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Abstract: Air pollution is one of the most concerning environmental problems in cities. Hourly data on
pollutant concentrations from 11 automatic atmospheric monitoring stations and meteorological data
in Shenyang from 2017 to 2019 were used to analyze the spatio-temporal variation rules of CO (carbon
monoxide), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), O3 (ozone), PM2.5 and PM10 (PM particles
with an aerodynamic diameters of not more than 2.5 µm and 10 µm) and their relationships with
meteorological parameters. Meanwhile, the regional transmission route of pollutants was analyzed
by the hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model. The results showed
that the concentration of O3 in the northern area of the city was higher than that in the south; CO,
SO2 and NO2 were relatively high in the urban center; and PM2.5 and PM10 were relatively high
in the southwest. The average concentration of pollutants was lowest in 2019. The concentration
of O3 was the highest in spring, while CO showed no significant variations between different
seasons. The remaining pollutant concentrations appeared to be high in winter and low in summer.
The cumulative concentrations of the six pollutants were the highest in March, and relatively low in
July–September. The diurnal concentration variations of O3, CO and SO2 exhibited a “single peak,”
while others showed a “double peak and double valley.” Temperature was positively correlated
with O3 concentration and negatively correlated with others. Wind speed was negatively correlated
with the concentration of PM2.5, NO2, and O3. The air quality of the main urban area in spring and
summer was mainly affected by the coastal air flow, while it was mostly affected by the northwest air
flow in autumn and winter.

Keywords: air pollution; spatio-temporal variation characteristics; meteorological parameters;
backward trajectory

1. Introduction

Since the beginning of industrialization, the problem of air pollution gradually emerged. Pollution
is currently becoming increasingly serious, as it has an impact on human life, increases the burden
of disease and threatens human health [1–3]. Epidemiological studies have shown that particulate
matter (PM2.5, PM10) and some gaseous pollutants (CO, SO2, NO2, and O3) can cause respiratory
tract infections and lung cancer and even shorten life span [4–6]. It is estimated that PM2.5 alone
caused more than 1.3 million premature deaths in China in 2013 [7,8]. Due to the harmfulness of air
pollutants, this topic has attracted much attention in recent years [9,10]. China has stipulated the first
and secondary concentration standards of CO, SO2, NO2, O3, PM2.5 and PM10 in the “Environmental
Air Quality Standard” (GB3095-2012): when study areas are located in the first-class ambient air
functional area, the first concentration standard is applicable, and for those located in the second-class
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ambient air functional area, the secondary concentration standard is applicable. First-class ambient
air functional areas are nature reserves, scenic spots and other areas in need of special protection;
second-class ambient air functional areas are residential areas, commercial traffic mixed areas, cultural
areas, industrial areas and rural areas. According to different spatial scales and time dimensions,
some scholars have carried out research into the temporal and spatial trends of single or multiple
pollutants in the atmosphere and their influencing factors.

On the whole, the pollutant concentrations in north and northeast China are high [11–13], and high
concentrations of NO2 and CO have mostly been found there [14]. From 2001 to 2006, the concentration
of PM2.5 in most parts of the country was higher than the recommended air quality values set by
the World Health Organization (10 µg·m−3) [11,15,16]. From 2004 to 2013, the PM2.5 concentration in
China showed a positive trend, with an average annual growth of about 0.22 µg·m−3 [17]. The average
annual concentration of PM10 in the mid-triangle urban agglomeration showed an overall downward
trend from 2005 to 2012, but it was still generally higher than the national secondary concentration
standard [18]. The daily and seasonal concentrations of pollutants also show certain temporal trends.
For example, Nishanth et al. [19] showed that the concentration of NOx at night was generally higher
than in the daytime. In contrast, the night concentration of O3 was lower. Studies on seasonal changes
showed that the air quality in summer was better than in spring and winter [20,21]. Most of the
changes of pollutant concentrations were related to meteorological factors. Zhou et al. [22] found that
the air pollution index (API) was positively correlated with humidity and wind speed and negatively
correlated with daily precipitation and air pressure. The daily variation of air pollutant concentration
in Lanzhou was mainly related to local meteorological conditions such as wind speed and relative
humidity [23].

