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Abstract: Ground-based remote sensing equipment have the potential to be used for the nowcasting
of the tephra hazard from volcanic eruptions. To do so raw data from the equipment first need to
be accurately transformed to tephra-related physical quantities. In order to establish these relations
for Sakurajima volcano, Japan, we propose a methodology based on high-resolution simulations.
An eruption that occurred at Sakurajima on 16 July 2018 is used as the basis of a pilot study. The west-
wards dispersal of the tephra cloud was ideal for the observation network that has been installed
near the volcano. In total, the plume and subsequent tephra cloud were recorded by 2 XMP radars,
1 lidar and 3 optical disdrometers, providing insight on all phases of the eruption, from plume
generation to tephra transport away from the volcano. The Weather Research and Forecasting (WRF)
and FALL3D models were used to reconstruct the transport and deposition patterns. Simulated
airborne tephra concentration and accumulated load were linked, respectively, to lidar backscatter in-
tensity and radar reflectivity. Overall, results highlight the possibility of using such a high-resolution
modelling-based methodology as a reliable complementary strategy to common approaches for
retrieving tephra-related quantities from remote sensing data.

Keywords: volcanic ash; tephra; Sakurajima; nowcasting; lidar; radar; disdrometer; WRF; FALL3D

1. Introduction

Tephra released after volcanic eruptions constitutes a persistent hazard for communi-
ties around them [1–4]. This has been the case for Sakurajima volcano in Japan [5]. Located
on the island of Kyushu in southern Japan (31.58◦ N, 130.65◦ E, peak height 1117 m;
Figure 1a), the volcano has been active since 1955, with a major impact on agriculture of
∼236 billion yen between 1978 and 2017 [5]. Due to its frequent activity [6,7] and to the
potential impact on human settlements and activities from large eruptions [8], Sakurajima
is one of Japan’s most closely monitored volcanoes [5,9].

In order to monitor tephra dispersal, the Sakurajima Volcanological Observatory
(SVO), part of the Disaster Prevention Research Institute of Kyoto University, has installed
a network of XMP radars, lidars and optical disdrometers to monitor plumes, tephra
transport and sedimentation [5], whose positioning is shown in Figure 1b. XMP radars
provide a way of monitoring the transport of tephra over large areas, with the drawback
of neglecting fine particles due to the wavelengths employed [10–16]. On the other hand,
lidars can be used to monitor the presence of fine particles [17–19], but the sampled area is
limited to a line (at Sakurajima pointing from the SVO towards the crater). Finally, disdrom-
eters have been shown to be valuable in the monitoring of tephra sedimentation [20,21],
but carry similar limitations to the radars, that is, the wavelength employed limits ob-
servations of particles with diameters below ∼0.2 mm [21–23]. Despite the limitations of
individual equipment, this observational network, coupled with numerical modelling of
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tephra dispersal [20,21,24], allows for reliable and detailed monitoring of tephra transport
from Sakurajima.

Figure 1. (a) Location of Sakurajima in Japan. (b) Topographic map of the surrounding area overlaid with with locations of
observational equipment used in this study.

To establish a real-time nowcasting system, a crucial component is the transformation
of raw data output to meaningful parameters for hazard monitoring, such as tephra
concentration and sedimentation estimates. Default estimates based on hydrometeors are
inapplicable in the case of tephra, which is solid and features complex morphology [25].
The Volcanic Ash Radar Retrieval (VARR) model was created to link radar output data
(specifically radar reflectivity; ZHH) to deposit load, which is especially useful when dealing
with eruptions with a lack of in-situ data for validation [10]. The algorithm represents a
significant milestone in radar observations of tephra and has been successfully applied for
tephra-fall observations [26] and expanded, for example via the inclusion of other radar
parameters, such as the specific phase shift (KDP) [16]. Still, the VARR algorithm is based
on assumptions regarding the particle distribution and the microphysical model employed
which, although easy to amend with the accumulation of new data, can still be difficult to
validate [10].

