat, as in some
plains districts, broken or moving cloud patterns may have a possible impact on the
power outputs, whereas in the case of very cloudy sky, the power output may decrease
by 10% compared with clear-sky power production. Additionally, changes in ambient
temperature can cause differing power outputs from solar panels at any given time, even if
the irradiance does not change. More specifically, when the temperature of the solar panel,
which is determined by the ambient temperature, the intensity of the sunlight hitting the
solar panel, and the amount of cooling of the solar panel by wind, is increased, the output
of the solar panels is reduced [12].

The nature of such variables leads to an unstable power generation of a PV system
which may lead to control and operation issues for users and administrators of the electricity
grid, as a result of sudden surpluses or drops in power output [13]. This intermittent
character of the PV power output could create substantial problems in balancing between
power production and load demand [14]. Thus, any grid-connected PV system has to be
considered as an unpredictable power generator in the utility network, whose production
yield variation will adversely affect the power systems’ stability and reliability [15].

Ideally, the independency of PV systems from weather conditions, along with the
electrical power supply to the grid based on demand, would be the best option. To achieve
that, the power system should be associated with an energy storage, where part of the
electricity production will be stored during off-peak hours and will be used when weather
conditions are unfavorable. However, this solution leads to a higher construction cost [16].

An alternative solution to this energy loss at power plants and to the dependency
on weather conditions is a forecasting scheme of the solar electricity generation from
PVs, which would contribute to the reduction of any uncertainties that arise due to the
variability of weather conditions. This solution for a more efficient and secure management
of electricity grids, leads solar energy trading to a more stable system and also enables
a better design of the systems. Therefore, the ability to forecast accurately the energy
produced by PV systems is of great importance, especially for power systems in which
solar power represents a significant share of the electricity generation mix [17–19].

In our work, we aim to establish the optimal management and flexibility of the
electricity grid, enabling thus the development of flexible green-powered electricity grids
across cities. This can be achieved through the development of a dynamic flow map of the
power output of the PVs, not only over the PVs under investigation but over whole regions.
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More specifically, all PVs will connect on a grid, since a dense network of PVs providing
continuous data will enable very high temporal and spatial resolution of forecasts. The
database inputs will derive from real-time electricity data of the dense multipoint network
of grid-connected PVs. All input data will be stored in the database for current and/or
future needs. Moreover, the input data will be processed to extract the normalized power
output of each PV, without the need for other equipment, the technical characteristics
of the PV or other energy or meteorological related equipment/models for a given area.
Additionally, the future PV electricity production will be computed using PV power
output prediction models. The database will provide information regarding solar electricity
generation from the PVs, failures, daily and annual yield, and statistical analysis of the
data. Therefore, the database could be utilized as a service to large scale or aggregated
PV managers to provide the system operators for capacity management and scheduling.
Figure 1 shows the conceptual framework of the idea behind our work.
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Figure 1. Conceptual framework of our work.

As a first step to this objective, in this paper, we demonstrate the necessity to design
an intelligent and adaptive prediction model for solar PV power forecasting. In particular,
the present paper focuses on developing an accurate model to predict the PV power output
for 1.5 h ahead. According to Stylianou et al. [20], PV power output data can provide
interesting meteorological information and, more specifically, cloud cover over an area
can be estimated in real time. Motivated by this, the model in this work is depended only
on historical power output time-series using data from a PV plant in Nicosia, Cyprus.
There is no need for any exogenous inputs from sophisticated and expensive data sources
such as sky or/and satellite images since the exogenous data may not be always available,
expensive to obtain, or unreliable. For instance, weather information may be unavailable to
the location where PVs are installed, sky images require special equipment to be processed
and recorder and frequent maintenance, and the sensors may be damaged.

The rest of the paper is structured as follows: Section 2 makes a brief review of the
importance of PV power generation forecasting and also discusses the classification of
forecasting techniques based on input data and time-scale horizon. The preprocessing steps
of the input data as well as the forecasting method used are elaborated in Section 3. In
Section 4, results are discussed in detail and Section 5 concludes the work.

2. PV Power Generation Forecasting

The technical progress and the fast decline in PV module prices have helped solar en-
ergy trading to grow rapidly nowadays. Therefore, solar power forecasting is an important
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element of energy balancing, especially in countries where the grid is connected to multiple
power sources. A reliable PV power output forecasting is a crucial aspect to guarantee grid
stability and to enable optimum planning and modeling of solar PV plants. In addition
to this, accurate forecasting can provide significant information about how to design an
optimal solar PV plant as well as managing the power of demand and supply [4,14].