The implementation of the 13th Five-Year Plan for revitalizing Northeast China has increased
energy consumption and aggravated the problem of air pollution in northeast China. In terms of haze
pollution, northeast China has become the fifth largest haze pollution area in China. In recent years, there
have been several occurrences of heavy pollution weather in the three northeastern provinces [24,25].
For example, severe pollution occurred in Shenyang on 7–9 November 2015, with an air quality index
(AQI) ≥ 500 for 22 h in a row [26]. As a comprehensive transportation hub from the Yangtze River Delta,
Pearl River Delta and Beijing–Tianjin–Hebei region to the three northeastern provinces, Shenyang’s air
quality has attracted wide attention. Although there have been some studies on the characteristics of
air pollutants in Shenyang at this stage, the existing studies mainly analyzed the temporal and spatial
characteristics of short-term or particulate matter [27–29]. There is a lack of comparative analyses on
the pollution characteristics of the six common pollutants. Taking Shenyang as an example, this study
discussed the pollution characteristics of six kinds of air pollutants (CO, SO2, NO2, O3, PM2.5, and
PM10) from 2017 to 2019. This included the characteristics of the temporal and spatial variation of
pollutants, spatial distribution characteristics and their relationship with meteorological conditions.
At the same time, the impacts of regional transmission on the concentrations of pollutants in Shenyang
City have been analyzed.

2. Experiments

2.1. Research Area and Data Source

Shenyang (41◦48′11.75” N, 123◦25′31.18” E) is one of the mega-cities in China and is located in the
center of Northeast Asian Economic Circle and the Bohai Economic Circle. The total area of the city is
about 13,000 square kilometers [30]; the urban area is about 3495 square kilometers. The permanent
resident population of the city in 2018 was 8.316 million at the time, and the GDP in the same year
was 61.19 billion. It features a temperate, semi-humid continental climate, with an annual average
temperature of 6.2–9.7 ◦C and an annual precipitation of about 600–800 mm. Under the influence of
the monsoon, the precipitation is mostly concentrated in summer; the temperature difference is large;
the four seasons are distinct; and the winter time is longer.
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On the basis of the Shenyang Atmospheric Environmental Quality Bulletin, in 2019, the annual
average concentrations of PM10 and PM2.5 in Shenyang’s urban ambient air were 77 µg·m−3 and
43 µg·m−3, respectively. All exceeded the second-class national ambient air quality standard (PM10:
70 µg·m−3 and PM2.5: 35 µg·m−3). The annual average concentrations of SO2 and NO2 were 21 µg·m−3

and 36 µg·m−3, respectively, which did not exceed the national second-class quality standard (SO2:
60 µg·m−3 and NO2: 40 µg·m−3). The average 95th percentile concentration of CO in 24 h was
1.9 mg·m−3. The 90th percentile concentration of the maximum 8 h moving average of O3 was
155 µg·m−3.

In this study, the mass concentrations of six pollutants from 1 January 2017 to 31 December 2019
were collected from 11 air quality monitoring stations in Shenyang (Figure 1). The hourly
monitoring data of pollutants at 11 monitoring stations can be obtained from the website https:
//www.aqistudy.cn/historydata/. The instruments and analytical methods used to measure the
concentrations of six pollutants were as follows: CO—gas filter correlation infrared absorption method
48i CO analyzer; SO2—UV fluorescence type 43i sulfur dioxide analyzer; NO2—chemiluminescence
42i NOx analyzer; O3—ultraviolet fluorescence 49i ozone analyzer; PM2.5—β-ray + dynamic heating
system combined with light scattering method 5030i PM2.5 atmospheric particulate concentration
monitor; and PM10—β-ray method 5014i type PM10 atmospheric particulate concentration monitor.
The concentration data of CO, SO2, NO2, PM2.5, and PM10 used in this study were hourly monitoring
values, and O3 concentration data were 8 h moving averages. According to the “Monitoring Regulation
for Ambient Air Quality” (HJ/T193-2005) [31], all measured data were screened to exclude abnormal
values and ensure data quality. The calculation, statistical analysis and evaluation of effective monitoring
data referred to the “Ambient Air Quality Standard” (GB3095-2012) and Technical Regulation for
Ambient Air Quality Assessment (Trial) (HJ663-2013) [32]. Among the 11 monitoring stations, Senlin
Road (SLR) is located in a first-class ambient air functional area, and East Hunnan Road (EHNR), Xinxiu
Street (XXS), Dongling Road (DLR), Lingdong Street (LDS), Wenhua Road (WHR), Xiaoheyan Road
(XHYR), Taiyuan Street (TYS), Jingshen Street (JSS), West Shenliao Road (WSLR) and Yunong Road
(YNR) are all located in second-class ambient air functional areas. The meteorological data of wind
speed (km/h), air temperature (◦C) and air pressure (hpa) in 2019 were from Shenyang Meteorological
Monitoring Station, which can be obtained from the website http://data.cma.cn/. According to the
“Division of Climate Season” (QX/T152-2012) [33], the seasons of Shenyang in 2019 were divided
into four parts: spring (14 April to 20 June), summer (21 June to 28 August), autumn (29 August to
13 October) and winter (14 October to 13 April).Atmosphere 2020, 11, x FOR PEER REVIEW 4 of 22 
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2.2. Analysis of Spatio-Temporal Distribution Characteristics