Numerical tephra transport and deposition (TTD) models are another commonly used
tool when it comes to tephra monitoring [27]. Based on certain initial parameters for each
eruption (commonly referred to as Eruptive Source Parameters; ESPs), TTD models allow us
to gain insight on the dispersal of tephra with spatial and temporal detail that is impossible
to achieve with remote sensing and sample collecting alone. In recent years the refinement
of numerical models [27–29] and an increased capability to constrain ESPs [30,31] has led
to an improvement in the accuracy of TTD modelling. In the case of Sakurajima volcano,
high-resolution tephra transport simulations can be carried out with an error commonly
contained within a factor between 2–4 [20,21]. If we assume these errors representative for
the whole dispersal area, model results could potentially be used as a link between remote
sensing and tephra fallout.

The question of whether such a modelling-based methodology can be used to establish
a relation between radar and lidar data and tephra-related quantities is explored here. As a
first step, an eruption that occurred at Sakurajima on 16 July 2018 is used as a proof of
concept, chosen as the wind profile on the day led to the westwards transport of the tephra
cloud, an ideal direction for sampling through the installed equipment (Figure 1b). Initially,
observational data (introduced in Section 2) are used to gain insight on the eruption and
subsequent tephra dispersal (Section 3) and after that a relation between the model and
remote-sensing data is explored in Section 5. A discussion of the results in the context
of tephra hazard management is included in Section 6 and the paper concludes with a
summary of the main finding (Section 7).
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2. Observational Equipment

The study used data from 2 XMP radars (WR2100, Furuno, operating frequency
9.4 GHz or 3.2 cm wavelength; Figure 1b) focused on Sakurajima: 1 scanning horizon-
tally located at Hirakawa city (∼20 km to the southwest; diamond marker in Figure 1b),
and 1 radar scanning vertically, located at the SVO (∼6 km to the west of the vent; square
marker in Figure 1b). Radar data are captured at a total of 7 elevations (2◦, 5◦, 10◦, 15◦,
20◦, 25◦ and 30◦) every 1 min in the case of the Hirakawa radar and 11 azimuth angles
(95◦ to 115◦ at a 2◦ interval) every ∼72 s for the SVO radar. Noise and ground clutter
were removed from the radar data using the assumptions presented in Reference [16],
that is, data used were chosen based on radar reflectivity (ZHH > 0), doppler velocity
(V 6= 0 m s−1), differential reflectivity (−3 ≤ ZDR ≤3) and corporal correlation (ρ ≥ 0.6).

The lidar used is a polarization dual-wavelength lidar (FIT Leadintex), which radiates
linearly polarized light pulses at wavelength of 532 and 1064 nm. Both parallel and perpen-
dicular components of backscatter are detected for the 532 nm wavelength, while only the
total backscatter is detected for the 1064 nm wavelength. Note that in this study only data
from the first two channels, that is, the 532 nm wavelength were used. The light pulse is
radiated 40 times in the first 2 s and after 8 s, 40 pulses are radiated again. The sequence
is repeated with a time interval of 10 s. The lidar backscatter intensity was calculated
as I532 = I‖ + I⊥ and the depolarisation ratio as D532 = I⊥/I‖. The raw data for I were
divided by 1010 to produce the arbitrary units shown here.

Particle-Size-Velocity (parsivel) optical disdrometers (OTT Parsivel2) were used to
observe tephra sedimentation. Although disdrometers are most commonly used for measur-
ing the size and fall velocity of hydrometeors (e.g., rain [32] and snow [33]), multiple studies
have highlighted their usefulness in tephra fallout monitoring [15,22,23]. The OTT Parsivel2

disdrometers work by measuring a voltage change when particles pass through a 54 cm2

detection area composed of a horizontal strip of a laser beam with a wavelength of 650 nm
and can observe solid particles with diameters between 0.2–25 mm [22,23] and fall speeds
between 0.2–20 m s−1. A sampling rate of 1 min was used in the study.