Furthermore, PV power forecasting is decisive for system and grid operators and
managers, as well as for all customers of the grid, since a proper PV power output can
provide them with a plethora of benefits. A reliable forecast can assist grid operators to
foresee a case of shortage or plentifulness of solar power and can help them to make
alternate arrangements for trustworthy dispatching plans. Moreover, it helps with the
monitoring of the system, as it can detect anomalies and faults. Accurate solar forecasting
also contributes to choosing the most appropriate timing for off-grid maintenance and
eliminates the number of units in hot standby. Consequently, the operation cost and the
uncertainties on the grid are diminishing. Following this, solar forecasting enhances the
stability of the system and increases the penetration level of the PV system [13,14].

In this background, a lot of research has been devoted to the development of appro-
priate forecasting PV power generation models with the main purpose to achieve higher
accuracy and minimum complexity and computational cost [1,4]. Haque et al. [21] pro-
posed a novel hybrid intelligent algorithm for short-term forecasting of PV generated
power. Wang et al. [22] suggested a partial functional linear regression model (PFLRM) for
forecasting the daily power output of PV systems. Additionally, a one-day-ahead PV power
output forecasting model for a single station based upon weather classification, actual
historical power output data, and the principle of support vector machines (SVM) was
presented by Shi et al. [23]. Li et al. [24] suggested a generalized model, the AutoRegressive
Moving Average with eXogenous inputs (ARMAX) model, to forecast the one-day-ahead
power output of PV systems for better planning and trading in the electricity market.

Therefore, several techniques have been proposed and developed for an accurate
forecasting PV power output method by numerous researchers. Nevertheless, no well-
defined criteria exist for each classification as no one method is classified as the “best” in
every situation, given the wide range of forecasting problems that exists and each one
needs different handling [25]. Generally, the forecasting tools fall into two main categories,
indirect and direct approaches.

The indirect approach includes a two-step procedure for forecasting PV power output.
The solar irradiance on different time scales based on various approaches is firstly predicted.
In the second step of the indirect approach, the forecasted solar irradiance and other
associated data such as atmospheric temperature, humidity, wind speed, etc. are often used
as inputs to the PV performance model of the plant and thus, the PV power production
is forecasted. In the direct forecasting model (second approach), PV power generation is
forecasted directly based on some prior information such as PV power output or readily
accessed data [22].

Kudo et al. [26] developed both indirect and direct methods in order to forecast the
next-day power generation in a PV system. According to their results, the direct method
was found to be better, achieving a mean error of 25.6% compared with 28.1% for the
indirect method. This information, along with the nature of the data we are provided with
(historical data on PV power output) are part of our motivation for adopting the direct
forecasting approach in this work.

Besides this classification of indirect and direct approaches, the prediction methods
of the PV power generation have been further categorized. Currently, a plethora of so-
lar PV power forecasting techniques exist that are segregated into four main categories
named persistence method, physical approach, time-series forecasting methods, and hybrid
systems [27].

The persistence forecast model is a fundamental forecasting tool that is commonly
used to consider the performance of other prediction models as a reference model. Due to
its simplicity, this method may lead to errors in some cases. The physical model comprises
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a set of detailed mathematical equations, which represent the physical state and dynamic
motion of the atmosphere and also use knowledge about the technical characteristics of the
power plant. The forecast accuracy of this model is mainly affected by the abrupt changes
in meteorological variables [27,28].

One of the oldest known predictive techniques is the time-series forecasting which has
deep statistical foundations. Time-series forecasting is a data-driven approach that does not
need any internal information from the system. Instead, it is based on past observations,
each one recorder at constant successive time intervals. A further distinction of the time-
series forecasting method can be made into four broad categories: decomposition approach,
smoothing techniques, regression methods, and machine learning based techniques [29].

The combination of two or more approaches, which is known as a hybrid model,
can be used in order to ensure the maximum prediction accuracy. These models take
advantage of each technique and thus, hybrid approaches show better results than the
stand-alone technique for forecasting problems [27]. Nevertheless, the utilization of two
or more techniques leads to an increase in computational complexity. Additionally, the
selection of a single technique that may perform poorly can influence the accuracy of the
hybrid model [1].

Among all forecasting methods, machine learning techniques have drawn attention
and are becoming more and more popular nowadays. Machine learning can be used in
various domains such as pattern recognition, classification problems, spam filtering, data
mining, as well as forecasting problems. The advantage of this method is that the model
can find connections among inputs and outputs and also, it can figure out problems that
are impossible to be represented by explicit algorithms [30,31].

Thus, many such forecasting models have been developed with high accuracy. One of
the most effective techniques is ANN, which is used extensively in the prediction of PV
power production. More specifically, ANN is an appropriate method in the case where
a non-linearity or/and complicated bonding exists among the data [1]. Moreover, Deep
Neural Networks (DNN), which are classes of neural networks with many hidden layers,
have made their appearance in the machine learning community with prodigious success
during the past years [28].

Most of the researchers [1,27,32] further classify the PV power forecasting techniques
based on the origin of the input data and the length of the forecasting horizon to fulfill
the requirements of the decision-making process. A brief review of PV power generation
forecasting classifications based on input parameters and time horizon is presented in the
following subsections.