The spatial distribution of pollutant concentration was analyzed by sufer 15 (Golden Software,
Golden, CO, USA). The spatial interpolation analysis was carried out for the annual average
concentrations of pollutants in 11 monitoring stations, and Kriging interpolation method was used.
The ward method in SPSS 26 (Statistical Product and Service Solutions) software was used for
systematic cluster analysis, and the tree diagram of the ward connection was made by taking the square
Euclidean distance as the interval to further verify the difference of the spatial distribution of pollutant
concentration. Based on the pollutant concentrations of 11 monitoring sites, they were divided into
different categories. The concentrations of pollutants at the monitoring points in the same group were
similar, and there were some differences between different groups. At the same time, the seasonal,
monthly and diurnal variations of different pollutants were analyzed.

2.3. Meteorological Element Analysis and Backward Trajectory Analysis

There are two meteorological monitoring stations in Shenyang. In this study, the correlations
between six pollutants and air temperature (T), air pressure (P) and wind speed (WS) in 2019 were
analyzed by the Pearson correlation coefficient method based on the meteorological data from the
meteorological monitoring station close to the air quality monitoring station. In order to explore the
differences of regional transport sources of air pollutants in different seasons in the main urban area of
Shenyang, based on the pollutant concentration data in 2019, the HYSPLIT model developed by the
National Oceanic and Atmospheric Administration (NOAA) (http://ready.arl.noaa.gov/HYSPLIT.php)
was used to simulate the backward trajectory of 100 m height in the central urban area of Shenyang for
72 h, and the transport and diffusion orbits of atmospheric pollutants were analyzed [34].

In order to facilitate the analysis of the transport path of pollutants, the stepwise cluster analysis
(SCA) algorithm was used to cluster the backward trajectories. In this algorithm, the trajectories with
the closest spatial similarity were merged according to the transmission direction and the speed of each
airflow track. After repeated calculation and merging, several representative clustering trajectories
were finally obtained.

The calculation formula of SCA is as follows:

D =

√√√√ t∑
j=0

d j
2, (1)

SPVAR =
x∑

i=1

t∑
j=0

di j
2, (2)

TSV =
∑

SPVAR, (3)

where D is the distance between any two trajectories; t represents the trajectory transmission time;
i is the backward trajectory number, i = 1,2, . . . ,8760; j is the stop point number; x is the number of
trajectories in the cluster; dj is the spatial distance between the jth stop points of the two trajectories; dij
represents the spatial distance from the jth stop point in the ith backward trajectory to the corresponding
stop point of the average trajectory; SPVAR is space variation of each group of trajectories; and TSV is
total space variation.

http://ready.arl.noaa.gov/HYSPLIT.php
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3. Results

3.1. Analysis of Spatio-Temporal Distribution Characteristics of Six Air Pollutants

3.1.1. Difference in Spatial Distributions of Pollutant Concentrations

The spatial distributions of pollutant concentration are shown in Figure 2. The average annual
mass concentrations of the six pollutants at the 11 monitoring sites in 2017–2019 are shown in Table S1.
It was found that O3 concentration was higher in the northern region, and the concentration showed a
trend of decreasing. The reason may be the rich vegetation coverage in the northern region and the
poor vegetation coverage in the central city compared with the surrounding areas [35]. Vegetation is an
effective barrier to some pollutants (SO2, NO2); however, it releases a large number of ozone precursors
such as volatile organic compounds (VOCs), thereby increasing the ozone concentration [36–39].
The concentration of O3 in LDS decreased the most, at 17.94% (from 65.3 to 56.2 µg·m−3).