3. The 16 July 2018 Eruption
3.1. Observed Characteristics

The vulcanian eruption from Minamidake crater under study occurred during the
evening of 16 July 2018: starting at 1538 JST (Japan Standard Time; JST = UTC + 9) it lasted
for approximately 5 min, leading to an estimated release of 107 kg of tephra, based on
geophysical monitoring of the volcano [7,9] (Figure 2a). The reported plume height (HP)
by the Japan Meteorological Agency (JMA) was 4.6 km above the vent and easterly winds
led to westwards dispersal of the tephra cloud towards the city of Kagoshima, with tephra
sedimentation observed at three disdrometer locations. The radar data from the vertically-
scanning radar at the SVO show high values of ZHH up to a maximum height of 4 km agl at
the time of the eruption (Figure 2b), slightly below the reported HP. This underestimation
of HP was also noted in a previous study on Sakurajima [21]. Weaker emissions continued
for an hour after the eruption with a maximum height between 1–1.5 km.

The transport of the tephra cloud was recorded clearly in the lidar data (Figure 2c).
Between 1545–1600 JST, lidar backscatter intensity values shifted towards the lidar, with
an average horizontal velocity of ∼6 m s−1. Backscatter intensity (I) critically depends
on the backscatter coefficient (β) and the round trip attenuation by optical depth (e−2τ ,
where τ is the optical depth), with both quantities being proportional to the surface area of
the particles. As such, if a dense aerosol layer exists near the lidar, I is strongly decreased
as τ increases, meaning that particles near the lidar can occlude the presence of particles
behind them.

This can be confirmed via the lidar depolarisation ratio which reveals that a layer
of non-spherical particles extends at least 4 km away from the lidar until ∼1640 JST
(Figure 2d). Based on Mie scattering theory [34], the depolarization ratio (i.e., perpendicular
component in backscatter) should equal zero. However, Mie scattering theory is applicable
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for a sphere whose refractive indices are homogeneous. If the observed depolarization
ratio is non-zero, this assumption is not satisfied. In such case the shape of the particle is
considered to be far from a perfect sphere [35], which is true in the case of tephra.

Figure 2. (a) Mass flow rate estimate (Ṁ; left-hand axis, black line) and number of observed particles (NP; coloured lines
shown at the right-hand axis). (b) Radar reflectivity (ZHH) over the vent. (c) Lidar backscatter intensity (I532) shown in
arbitrary units. (d) Lidar depolarisation ratio (D532). Note that the distance shown in Panels c and d is the distance from the
receiver pointing towards the volcanic vent.

The combination of radar data from the SVO (vertical) and Hirakawa (horizontal)
allows for the detailed examination of the plume evolution and the advection of the tephra
cloud. The initial phase of the eruption lasted for ∼10 min during which tephra transport
was dominated by plume dynamics. Within three minutes from the eruption the main
bulk of the thermal was contained between 2–3 km asl (Figure 3a). At this point the
plume was rising vertically, leading to similar ZHH patterns at both 10◦ and 5◦ elevations
from the Hirakawa radar (Figure 3f,k). Within the next 4 min, the plume top has tilted
towards a horizontal alignment (Figure 3b). Increased ZHH values are seen as vertically-
aligned stripes (e.g., at x = −2 km). In the later phase of the eruption tephra dispersal was
dominated by the wind: between 1550–1600 JST, the tephra cloud was advected westwards
as the top of the cloud and ZHH values decreased (Figure 3c–e). Wind shear caused by
the flow around the volcano skewed the top and bottom parts of the plume, with the
5◦ elevation ZHH signal (Figure 3f–j) shifted by 1 km to the south and 1 km to the east
compared to the 10◦ signal (Figure 3k–o). By 1600 JST the tephra cloud had decreased
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below the 10◦ elevation level (Figure 3j), while low ZHH values persisted mainly 1 km asl
(Figure 3e,o).