2.1. Forecast Model Inputs

Forecast inputs have an essential role in enhancing the prediction accuracy and model
performance in terms of computational complexity and cost. Therefore, an unsuitable
selection of forecast model inputs entails an increase in the prediction error of forecast [27].
Some of the models only require one input, whereas others require more inputs. Neverthe-
less, the choice of a model is depended on the availability and quality of input data, which
is the main limiting factor. To this extend, two main approaches can be found according to
the origin of inputs for forecasts: models that use endogenous data and models that use
exogenous data.

In the first approach, models use endogenous data that is current and/or past time-
series of records of the power production of a PV plant. In the second approach, models
use exogenous data, which may derived from local measurements (solar irradiance and
weather variables such as temperature, cloud cover, relative humidity, wind speed and
direction etc.), information from total sky imagers, satellite images, Numerical Weather
Predictions (NWP) (i.e., predictions of temperature, relative humidity, solar irradiance,
cloud cover, wind speed and direction, pressure etc.), values from other meteorological
databases, and/or information from nearby PV plants.
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Based on the above, models using endogenous data benefit from the simplicity in data
collection since no other data is necessary. It is worth noting that some studies fall into both
groups since some are comparative studies that examine inputs from a different set [4].

2.2. Forecast Horizon

PV power forecasting models can also be categorized based on the forecast hori-
zons. Diverse time horizons are important to make predictions for different aspects of
grid operation, such as maintenance of grid stability, scheduling of spinning reserves, or
unit commitment [4]. However, there are no specified criteria to classify the forecasting
based on the forecast horizon. Most of the researchers have divided forecasting into three
categories [33] based on time horizon, whereas some of them divided it into four cate-
gories [14]. Broadly, forecasting can be separated into four major categories as presented
below [1,27,33]:

I. Long-term forecast (1 year to 10 years ahead): used for long-term power system
planning, since this forecasting category can help with the planning of the energy
production, transmission, and distribution organization, according to the future
energy demand.

II. Medium-term forecast (1 month to 1 year ahead): used for the efficient operation
and maintenance of the power system by forecasting the future availability of the
electric power.

III. Short-term forecast (1 h or several hours ahead to 1 day or 1 week ahead): has a
crucial part in optimum unit commitment, control of spinning reserve, evaluation of
sales/purchase contracts among several companies. Therefore, short-term forecasting
enhances the security of grid operation and is helpful in designing a PV integrated
energy management system.

IV. Very short-term forecast (1 min to several minutes ahead): also denoted as intra-
hour or nowcasting, is used for power smoothing, real-time electricity dispatch, and
optimal reserves to assure grid quality and stability.

Nevertheless, several studies indicate that none of the existed PV forecasting models have
the same accuracy in terms of the horizon used. Pedro and Coimbra [9], have applied several
forecasting models for 1 and 2 h ahead averaged power output. The best performing method
was the ANNs optimized by GA (GAs/ANN), where the nRMSE (Normalized Root Mean
Square Error) was 13.07% for 1 h and 18.71% for 2 h ahead. Moreover, Lipperheide et al. [32],
analyzed the performance of the PV output forecast model over different forecast horizon time.
The proposed forecast model produce prediction error (rRMSE) in the range of 3.2–15.5% for
forecast horizon from 20, 40, 60 ... up to 120 s. Therefore, it can be observed that the prediction
accuracy of a PV power output forecast model diversifies by alternating the forecast horizon
even with identical forecast model parameters.

3. Methodology

The proposed forecasting method is presented in Figure 2. Firstly, the dataset of PV
power output was collected from the database. Then, a data pre-processing, which aims to
confirm the input form of the dataset to the Long Short-Term Memory (LSTM) model, was
carried out. The pre-processing corresponds to data sparsity, interpolation of any missing
values, and data scaling and normalization. 80% of the time series data were used as inputs
for the generation of the PV power prediction model, whereas the rest of the data was used
to verify that the model could predict the PV power output. This section gives the details
of the dataset used, describes the issues that were tackled with during the pre-processing
phase, and also presents the forecasting method applied in this work.
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3.1. Data Set

Currently, large amounts of PV power output data are available to the public through
various websites or can also be provided by a central authority, e.g., an electric utility upon
request [34]. For this study, the data were collected through the Aurora Vision, which is a
web-based platform enabling customers to remotely manage their PV plants.

The collected data are observations of solar power output (in Watts) from a PV system
located in Nicosia, Cyprus. These data points correspond to the value of solar power
output over 15 min and are used to form the time-series. Data covers the period from
1 September 2016 to 31 January 2019 (total 84,768 observations). For this study, additional
data regarding solar irradiance and other meteorological variables such as GHI, cloud
cover, and wind speed and direction were not considered since the objective is to utilize
only endogenous data.