The concentrations of CO, SO2 and NO2 in the central urban area were higher than in the
urban fringe area, as reported by Arain et al., and Dommen et al. [40,41]. The high concentration
of CO in the central urban area may be due to the higher traffic flow in the urban center than in
the marginal areas. CO emissions come from a large number of gasoline-driven private cars [42].
The low concentrations of SO2 and NO2 in the edge area may be related to the vegetation coverage
mentioned in the previous paragraph [35]. The annual average concentration of CO increased first and
then decreased. The concentration in 2019 was lower than that in 2017. The average concentrations
of CO over three-years at EHNR and LDS were the highest, while the lowest were at SLR and JSS.
The concentrations of SO2 and NO2 both decreased year by year. It is speculated that the changes of
SO2 and NO2 were due to the implementation of central heating in northeast China in recent years,
replacements of small boilers, the promotion of hot-spot co-production projects and the implementation
of gas standards for coal burning, which reduced the consumption of coal burning and thus led to the
reduction of pollutant emissions [43]. The SO2 concentrations in WHR and TYS were higher than in
other monitoring sites, and the concentration in SLR was always the lowest. Compared with other
sites, the NO2 concentration in SLR was the lowest. The low concentrations of SO2 and NO2 in SLR
may be related to its location in the first-class ambient air functional area. The highest concentration of
NO2 in monitoring stations was found in TYS for three consecutive years, which may be due to the
dense population, large traffic flow and higher exhaust emissions at the TYS monitoring point [44].
The concentrations of SO2 and NO2 decreased the most in XHYR, at 52.7% (from 40.93 to 19.36 µg·m−3)
and 17.8% (from 45.1 to 37.1 µg·m−3), respectively.

The concentrations of PM2.5 and PM10 in the southern region were higher than those in the
northern region, which may be related to the fact that Tiexi (northeast old industrial base) was located
in the southwest of Shenyang [45], where there are many anthropogenic emission sources. The average
concentration in 2019 was lower than that in 2017. The concentrated high-value zones were located in
EHNR, XXS, WSLR and WHR. The spatial distributions of PM10 and PM2.5 were similar to each other,
which verifies that their pollution is similar [46–48].

Cluster analysis can aggregate indicators with similar characteristics into a group to determine
the similarity between research objects [49,50]. According to the spatial distribution of pollutant
concentration, we analyzed the distribution characteristics of each pollutant at different monitoring
points. In order to more intuitively show the similarity between the monitoring stations and further
verify the spatial distribution characteristics of pollutant concentration, the concentration of pollutants
in each monitoring point was analyzed by cluster analysis. If there was similarity between two
monitoring points, they were placed in the same group.
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to 2019: (a) CO, (b) SO2, (c) NO2, (d) PM2.5, (e) O3, (f) PM10 (CO unit: mg·m−3; other pollutant units:
µg·m−3).

The results are shown in Figure 3. It can be seen that the results of cluster analysis were consistent
with the results of spatial distribution. For example, based on the annual average concentration of
pollutants, 11 monitoring stations were divided into four groups. The clustering results of SO2 were
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as follows: the first group: WSLR, YNR; second group: SLR; third group: WHR, TYS; fourth group:
other monitoring points. The results of the spatial distribution showed that the concentration of SO2

was relatively high at the WHR and TYS and relatively low at the SLR. In cluster analysis, WHR
and TYS were divided into a group and SLR was a group, which was consistent with the results of
spatial analysis. In addition, the remaining eight monitoring points were further divided into two
groups. When the CO clustering results were divided into four groups, the first group was WSLR, YNR;
the second group was SLR, JSS (the results of the spatial distribution showed that CO concentrations
in these two stations were relatively low); the third group was EHNR, LDS (the results of spatial
distribution showed that CO concentration in these two stations was relatively high); and the fourth
group was all other monitoring points.
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3.1.2. Seasonal Variation of Pollutant Concentrations

The analysis in the previous section shows that the annual average concentration change trend of
each pollutant was different in 2017–2019. Therefore, we selected the latest data of 2019 to analyze the
seasonal variation trend of pollutants, hoping to better express the current situation. Figure 4 shows
the seasonal variations of the six pollutants’ concentrations in Shenyang, which are similar to the
variations of most cities in China [51]. The concentration of O3 was the highest in spring and lowest in
winter. The difference of O3 concentration between seasons may be due to the lower radiation levels in
winter than other seasons and the gradual accumulation of precursors such as NO, NO2 and VOCs in
winter (Figure 4, the concentration of NO2 was higher in winter), which resulted in a large amount of
O3 production during the enhancement of solar radiation in spring [52–54]. The difference between
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the average concentrations in spring and winter was 51.5 µg·m−3. The analysis of the variation of O3

concentration between seasons also revealed that it showed typical diurnal variation in urban areas [55];
the daily high value appeared at 15:00–20:00, and the low value appeared mostly at 3:00–9:00.
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The seasonal average concentration of NO2 showed a trend of winter > autumn > spring >

summer, which was consistent with the relevant study at northern midlatitudes [56,57]. The high
concentration in winter may be due to people relying more on transportation than walking to get
around, resulting in increased traffic emissions. The difference between winter and summer was
17.8 µg·m−3. The daily low concentration appeared at 13:00–17:00.