Figure 3. (a–e) Radar reflectivity data from the vertically-scanning Sakurajima Volcanological Observatory (SVO) radar.
(f–o) Radar reflectivity data from the Hirakawa radar scanning horizontally at an elevation of: (f–j) 10◦ and (k–o) 5◦. The
black lines at Panels (a–e) indicate the two elevations scanned by the Hirakawa radar, while the black line on Panels (f–o)
indicates the vertical radar scanning cross-section. Markers follow Figure 1. Note that both x and y distances are shown
from the volcanic vent.

Tephra sedimentation was observed at three disdrometer stations, mainly between
1550–1630 JST (Figure 2a). The observed distributions of particle size and fall velocity
differs significantly depending on the location relative to the vent (Figure 4). Sedimen-
tation over Hikinohira (HIK) occurred in two distinct waves, between 1500–1605 and
1610–1630 JST (Figure 2a). Both sedimentation events involved particles with sizes between
0.3–1.1 mm and velocities between 0.9–2 m s−1—characteristics commonly associated
with tephra aggregates [21,36,37]. On the other hand, sedimentation over the Akamizu
(AKA) site occurred as one event, between 1500–1615 JST with a single maximum at
1603JST (Figure 2a). The size-velocity distribution indicates the existence of denser aggre-
gates, with an estimated density (ρA) of 1000 kg m−3, along with single particles with
ρA = 2000 kg m−3 (Figure 4). Particle sizes ranged between 0.3–1.1 mm and velocities
ranged between 1.1–4.9 m s−1. Finally, at Haruta (HAR) sedimentation occurred late,
mainly between 1620–1630 JST (Figure 2a). The observed sizes were between 0.25–0.75 mm
and velocities between 0.9–2.9 m s−1 indicate the sedimentation of aggregates with ρA
between 400–1000 kg m−3.
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Figure 4. Disdrometer observations of particle size against particle fall velocity for: (a) Hikinohira (HIK), (b) Akamizu
(AKA), and (c) Haruta (HAR). Cell colour shows the normalised particle count, while the three lines show theoretical values
for different particle densities (400, 1000, and 2000 kg m−3) based on Reference [38].

3.2. Interpretation of the Eruption and Tephra Transport Data

The combination of radar, lidar and disdrometer data allows for a detailed interpreta-
tion of the different eruption stages. During the initial plume dynamics-dominated phase,
the majority of the erupted mass was ejected within 3 min and rose vertically for 2 km as
seen in the radar data. The main thermal then started tilting towards the horizontal, follow-
ing theoretical expectations [15,39]. After the tilt, the upper part of the thermal continued
expanding vertically and was associated with a weaker ZHH signal, while the bottom part
of the plume formed a finger [15,40] at approximately 2 km west of the vent. Considering
the timing and low fall velocities registered during the first sedimentation event over HIK,
it can be assumed to have been influenced by this finger deposition. In the later phase wind
advection was dominant and lacked the creation of new fingers. The tephra cloud was
advected westwards with an average velocity between ∼6–7 m s−1, based on the lidar data
as well as the timing of the sedimentation over the AKA disdrometer, located 5 km west of
the vent. Advection of the top of the cloud was westwards but changing wind direction
with height led to a south-western component as tephra descended closer to the surface.

Sedimentation was markedly different based on the location of the disdrometer sites.
Sedimentation along the main advection axis (over AKA) involved single particles and
dense aggregates. On the other hand, sedimentation from the plume margins mainly
involved low-density aggregates (HIK, HAR). Especially, in the case of HAR, considering
the relatively short distance from the vent (∼3 km), the timing (∼40 min after the eruption)
and the 6 m s−1 average advection velocity, it can be assumed that tephra registered was
affected by surface-level local circulation on the lee (i.e., west) side of the volcano, leading
to the lateral spread of tephra from the main advection axis, similarly to what was reported
in Reference [21]. Evidence of the tephra cloud lingering on the leeside slopes can also be
found in the lidar data, that show low-level backscatter intensity values and depolarisation
ratio values above the background level for more than 1 h after the eruption.