3.2. Data Pre-Processing

Any spikes and non-stationary components to the input data of the forecasting models
mean that the PV power production model is inappropriate trained and this will drive to
high prediction error. Such issues always exist since most of the models utilize meteorologi-
cal data and historical PV power output data as inputs, that are variable and unpredictable
due to weather conditions. Therefore, pre-processing of the input data can decline the
inappropriate training problem and computational cost, improving the accuracy of the
model considerably [1]. In the following subsections, the data preprocessing techniques
employed for sparsity, missing values, and feature scaling, as well as the training and
testing technique, are presented.

3.2.1. Sparsity

The collected data of PV power output include night-time values, where there is a
presence of many zeros to the PV power output. The data sparsity problem occurs since
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too many zero values lead to a poorly trained model affecting the performance of the
model. Therefore, data sparsity in the input data is an important factor that can affect high
prediction accuracy.

To avoid this issue, most of the night-time values were removed by excluding the PV
power output values of each date for the time period 20:15–05:00, keeping thus only the
time series for the time period of 05:15–20:00 (sixty 15-min intervals for each day). This time
interval was selected in order to have at least one zero value for any given day including
the summer months. Consequently, the full trained dataset included 52,980 observations.

3.2.2. Missing Data

Missing data are usually a result of a failure of the data collection procedure which
may be produced by a faulty sensor [35]. Such failures lead to incomplete space time-series
and as a result, make precise forecasting difficult. In this work, data examined include a
total of 61 observations that are missing on the following dates 27 March 2017, 15 April
2017, 29 November 2017, and 12 January 2018. Missing values represent a small percentage
of the total number of observations (61 out of 52,980 observations). However, since our
model needs a continuous time-series, we calculate estimates of the missing values of
the dataset. The “time” interpolation method was selected as the most appropriate to
interpolate the missing values for time-series. Figure 3 depicts the original and interpolated
PV power output for the four days on which missing values existed.
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3.2.3. Feature Scaling

The dataset used includes variables that are different in scale. Such cases, where
different variables might have completely different scales, can lead to a false prioritization
in the model of some of the variables. Hence, feature scaling of the dataset is carried out
in order to help in accelerating the calculation in the algorithm and also to improve the
convergence rates. Once the dataset is trained, it requires less testing time [36].
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Normalization, which was applied here, is a common pre-processing method which
reduces the dispersion of the collected data. Basically, all the data is rescaled within a
particular range from 0 to 1. The dataset was normalized by computing:

x′ =
x− xmin

xmax − xmin
(1)

where x is the observed value and x’ is the normalized value.
Literature revealed that normalization has a substantial impact on the output of any

model since the main objective of data normalization is to ensure the quality of the data
before it is fed to any model [37].

3.2.4. Training and Testing Groups

Machine learning has the ability to obtain knowledge on its own, without assuming a
specific model relationship, and make accurate predictions. Therefore, in order to evaluate
the performance of our model and verify how well our model performs on unseen data,
the original time-series was split into two groups: a training and a testing group. The first
one was used to train the model, whereas the testing set used to test the model. The testing
set is independent of the training dataset but follows the same algorithm as the training
group. The error metrics are calculated only on the testing set [38].

In most cases, the split into these two groups would have been random. However, a
random subset for time-series would not be representative. Therefore, in this work, the
model was trained on a given percentage of the first data and tested on the supplemen-
tary of the last data. In particular, the first 80% of the observations (42,384 observations)
were used in the training set and the rest of the observations (10,596 observations) in the
testing set.

3.3. Model Generation

In this paper, we consider the construction of a Recurrent Neural Network (RNN),
which is a class of ANN and is commonly used for time-series analysis. The internal
memory state of that network allows the processing of arbitrary sequences of inputs by
considering the input from many previous time steps. For that reason, RNN exhibits
dynamic temporal behavior. More particularly, RNN behaves like short-term memory
since it “remembers” information from previous observations and applies that knowledge
moving forward in time [39].

In our study, the number of inputs for the training set was selected to be a vector of
192 timesteps which correspond to 3.2 days of the PV system’s energy production data (a
day corresponds to the time period from 05:15 to 20:00: that is, 60 observations per day).
The large number of 192 observations can exploit the ability of LSTM cells in order to
remember longer-term trends in the data. Therefore, the short-term memory of our RNN
model is constituted by 192 timesteps, where each timestep is a 15-min interval. This time
interval allows a greater temporal resolution to our model which could be more useful for
grid operators than an hourly forecast.

The output values of our model will be the next six power production timesteps into
the future since the purpose of our work is to accurately predict the power output for the
next 1.5 h. Each input set will slide by 6 observations from the previous set so that the 1st
value in the second input set will be the same as the 7th value in the first input set.

In particular, if the first input training set will be X1, X2, ..., X192, the corresponding
first output will be X193, X194, ..., X198. Then, the second input training set would be X7,
X8, ..., X198, and the second output values will be X199, X200, ..., X204. This gives a total of
7032 sets, each one containing 192 observations. Thus, the outputs do not overlap and are
continuous in time.