The seasonal average concentrations of SO2, PM10 and PM2.5 were all in the order of winter
> spring > autumn > summer, which was similar to the seasonal variation of Wuhan, China and
Kolkata, India [58,59]. The height of the mixed layer was high in summer, when the atmospheric
instability and the increase of precipitation were conducive to the diffusion of some air pollutants.
The difference between the average seasonal concentration in winter and summer was 23 µg·m−3.
The daily concentration of SO2 was relatively high from 7:00 to 9:00, and relatively low from 13:00
to 21:00. The seasonal average concentration of PM2.5 was similar in spring, summer and autumn,
which was consistent with the relevant research results [60]. In winter, the concentration of PM2.5

was significantly higher under the influence of heating, with a difference of 34.3 µg·m−3 from the
average concentration in summer. The PM2.5 concentration was relatively low at 14:00–17:00. Similarly
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to the related studies, the concentration of PM10 was significantly higher in winter and spring [61].
Coal combustion for heating purposes and dust weather caused relatively high concentrations in
winter and spring. The climate background of rising temperature and increasing wind speed in spring
is conducive to the formation of dust weather, which leads to the ground particles being drawn into
the air [62]. The seasonal average concentration difference of PM10 between winter and summer
was 51.5 µg·m−3, and the daily change trend was similar to that for PM2.5. The seasonal average
concentration of CO was relatively low in spring and summer and high in winter. The concentration
from 7:00 to 10:00 was relatively high, and that from 15:00 to 18:00 was relatively low.

3.1.3. Monthly Variation of Pollutant Concentrations

The monthly average concentration changes of the six pollutants in Shenyang from 2017 to 2019
are shown in the Sankey diagram (Figure 5). The left column shows pollutants and the right column
shows the period of January to December. The advantage of using a Sankey chart is that it can show
the data flow of pollutant concentration in 12 months. At the same time, according to the length of
the month bar on the right, the months with higher accumulated concentrations of six pollutants in
a year can be visually displayed; the longer the column, the higher the cumulative concentration.
On the whole, the cumulative concentrations of the six pollutants were highest in March, followed by
January and February, and the cumulative concentrations in July, August, September and November
were relatively low (Figure 5a). The results were consistent with the study of Shen et al., regarding the
monthly changes of six pollutants in China from 2015 to 2018 [51].

In winter, coal combustion for heating purposes leads to increased emissions of pollutants such
as SO2, PM10 and PM2.5, while increased rainfall in July and August inhibits pollutant transport,
accelerates pollutant deposition and indirectly improves air quality. The concentrations of SO2 were
relatively high in January and February, at 54.3 and 45.7 µg·m−3 respectively. In July and August,
the concentrations were” relatively low, at 12.1 and 12.9 µg·m−3 respectively. The high values of NO2

were distributed in January–March and October–December, with the highest value of 49.5 µg·m−3 in
January and the lowest in July (25.1 µg·m−3).

The concentrations of PM10 and PM2.5 were higher in January and March and lower in
July–September. The concentration of PM10 was the highest in March (107.6 µg·m−3) and the lowest
in August (39.8 µg·m−3), while the concentration of PM2.5 was the highest in January (68.5 µg·m−3)
and the lowest in August (21.0 µg·m−3). Figure 5b shows that the high concentrations of O3 occurred
in May–July, and the low concentrations appeared in January, November and December, as reported
by Yang et al. and Wang et al. [63,64]. The value was highest in June (97.1 µg·m−3) and lowest in
December (24.2 µg·m−3). The number of hours with sunshine in June was relatively high, and the
degree of solar radiation was strong, which led to a high concentration of O3 [65].
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3.1.4. Diurnal Variation of Pollutant Concentrations