4. Computational Methodology
4.1. Model Domains and Physical Parametrisation Schemes

Version 4 for the Weather Research and Forecasting (WRF) model [41] was used to
provide the initialisation meteorological data for FALL3D (version 8; [28,29]), a state-of-
the-art 3D time-dependent Eulerian tephra transport model. Incorporating the effect of
the changing wind in the tephra transport modelling has been shown to increase accuracy
in tephra transport modelling [42]. Although FALL3D is an offline model, simulations
here were carried out in a quasi-online manner by using a high output rate in WRF [20,21].
For the horizontal resolution used in the meteorological modelling, a 10 min output rate
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captured most of the resolved variability in the wind field due to the better representation
of the topography [43] and allowed for comparison against the radar and lidar data.

The European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis
dataset (ERA5 [44]) was used to initialise high-resolution simulations with a horizontal
grid resolution down to 300 m. Output data from WRF are used to initialise the FALL3D
simulations. This is a commonly used modelling approach both in an operational [45,46]
and a research setting [47–49] that has been shown to provide accurate results for eruptions
from Sakurajima [20,21].

The simulations were initialized using the ERA5 reanalysis dataset (∆x ∼31 km,
137 vertical levels, hourly output [44]). In total 3 two-way nested domains were used with
horizontal grid spacing decreasing from 7.5 km (151 × 151 grid points; ∆t = 30 s), to 1.5 km
(301× 301 grid points; ∆t = 6 s) and finally to 0.3 km (376× 426 grid points; ∆t = 0.167 s) for
the innermost domain (Figure 5a). The Shin-Hong scale-aware Planetary Boundary Layer
(PBL) scheme [50] was used to parametrise turbulent motion in the innermost domain as
at ∆x = 300 m it falls within the “turbulence gray zone” [51]. Other than the PBL scheme,
a full physics-paramterisation set was used: hydrometeor microphysics [52], long- and
short-wave radiation [53], a surface layer scheme [54], and a land surface model [55]. NWP
simulations were carried out for 18 h, while TTD simulations were carried out for 83 min
starting at 1537JST. The same grid spacing is used for the FALL3D simulations. In the
vertical, 58 vertical levels were used, with vertical grid spacing at 50 m from the surface up
to 1 km asl, increasing to a spacing of 1 km near the top of the domain at 50 hPa (∼21 km).

Figure 5. (a) Placement of the WRF domains. (b) Total grain size distribution used in the study. (c) Mass distribution along
the plume profile. The total mass is shown in black, the individual distribution for each grain size is shown in gray, and the
accumulated radar reflectivity between 1538–1543 JST is shown in purple using the upper x axis.

4.2. Eruption Source Parameters and Plume Insertion

The ESPs, that is, the timing (TE) and duration (DE) of the eruption, the plume height
(HP) and/or the mass discharge rate (Ṁ) and the total grain-size distribution (TGSD; the
size distribution of tephra released from the eruption), are critical for the correct repro-
duction of the TTD after an eruption. Here, the timing, duration and total mass were
constrained using geophysical observations (seismicity and inflation; [9]), introducing
1.7 × 107 kg over 5 min at a constant rate of Ṁ = 5.4× 104 kg s. For the TGSD an empirical
formula based on past eruptions from several volcanoes with well-constrained TGSDs [56]
and successfully tested for eruptions from Sakurajima [21] was used to provide an esti-
mate for 8 tephra bins with diameters (d) between 8 and 0.063 mm (grain size Φ = −3–4;
d[in mm] = 2Φ). For a magma viscosity (η) of 105 Pa s and an HP of 4.6 km, the estimated
distribution (Figure 5b) featured a secondary peak at Φ = −1 and the larger amount of fine
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tephra (∼35%). The Ganser model [57] is used to assign a terminal velocity depending
on the size, density, and shape of each class, which is added to the atmospheric vertical
velocity to determine the fall velocity of each bin. In order to account for aggregation the
approach of Sulpizio et al. [58] was used, converting 20% of tephra from all bins with
diameters less than 0.51 mm to a new bin with 0.51 mm diameter and 400 kg m−3 density,
based on the disdrometer results (Figure 4).