The training output consists of the real power values, that the RNN will then use to
compare with its predictions in order to learn. Therefore, it consists of sets of 6 observations
starting from the 193rd observation (since the previous 192 observations used in order to
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have the first set of predictions). Again, this gives a total of 7032 sets but now each one
contains 6 observations.

Among RNNs, Long Short-Term Memory (LSTM) networks have shown the best
performance and over the past years, the interest in PV power prediction using LSTM
networks is increasing [40]. Lee and Kim [41] have developed two types of ANN methods,
a DNN method and two LSTM based methods for the prediction of PV power output using
a dataset from a PV operator located in Gumi City in South Korea. The first LSTM model
considered four meteorological factors (temperature, humidity, cloudiness, and radiation)
and two seasonal factors (month of the year and day of the month), while the second
LSTM model (LSTM2) used only the four meteorological factors. Both methods had three
hidden layers and an output layer for the hourly PV power output. The results showed
that the proposed LSTM model yields the best performance compared to the proposed
ANN, ANN2, DNN, LSTM2, and also to the conventional methods Arima and S-Arima.

Abdel-Nasser and Mahmoud [42] have proposed the use of LSTM to accurately
forecast the power output for 1 h ahead of PV systems. They used two PV datasets from
two different locations in Aswan and Cairo, Egypt. Authors trained and tested 5 LSTM
models using different architectures: LSTM network for regression (model 1), LSTM for
regression using the window technique (model 2), LSTM for regression with time steps
(model 3), LSTM with memory between batches (model 4), and stacked LSTM with memory
between batches (model 5). All the models used purely endogenous, historical PV data as
input. The proposed model 3 significantly outperformed the other models, and thus was
then compared with three forecasting models: multiple linear regression (MLR), bagged
regression trees (BRT), and neural networks (NN). Again, the proposed method had the
lowest error in terms of RMSE for both datasets.

Jung et al. [43] presented a stacked LSTM–RNN model in their work for the prediction
of the monthly power output of PV plants at new sites. The proposed method utilized
historical data from 164 distributed PV facilities for approximately 5 years. Eight variables
including the month of operation, the estimated solar irradiance, the mean monthly tem-
perature, the relative humidity, the wind speed, the precipitation, the cloud amount, and
the duration of sunshine as inputs. The predicted values of power output were compared
with the actual values of power output of the test plants through cross-validation. The
results showed that the proposed method successfully captures the temporal patterns in
monthly data and also estimates the potential of power production at any new site.

In this work, the LSTM network, which is a significant part of the RNN, was also
considered. LSTM neural networks can solve long-term dependency problems. Unlike
RNN networks that use temporal information of the input data, LSTM has a special neuron
structure called memory cell which can store information over an arbitrary time. A common
architecture of LSTM unit is composed of the memory cell which is connected through
successive gates. The forget gate sets what information to throw away safely from the
memory cell. The input gate decides which values from the input to update the memory
state, and finally, the output gate generates the output for the current time-step based on
input and the memory cell. A diagram of an LSTM unit can be seen in Figure 4.

An extension of the LSTM model is the stacked LSTM model which has multiple
stacking hidden layers, and thus, it has the advantage of enabling the model to acquire
information about the raw temporal signal at each time step. Additionally, the stacked
LSTM model can expedite convergence and improve the non-linear procedures of raw data
since the parameters of such models are spread throughout the space [28,42,44].
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Therefore, we built a stacked LSTM with multiple hidden layers where each layer
contains multiple memory cells. This stacking of several LSTM layers for a deep LSTM-
based neural network is meaningful since many non-linear mapping layers between inputs
and outputs are utilized for hierarchically feature learning. Each layer processes some part
of the task we wish to solve and passes it on to the next until, finally, the last layer provides
the output. According to Abdel-Nasser and Mahmoud [42], higher LSTM layers can
capture abstract concepts in the sequences, which can improve the PV power forecasting
results. Thus, for this work, 4 layers of 50 memory cells/neurons each were used to have
a model with high dimensionality that can capture complicated patterns. Furthermore,
dropout regularization of value 0.2 was used to avoid overfitting.

4. Results

As mentioned above, the forecasting model was defined and trained, respectively,
in order to obtain the best forecasting result. In this section, the collected PV power
output data was used to evaluate the performance of our model. Firstly, it was examined
whether the model can accurately predict the PV power output values in the test set, which
correspond to the period from 8 August 2018 to 31 January 2019. The model was not
trained on these test set values and, therefore, they constitute unseen data for our model.