The daily 24-h concentration changes of the six pollutants at 11 monitoring points are shown
in Figure 6. The results showed that the diurnal concentration variations of O3, CO, and SO2

exhibited a “single peak,” while others showed a “double peak and double valley.” The hourly average
concentrations of CO, SO2, NO2, PM10 and PM2.5 at the SLR monitoring sites located in the first-class
ambient air functional areas all met the first-class concentration standard in the “Environmental Air
Quality Standard” (GB3095-2012), while the other 10 monitoring sites met the corresponding secondary
concentration standard in the second-class areas (there is no hourly average concentration standard
for PM10 and PM2.5 in the “Environmental Air Quality Standard” (GB3095-2012); therefore, it was
replaced by three times the 24 h average concentration standard). The concentrations of pollutants
in SLR were generally the lowest, which may have been due to the fact that they were located in the
first-class ambient air functional areas and were less affected by human activities.
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The peak value of O3 appeared at 18:00 in 11 monitoring points. The valley value of the YNR
monitoring point appeared at 5:00, the TYS valley value appeared at 8:00, the valley value for DLR
and SLR appeared at 6:00 and the valley value of all other points appeared at 7:00. The concentration
of O3 began to increase in the morning, which was mainly due to the appearance of a large number
of precursors in the early peak period, coupled with the increase of light, which promoted the
photochemical reaction. Affected by the early peak of traffic flow, the peak value of CO appeared at
8:00–10:00 and the lowest value appeared at 16:00. The peak value of SO2 appeared between 7:00 and
10:00, and the valley value appeared between 16:00 and 18:00.

It is consistent with the relevant research of other inland cities (Dezhou, Liaocheng, Heze, and
Jining) in China [66]; the first peak of NO2 for most points was between 7:00 and 8:00 and the late peak
was between 20:00 and 21:00. The concentration of the first peak was generally lower than that of the
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late peak. The emergence of the first peak may be related to human activities. It was at the peak of
people’s travel, with more vehicle exhaust emissions. The second peak may have been due to the
decreased O3 concentration after 18:00, the decreased NO2 consumption and the increased number of
trucks in the city at night.

The daily concentration variation trend of PM10 and PM2.5 was basically the same, and the early
peak basically appeared at 8:00–9:00. It was speculated that the reason for this was related to the
atmospheric stability and the increase of human activities in this period [67]. Then, the concentration
showed a downward trend; after falling to the valley value at about 16:00, the concentration began to
increase continuously. After 22:00, the concentration entered the second high-value area, which lasted
until about 1:00 the next day. It is speculated that the emergence of the second high-value area was
mainly affected by entertainment such as barbecues at night. Although the concentration decreased
between the second peak and the first peak (at night), the decrease was not significant, which may be
related to the fact that most large diesel vehicles drive into urban areas at night [39].

3.2. Influence of Meteorological Factors on Pollutant Concentrations

Meteorological factors play an important role in the formation and dispersion of pollutant
concentration [68]. This study analyzed the correlations between the six air pollutants and air
temperature, air pressure and wind speed in 2019 in Shenyang (Figure 7). Similarly, in order to show
the current situation better, we still selected the data in 2019. We set the confidence interval level to
99%, and the correlation degree was expressed by the Pearson correlation coefficient r.
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Figure 7. Correlation between pollutants and meteorological elements.

The results showed that the concentrations of CO, SO2, NO2, PM10 and PM2.5 had positive
correlations (the P values of the five pollutants were all less than 0.01) which were similar to the
correlation between air pollutions in Jiangsu Province [69]. This may be related to the fact that there
were many industrial point sources in Shenyang, and the most primary pollutant came from these
industrial point sources. CO was strongly positively correlated with SO2 (r = 0.744), NO2 (r = 0.692),
PM10 (r = 0.605) and PM2.5 (r = 0.770). The correlation coefficients of NO2 with SO2, PM10 and PM2.5

-were 0.625, 0.526 and 0.677, respectively. The correlation coefficient of PM2.5 and PM10 was as high
as 0.822. This shows that these fractions were emitted from a similar emission source. There was a
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negative correlation between O3 and the other five pollutants (the P values of O3 with the other five
pollutants were all less than 0.01), which was consistent with the study in Delhi, India [70]. O3 had a
strong negative correlation with SO2 (r = −0.379) and NO2 (r = −0.403), which was consistent with the
results of the above seasonal and daily variation curves of pollutant concentration. The concentrations
of SO2 and NO2 were lower in the period with high O3 concentration.

There was a positive correlation between temperature and O3 (p < 0.01, r = 0.184). The increase of O3

concentration with the increase of temperature is consistent with most research outcomes [71,72] because
the temperature increases at the same time as strong solar radiation, accelerating the photochemical
reaction. The negative correlation between temperature and the other five pollutants may be due
to the low air temperature increasing the activity of emission sources such as fuel combustion for
heating purposes. Thus, the lower the air temperature, the higher the concentrations of pollutants,
because the intensity of emissions from anthropogenic sources increases [73]. In addition, the stability
of atmospheric stratification decreases with the increase of temperature. This is conducive to the
development of convective conditions near the ground and the vertical movement of the atmosphere.
Therefore, a high temperature provides favorable conditions for pollutant diffusion. There was no
significant correlation between air pressure and pollutants, resembling the research result discovered by
Lv et al. [74]. Wind speed has a negative correlation with NO2, PM2.5 and O3. The annual average wind
speed was 7.96 km/h. The increase of wind speed in a certain range is conducive to the transportation
of pollution and does not easily raise dust, thereby reducing the concentrations of pollutants [75].