Due to the transient nature of the eruption under study [59] the vertical profile of
tephra in the model represents a challenge, as common 1D models (e.g., the FPLUME
model which is integrated in FALL3D [60]) assume a steady-state plume. Here, we
used a simple strategy based on the Suzuki plume model [38] and the SVO radar data
(Figures 2b and 3a–e). Close to the vent, the radar data showed a bottom-heavy profile for
the plume (Figure 5c). This can be expected as radar reflectivity is heavily influenced by
large particles and cannot register fine particles [10]. We assume that the underestimation
of the plume height in the radar data is tied to this inability to record fine particles. In order
to reconstruct the lower part of the plume (with a maximum between 0.5–1.5 km agl) and
also account for the reported HP we inserted each individual bin as a different Suzuki-type
plume, with plume heights between 4.7 km (fine tephra, Φ = 4) linearly decreasing to 1 km
(Φ = −3). To do this, 1 simulation was carried out for every individual bin and results
for the 8 simulations were summed up before the analysis to create a “total” FALL3D
simulation. This methodology allowed the inserted plume to reflect the radar observations
above the vent (Figure 5c) and provided a good match against the reported HP and the
observed transport and sedimentation patterns. However, this approach is only applicable
here because plume dynamics and tephra particle microphysics that would rely on the
total tephra concentration (such as finger sedimentation [61] or aggregation [62]) were not
employed, leaving the results for each bin independent from the others.

5. Simulated Transport and Sedimentation
5.1. Model Results

The simulated tephra transport adheres to the expectations described in Section 3.2
(Figure 6). Advection in the model occurred towards the west with a southwards shift be-
tween the top and the bottom of the plume (Figure 6a–c). The top of the plume (mainly com-
posed of fine tephra) was advected away from the volcano by 1623 JST (Figure 6d), while
part of the tephra cloud lingered over the leeside of the volcano until the end of the
simulation due to low wind values (Figure 6f).

Sedimentation generally followed the advection of the lower part of the plume, with
no accumulated tephra load over 8 g m−2 in the northern part of the volcano. This can
be expected as the plume profile used in the simulations mainly introduced large tephra
towards the bottom part of the plume (see Section 4.2). Overall there was little lateral
spread in the sedimentation pattern, with the affected area contained within 4 km in the
S-N direction.

The simulated sedimentation was in line with the disdrometer observations. Sedimen-
tation at the HIK disdrometer started approximately 15 min after the eruption, followed
by sedimentation over the AKA disdrometer ∼25 min after the eruption, mirroring the
order of the observed maxima. Sedimentation over HAR occurred late in the simulation
(after 1623 JST, Figure 6d,e) and was associated with the lingering tephra cloud. Overall,
the simulated total accumulated load (L) is comparable with observed data for most of
the disdrometers, since the ratio between modelled and observed data is 0.8 model to
observation ratio at HIK (241 to 289 g m−2), 0.45 at AKA (267 to 589 g m−2) and 0.17 at
HAR (6 to 33 g m−2).



Atmosphere 2021, 12, 104 9 of 15

Figure 6. Total simulated load at the end of the simulation (shaded) overlaid by the contour enclosing total airborne tephra
concentration ≥100 µg m−3 at: (a) 1543, (b) 1553, (c) 1608, (d) 1623, (e) 1638, and (f) 1658 JST. Disdrometer locations are
shown using a circle marker, with the observed value on the left side and the right side left transparent. Note that both x
and y distances are shown from the volcanic vent.

5.2. Model and Observation Comparison

In order to explore a relation between the model and radar data we focused on the
total accumulated deposition. In the case of modelling this meant the total load at the end
of the simulation (Figure 7a), while in the case of the radar data we used the maximum
radar reflectivity with respect to time as a proxy of the total sedimentation [21]. In order to
integrate results from the two radars using multiple elevations and angles, initially the radar
data were converted to point values in 3D space. Based on the point values, the Matlab
griddata() function was then used to linearly interpolate the data onto the same grid used
for the FALL3D simulation to allow for a direct comparison. Finally, the maximum ZHH
value with respect to height was calculated to act as a proxy of the maximum sedimentation
in the horizontal plane (Figure 7b). A scatter plot of the logarithm of the total accumulated
deposition was compared to the derived ZHH maximum, illustrating the possibility of
deriving a linear relation (Figure 7c).