A useful starting point for assessing the model applied is by using graphical tools,
which can provide a qualitative assessment. As Tukey said: “There is no excuse for failing
to plot and look”. Figure 5 shows the actual (red line) and the predicted (blue line) PV
power output time-series for some selected days of the test set. A visual examination of
the patterns of power output indicates that our model can predict quite well, especially
when the actual PV power output signal is smoother (a & b). It is worth noting that the
test set only includes data from the autumn and winter months. Therefore, it is anticipated
that our model will behave in a similar or even better manner for most of the days during
spring and summer months, since Cyprus has abundant sunshine over these periods.



Atmosphere 2021, 12, 124 12 of 17

Atmosphere 2021, 12, x FOR PEER REVIEW 12 of 17 
 

 

Furthermore, Figure 5e,f further display the variational patterns of the actual and 
predicted PV power output of six consecutive days from 8 September 2018 to 13 Septem-
ber 2018. As can be seen, the actual PV power output signal has erratic fluctuations with 
sudden decreases. However, there are some time periods during the same days where the 
power output time-series signal is smooth. These two graphs indicate that the actual 
power output of at least the previous day affects the trend of the predicted power for any 
given day. Nevertheless, our model can still make good predictions moving forward from 
a day with a fluctuating power output to a smoother one and vice versa. 

Although the graphical examination is essential, it does not permit quantitative as-
sessment. Therefore, to further validate our model a prediction performance metric ap-
plied to the testing data set in terms of Root Mean Square Error (RMSE). This is calculated 
as the square root of the mean of the squared differences between the predictions of our 
model and the real PV power values of the test set. Then, the RMSE value was divided by 
the range of the PV power values in the test set to get a relative error as opposed to an 
absolute error. This gives a value of 0.11368 which indicates a good prediction accuracy 
for our model. 

Nevertheless, a different value of the performance metric can be calculated every 
time we run our model and evaluate its performance on new data. Therefore, judging our 
model’s performance only on one test gives us a single test metric and does not give the 
best indication of how the model will perform over a wide variety of test data. For that 
reason, k-fold cross-validation addresses this problem. In this technique, the original sam-
ple is divided randomly into k sub-samples. These k sub-samples are further divided into 
two groups for testing and training. In the first group, a single sub-sample is considered 
as the validation data, whereas the rest of the k sub-samples are classified in the second 
group. This procedure is repeated k times until each k sub-sample is to be used exactly 
one time as the validation data. Thus, the results are independent of the set of the training 
data since using only one data set (with its statistical particularities) can limit the robust-
ness of the conclusions [38,46]. 

(a)  (b)  

(c)  (d)  

Atmosphere 2021, 12, x FOR PEER REVIEW 13 of 17 
 

 

(e)  (f)  
Figure 5. Actual PV power output signal (red line) and predicted PV power output signal (blue line) for some selected 
days of the test set (a) 8 August 2018–10 August 2018, (b) 22 September 2018–24 September 2018, (c) 28 August 2018–30 
August 2018, (d) 7 October 2018–9 October 2018, (e) 8 September 2018–10 September 2018, and (f) 11 September 2018–13 
September 2018. 

Note that the original test set is held out from this procedure. Cross-validation aims 
to evaluate the stability of the model performance: that is, how generalisable the model is. 
Due to this, cross-validation creates multiple models on subsets of the training data and 
applies them to the remaining data from that subset. 

For our problem, we performed 10-fold cross-validation where the training set is split 
into ten groups. Nine of these groups were used as the training set and the remaining 
group as the test set. This way, there are 10 combinations of training and test folds and for 
each one, the RMSE was obtained. The mean of the resulting RMSE values is 0.09394 with 
a standard deviation 0.01616. Since this value is very close to the one we found to the test 
set, we can safely conclude that our model is not overfitting. In a different scenario, the 
difference between the two RMSE values would be large. 

As previously stated, LSTM networks are designed to model the dynamics of the data 
as well as to avoid long-term dependency problems. For that reason, several researchers 
have proposed various LSTM based models for the prediction of PV power generation, as 
shown in Table 1. Yongsheng et al. [47] state that RMSE of short-term PV output forecast-
ing should be less than 20%. Although most of the studies presented in the table seem 
promising regarding the error performance, they utilize meteorological-related variables 
such as solar intensity, humidity, air temperature, cloudiness, and wind speed and direc-
tion as inputs. Such exogenous inputs make the prediction of power output significantly 
challenging since data/information like these, may be unavailable for the location of PV 
sites examined. 

Nevertheless, the LSTM model proposed in the work of Abdel-Nasser and Mahmoud 
[42] and our study have a significant difference from the other studies since both attempt 
to estimate the PV power output using only endogenous data. More specifically, both 
studies receive time series of PV power production data in order to produce the output. 
Among these two studies, there exist two main differences. The first one concerns the 
number of timesteps that are used as inputs and the second is related to the number of 
cells per layer. Ahmed-Nasser and Mahmoud used 1 or 2 inputs with one-hour timesteps 
and one or two layers with 4 LSTM cells per layer. On the contrary, our work uses 192 
timesteps with 15-min intervals for inputs and 4 layers of 50 memory cells each. The larger 
number of timesteps is useful for LSTM cells to remember longer-term trends in the data. 
In addition, our slightly larger network of 4 layers would perform better than the smaller 
ones as presented in Ahmed-Nasser and Mahmoud’s work. 