3.3. Backward Trajectory Clustering Analysis

The starting point of the simulation was the TYS monitoring point, close to the center of the main
urban area of Shenyang. Taiyuan Street is located in the bustling business district in the center of
Shenyang, and the above analysis results showed that the air pollution in TYS station was the most
serious of the 11 monitoring sites. In order to facilitate the analysis of the backward trajectory of the
airflow, this study made a cluster analysis of all the tracks affecting the site and divided them into
eight categories. According to the results of clustering, the length of each track and its proportion
to the total trajectory were calculated. An air flow with a higher percentage of the total trajectory
has a great influence on air quality. Northeast China is a region with severe haze pollution, and the
higher pollutant concentration in winter was mainly affected by coal combustion for heating purposes,
as shown in the previous analysis. Therefore, PM2.5 and SO2 mass concentrations corresponding to
each trajectory were calculated. The results are shown in Figure 8 and Table 1.

In all the trajectories of the four seasons, the average mass concentrations of SO2 and PM2.5 were
the lowest in summer and the highest in winter, which was consistent with the analysis results in
Section 3.1.2. Compared with other seasons, the air transport distance in winter was longer, which may
be related to the winter monsoon [76]. In spring and summer, the coastal air current has a great
influence on pollutant concentrations. In spring, the air flow from the southeast direction accounted
for the largest proportion, accounting for 40.75% of the total air flow from the Yellow Sea to Shenyang
via other cities in Liaoning Province. Cluster 5 has the highest probability of occurrence and has the
greatest impact on the air quality of the study area. The average mass concentrations of SO2 and
PM2.5 were 13.30 and 27.72 µg·m−3, respectively. The results show that the highest concentrations of
SO2 and PM2.5 were in cluster 4, which came from Shandong Province and reached the study area
through the Yellow Sea. The high concentrations of the two pollutants on the trajectory may be due to
the developed industry, large population and more anthropogenic sources in Shandong Province. In
summer, the southward air flow track accounts for the highest proportion, at 55.19%; cluster 3 has the
highest probability of occurrence. The average mass concentrations of SO2 and PM2.5 were 8.66 and
19.89 µg·m−3, respectively. Cluster 2 had the highest concentration of SO2 and cluster 4 has the highest
concentration of PM2.5.

Under the influence of the semi-permanent cold high pressure in the Mongolia–Siberia region,
the pollution mainly came from northwest airflow in autumn and winter, and the pollutants reached
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the study area through Mongolia, Inner Mongolia and other places. The northwest track accounts for
52.72% in autumn and 73.76% in winter. The desert area of Mongolia and Inner Mongolia is large,
and the airflow from the northwest comes from close to the desert, so transports more dust aerosols
in the transportation process. In addition, the northwest direction airflow path area’s agriculture is
more developed, and crop burning in the open air produces is more common. At the same time, these
areas are cold in winter, and the demand for coal for heating is greater. Therefore, more pollutants
were carried in the air transport process, and the pollutant concentrations were higher in winter than
in other seasons. In autumn, the average SO2 concentration of all tracks was 13.14 µg·m−3, and the
average PM2.5 mass concentration was 20.15 µg·m−3. In winter, the average SO2 concentration of all
tracks was 48.18 µg·m−3, and the average PM2.5 mass concentration was 22.62 µg·m−3. Affected by the
sea–land breeze circulation, the air quality in the study area was affected by air flow trajectory 1 in
autumn and air flow trajectory 2 in winter.
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Table 1. Clustering results of backward trajectory.