In an effort to properly assess the error of the relationship to be derived we followed
a bootstrapping data selection approach [63] to separate the data to randomly chosen
training and validation datasets. The training dataset (166 points; 70% of the total) was
used to form the relation using linear regression, while the validation dataset (70 points;
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30% of the total) was used to calculate the error statistics. Using linear regression on the
training dataset resulted to the following equation:

log10(L) = ZHH ∗ 0.088− 0.787. (1)

Using the validation dataset the Root Mean Square Error (RMSE) was estimated at
0.7 and the Mean Bias Error (MBE) was estimated at 0.03. As the relation is between the
logarithm of L, an RMSE of 0.7 amounts to a ∼0.5 order of magnitude error. Note that only
data points with ZHH ≥ 10 dBz and L ≥ 100 g m−2 were used in the calculations.

Figure 7. (a) Total simulated load. (b) Maximum observed radar reflectivity with respect to time. (c) Scatter plot of radar
reflectivity against total simulated load. The points in gray were used to calculate the fitting parameters, while the points
shown in orange were used for the error analysis. Note that both x and y distances in Panels a and b are shown from the
volcanic vent.

For the lidar observations, model data of tephra concentration were interpolated along
the lidar beam coordinates (Figure 8c) and the lidar data were upscaled to the resulting
model grid (∼300 m spacing; Figure 8a). Due to the physics of the lidar observations,
a direct comparison of the backscatter intensity (similar to the radar data comparison)
was not feasible, as the tephra cloud front close to the lidar occludes the cloud behind
it (1600–1635 JST; Figure 8a). Indeed, model results show that large airborne tephra con-
centration values are maintained between 3 to 5.5 km until the end of the simulation
(Figure 8c). This distance corresponds to the lingering near-surface tephra cloud shown in
Figure 6.

A maximum with respect to time is calculated for both the lidar backscatter intensity
(Figure 8b) and simulated concentration (Figure 8d) model data in order to minimise the
impact of the occlusion by the tephra cloud front in the lidar data. Although the resulting
data points are too few to allow for the meaningful application of linear regression, results
show that the logarithm of the airborne concentrations mirrors the characteristics of the
backscatter intensity. Specifically, both quantities show a peak value close to the vent (i.e., at
a distance of 5.5 km from the lidar), a decrease with distance from the vent, a secondary
maximum near the lidar. Despite similarities in the overall behaviour, lidar data exhibit
significant scatter along the profile which is not represented in the model data.

One significant assumption when applying this methodology is that model accuracy
is representative along the dispersal path. The error range seen here mirrors previous
studies on tephra deposition on Sakurajima with a similar high-resolution modelling con-
figuration (i.e., References [20,21]); however, errors can be expected to differ, especially
close to the vent. Although current-generation models still lack the ability to fully resolve
or parametrise aspects of tephra dispersal such as plume dynamics (i.e., finger sedimenta-
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tion [15,40]) or tephra particle microphysics (e.g., aggregation), significant advances have
been made in the latest versions of model codes [28,29,64,65]. Considering the positive
preliminary results shown here it can be assumed that the methodology presented will
become increasingly relevant as models continue to evolve.

Figure 8. (a) Lidar backscatter intensity resampled for comparison against model data. (b) Maximum backscatter intensity
with distance. (c) Modelled airborne tephra concentration along the lidar observation line. (d) Logarithm of the maximum
modelled tephra concentration.