Figure 5. Actual PV power output signal (red line) and predicted PV power output signal (blue line) for some selected days of
the test set (a) 8 August 2018–10 August 2018, (b) 22 September 2018–24 September 2018, (c) 28 August 2018–30 August 2018,
(d) 7 October 2018–9 October 2018, (e) 8 September 2018–10 September 2018, and (f) 11 September 2018–13 September 2018.

Moreover, it can be observed from Figure 5c,d that during days with a lot of sharp
fluctuations in the actual PV power output, the predicted PV power output is not far off.
Most importantly, the predicted power output signal seems to react to each fluctuation
and to follow its trend, thus capturing the overall behaviour of the real power output
time series.

Furthermore, Figure 5e,f further display the variational patterns of the actual and
predicted PV power output of six consecutive days from 8 September 2018 to 13 September
2018. As can be seen, the actual PV power output signal has erratic fluctuations with
sudden decreases. However, there are some time periods during the same days where
the power output time-series signal is smooth. These two graphs indicate that the actual
power output of at least the previous day affects the trend of the predicted power for any
given day. Nevertheless, our model can still make good predictions moving forward from
a day with a fluctuating power output to a smoother one and vice versa.
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Although the graphical examination is essential, it does not permit quantitative
assessment. Therefore, to further validate our model a prediction performance metric
applied to the testing data set in terms of Root Mean Square Error (RMSE). This is calculated
as the square root of the mean of the squared differences between the predictions of our
model and the real PV power values of the test set. Then, the RMSE value was divided
by the range of the PV power values in the test set to get a relative error as opposed to an
absolute error. This gives a value of 0.11368 which indicates a good prediction accuracy for
our model.

Nevertheless, a different value of the performance metric can be calculated every
time we run our model and evaluate its performance on new data. Therefore, judging our
model’s performance only on one test gives us a single test metric and does not give the best
indication of how the model will perform over a wide variety of test data. For that reason,
k-fold cross-validation addresses this problem. In this technique, the original sample is
divided randomly into k sub-samples. These k sub-samples are further divided into two
groups for testing and training. In the first group, a single sub-sample is considered as the
validation data, whereas the rest of the k sub-samples are classified in the second group.
This procedure is repeated k times until each k sub-sample is to be used exactly one time as
the validation data. Thus, the results are independent of the set of the training data since
using only one data set (with its statistical particularities) can limit the robustness of the
conclusions [38,46].

Note that the original test set is held out from this procedure. Cross-validation aims
to evaluate the stability of the model performance: that is, how generalisable the model is.
Due to this, cross-validation creates multiple models on subsets of the training data and
applies them to the remaining data from that subset.

For our problem, we performed 10-fold cross-validation where the training set is split
into ten groups. Nine of these groups were used as the training set and the remaining
group as the test set. This way, there are 10 combinations of training and test folds and for
each one, the RMSE was obtained. The mean of the resulting RMSE values is 0.09394 with
a standard deviation 0.01616. Since this value is very close to the one we found to the test
set, we can safely conclude that our model is not overfitting. In a different scenario, the
difference between the two RMSE values would be large.

As previously stated, LSTM networks are designed to model the dynamics of the data
as well as to avoid long-term dependency problems. For that reason, several researchers
have proposed various LSTM based models for the prediction of PV power generation,
as shown in Table 1. Yongsheng et al. [47] state that RMSE of short-term PV output fore-
casting should be less than 20%. Although most of the studies presented in the table seem
promising regarding the error performance, they utilize meteorological-related variables
such as solar intensity, humidity, air temperature, cloudiness, and wind speed and direc-
tion as inputs. Such exogenous inputs make the prediction of power output significantly
challenging since data/information like these, may be unavailable for the location of PV
sites examined.

Nevertheless, the LSTM model proposed in the work of Abdel-Nasser and Mah-
moud [42] and our study have a significant difference from the other studies since both
attempt to estimate the PV power output using only endogenous data. More specifically,
both studies receive time series of PV power production data in order to produce the output.
Among these two studies, there exist two main differences. The first one concerns the
number of timesteps that are used as inputs and the second is related to the number of cells
per layer. Ahmed-Nasser and Mahmoud used 1 or 2 inputs with one-hour timesteps and
one or two layers with 4 LSTM cells per layer. On the contrary, our work uses 192 timesteps
with 15-min intervals for inputs and 4 layers of 50 memory cells each. The larger number of
timesteps is useful for LSTM cells to remember longer-term trends in the data. In addition,
our slightly larger network of 4 layers would perform better than the smaller ones as
presented in Ahmed-Nasser and Mahmoud’s work.
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Table 1. A summary of previous studies on photovoltaic (PV) power output prediction using Long Short-Term Memory (LSTM) networks.