6. Discussion

Remote sensing equipment that were originally developed for meteorological appli-
cations (here radars, lidars and optical disdrometers) are increasingly being used for the
monitoring of tephra dispersal in explosive eruptions around the world. Here, we used
a network of radars, lidars and optical disdrometers to gain insight into the different
phases of the eruption and subsequent tephra transport and deposition from a vulcanian
eruption that occurred at Sakurajima on 16 July 2018. Use of the equipment in an integrated
manner allowed us to cover individual equipment shortcomings, such as a limitation to the
observed grain size in the case of the radar and disdrometers and the area of observation
in the case of the lidar.

Although multiple studies have shown that such equipment are able to capture the
presence of tephra in the atmosphere [10–16], linking the raw data to a physical quantity
(e.g., airborne tephra concentration or tephra deposit load) can be difficult due to the
complexity of the tephra morphology [10,25]. In recent years advances in geophysical
monitoring has allowed to increase the accuracy in the estimation of the eruption source
parameters of an eruptive event. Combined with improvements in computational infras-
tructure, refinement of model codes [28] and advances in the modelling strategy employed
(e.g., online or quasi-online calculations [42], high model resolution [49,66]) this has also
led to an increase in the accuracy of TTD models. This increase in accuracy can thus be
exploited to fill in the gap between ground and remote sensing observations, especially
due to the potential of TDD modelling to represent the actual processes of tephra transport,
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rather than a statistical match based on signal intensity, as employed, for example, in the
VARR algorithm [10].

Using a high-resolution modelling setup we were able to reconstruct the tephra
transport and deposition for the eruption under study. A linear relation was established
between the logarithm of the total accumulated load and maximum radar reflectivity. Radar
retrieval algorithms rely on ground truth for the establishment of meaningful relations
between radar-related quantities and tephra load [10]. However, this can be difficult
due to complex volcanic terrain and the inherent risk of sample collection near an active
volcano. Results from the case study here highlight the possibility of using simulation
data as a proxy for ground samples, showing that high-resolution simulations can be
used as a promising complementary strategy to commonly used methodologies (e.g.,
References [10,16]) and act as a basis of nowcasting at Sakurajima. The possibility of
linking the logarithm of the modelled airborne tephra concentration and lidar backscatter
intensity via a linear relationship was also shown, but data from more cases will be needed
to explore this further.

As the current study is based on a single case, there is a number of requirements in
order to generalise the results. First of all, as disdrometers are used to validate the simula-
tions, a careful examination of the average error associated with disdrometer observations
at Sakurajima needs to be conducted. Based on that, simulations of a large number of
eruptions featuring NW, W, or SW dispersal need to be carried out to quantify the average
error of the simulated deposition. Knowledge of these errors can then be used to choose
appropriate values for the parameters of the linear relation between the logarithm of the
modelled deposition to the radar reflectivity values and allow for the application of a linear
regression methodology to link airborne tephra concentration to lidar backscatter intensity.
Furthermore having a large sample of case studies will also allow for more confidence in
establishing relations not just for the total accumulation, but also between specific grain
size categories (e.g., the fine, medium and coarse ash categories used in References [10,16])
to allow for the direct use of the results with the VARR algorithm. Considering the frequent
eruptions of Sakurajima, it presents an ideal location for such a modelling endeavour.

7. Conclusions

An eruption that occurred at Sakurajima volcano, Japan, on 16 July 2018 was ob-
served by 2 XMP radars, 1 lidar and 3 optical disdrometers and was used as the basis to
explore the relation between radar and lidar signals and tephra-related quantities (airborne
concentration and total deposit respectively).

• Data from the horizontally and vertically scanning radars were used to study the
plume generation and initial transport over the volcano.

• Optical disdrometer data revealed significant differences in the sedimentation pro-
cesses along the main plume axis and along the plume margins.

• Simulations coupling the WRF and FALL3D models were able to realistically repro-
duce the observed transport and deposition patterns.

• Using linear regression the maximum of the radar reflectivity data (with respect to
both time and height) was linked to the logarithm of the simulated total accumu-
lated deposit.

• A possible link between the maximum lidar backscatter intensity (with respect to time)
and the maximum of the airborne tephra concentration logarithm was explored.
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