Study Year Reference Forecasting
Variable Forecasting Method Forecasting

Horizon Inputs for PV Power Prediction Forecasting Error

Gensler et al. 2016 [28] PV Power AutoEncoder (AE) & LSTM 1 day
Temperature from numerical weather predictions

(NWP), clear-sky filter, direct and diffuse solar
radiation from NWP.

RMSE (Auto-LSTM):
0.0713

Lee et al. 2018 [40] PV Power LSTM - Convolutional Neural
Networks (CNN) Next day Temperature, solar irradiation, wind speed,

humidity, precipitation. RMSE: 0.0987–0.2520

Lee & Kim 2019 [41] PV Power LSTM 1 h Temperature, humidity, cloudiness, radiation,
month of year, day of month. RMSE: 0.563–0.874

Abdel-Nasser &
Mahmoud 2019 [42] PV Power 5 different LSTM architectures 1 h Past hourly PV power. RMSE: 82.15–136.87

Jung et al. 2020 [43] PV Power LSTM Monthly

Month of operation, estimated solar irradiation,
mean monthly temperature, relative humidity,

wind speed, precipitation, cloud amount, duration
of sunshine.

nRMSE: 7.416%

Yongsheng et al. 2020 [47] PV Power Extreme Learning Machine
(ELM) - LSTM 1 day

Historical PV power output, temperature, solar
radiation, wind speed and direction, atmospheric

pressure and humidity.
RMSE: 3.678–5.817

Gao et al. 2019 [48] PV Power LSTM Day ahead
Daily mean values of solar irradiance, air

temperature, relative humidity and the values of
highest and lowest temperature.

RMSE: 4.62–17.3%

Gao et al. 2019 [49] PV Power LSTM 1 h
Solar irradiance, air temperature, relative humidity,

wind speed and direction, cloud amounts, air
pressure from NWP.

RMSE: 5.34–13.86%

Mei et al. 2020 [50] PV Power LSTM - Quantile Regression
Averaging (QRA) Day ahead Historical PV output power, GHI, temperature. RMSE (pu):

58.9834–71.1089

Wang, Qi & Liu 2019 [51] PV Power LSTM - CNN -
Phase average, active power, wind speed and

direction, temperature, relative humidity, global
and diffuse horizontal radiation.

RMSE: 0.621

Wang et al. 2020 [52] PV Power Modification of LSTM based on Time
Correlation Modification (TCM) Day ahead Direct normal irradiance, temperature. RMSE: 6.29–8.83%

Chen et al. 2020 [53] PV Power Radiation Classification Coordinate
(RCC) - LSTM 5 min Historical PV power data, air temperature, relative

humidity, global and diffuse horizontal radiation.
Average enhancement

of RMSE: 30.01%



Atmosphere 2021, 12, 124 15 of 17

5. Conclusions

Solar PV energy generation forecasting is one of the most challenging tasks mainly
due to the intermittency of weather regimes. Forecasting models of PV power output can
be deployed to improve the planning, operation, and stability of those systems as well
as to increase their penetration level. Building effective predictors that depend only on
historical data requires statistical methods for inferring dependencies among past and
short-term values of observed values. This paper discussed the utilization of a deep RNN
model to deal with PV forecasting problems. More specifically, a stacked LSTM network
was considered in order to forecast the PV power output from a PV station over 1.5 h
ahead in time. According to the results, our forecasting model can predict well, since a
visual examination of the results indicates that the predicted power output signal reacts to
each fluctuation and follows the trend of the actual power output signal. Furthermore, the
RMSE of our model when applied to the test data gives a value of 0.11368, whereas when
applying the k-fold cross-validation, the mean of the resulting RMSE values is 0.09394 with
a standard deviation 0.01616.

Nevertheless, fine-tuning of our predictive model will enhance the accuracy of the
forecasts. This consists of finding the best values of the so-called hyperparameters which
are the parameters that are fixed during training, and therefore, are not learned by the
model. The most basic hyperparameter tuning method is a grid search, which gives a
space of possible hyperparameter values. As a first step, a model for each combination
of hyperparameter values is constructed, then each model is evaluated via K-Fold cross-
validation, and finally, the model which produces the best results in terms of K-Fold cross-
validation is selected. Future research includes the tuning of the following hyperparameters:
(a) the batch-size, (b) the number of epochs, and (c) the optimizer.

Moreover, future work will focus on further improvement in the performance of
the given forecasting model. Therefore, the model will be explored in greater detail by
utilizing larger datasets and will be tested independently in as many locations as possible.
Furthermore, since the forecasting error increases with the increase of the time-scale of
the forecast, shorter time horizons such as intra-hour or nowcasting will be applied to our
estimation technique. Different RNN architectures of LSTM models will also be utilized in
order to compare our forecasting results with the results of other methods.
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