Season Cluster
No. Direction Areas of Pathways Percentage of Total

Trajectory (%)
Trajectory Length

(km) SO2 (µg·m−3) PM2.5
(µg·m−3)

Spring

1 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 5.02 4938.45 4.74 19.28
2 Northwest Russia, Inner Mongolia, Mongolia, Liaoning 11.52 3422.35 9.66 18.81
3 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 12.13 2957.16 19.29 33.82
4 Southwest Shandong, Yellow Sea, Liaoning 14.03 1199.33 21.33 43.49
5 South by east Yellow Sea, Liaoning 24.39 573.56 16.41 33.25
6 South by east Yellow Sea, Liaoning 16.36 1231.93 13.10 28.34
7 North Russia, Heilongjiang, Inner Mongolia, Jilin, Liaoning 10.29 2322.18 12.06 27.75
8 Northeast Russia, Heilongjiang, Jilin, Liaoning 6.25 1456.86 9.83 16.99

Summer

1 Northeast Heilongjiang, Russia, Jilin, Liaoning 10.57 1788.60 8.61 9.28
2 North by east Heilongjiang, Jilin, Inner Mongolia, Liaoning 13.59 1071.38 10.93 18.53
3 South Yellow Sea, Liaoning 25.30 487.35 8.43 23.10
4 South Yellow Sea, Liaoning 13.83 1133.66 9.55 28.90
5 South Yellow Sea, Liaoning 16.06 1474.54 6.88 23.81
6 Southwest Hebei, Bohai, Liaoning 7.43 831.56 10.63 27.39
7 Southeast Yellow Sea, Korea, North Korea, Liaoning 9.54 1178.89 6.39 15.00
8 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 3.68 2478.67 7.84 13.07

Autumn

1 Southwest Yellow Sea, Liaoning 35.05 563.41 17.30 35.47
2 Northwest Russia, Inner Mongolia, Jilin, Liaoning 16.58 1991.36 17.81 28.96
3 Northeast-northwest Russia, Heilongjiang, Inner Mongolia, Jilin, Liaoning 8.51 2805.97 9.87 13.76
4 Southeast Yellow Sea, Korea, North Korea, Liaoning 3.71 1337.83 8.37 12.66
5 Northwest Russia, Inner Mongolia, Liaoning 9.42 3715.28 15.79 18.54
6 Northwest Russia, Mongolia, Inner Mongolia, Jilin, Liaoning 6.70 3569.30 9.78 12.32
7 Northwest Russia, Inner Mongolia, Heilongjiang, Jilin, Liaoning 10.60 3888.95 13.01 15.79
8 Northwest Russia, Mongolia, Inner Mongolia, Jilin, Liaoning 9.42 5243.26 13.20 23.73

Winter

1 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 28.53 2050.5 34.03 72.92
2 West-southwest Hebei, Inner Mongolia, Bohai, Liaoning 18.43 1045.61 29.15 101.17
3 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 13.07 3043.58 28.75 57.72
4 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 7.21 5700.62 16.08 28.87

5 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 14.03 3559.65 21.21 28.01
6 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 9.50 4856.76 21.39 35.52
7 North Russia, Heilongjiang, Inner Mongolia, Jilin, Liaoning 7.81 2884.93 18.59 35.87
8 Northwest Russia, Mongolia, Inner Mongolia, Liaoning 1.42 8501.89 11.73 25.34
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4. Conclusions

This work presents an in-depth study of the characteristics of pollutants in Shenyang and the
purpose was to provide scientific support to make an effective air pollution control plan for Shenyang
city and other similar urban areas. The results were as follows:

(1) Affected by vegetation coverage, the concentrations of CO, SO2, NO2, PM10, and PM2.5 in the
northern part of Shenyang were relatively low, while the trend of O3 concentration was the
inverse. The high concentrations of CO, SO2, and NO2 were located in the central urban area.
Because Tiexi (northeast old industrial base) was located in the southwest, the high concentrations
area of PM10 and PM2.5 were located in the southwest.

(2) Affected by coal combustion for heating purposes and rainfall, the accumulated concentrations
of the six pollutants were higher from January to March and lower from July to September and
November. In terms of the daily variation characteristics, the concentrations of CO, SO2, and O3

were of the “single peak” type, while NO2, PM10, and PM2.5 were of the “double peak and
double valley” type. The study area belongs to the northeast old industrial base, with many
industrial point sources. There was a significant positive correlation between CO, NO2, SO2, PM2.5,
and PM10. Because the precursors were consumed and produced by photochemical reactions,
the concentrations of NO2 and O3 showed a significant negative correlation. Low temperature
increases the activity of emission sources; thus, the temperature was negatively correlated with
the concentration of most pollutants.

(3) The airflow transport distance was longer in winter due to the influence of the winter monsoon.
The pollution in the main urban area in spring and summer was mainly affected by the ocean
current from the Yellow Sea. In summer, the airflow pollution of SO2 and PM2.5 mainly originated
in Shandong Province. Affected by the semi-permanent cold high in Mongolia–Siberia, the regional
transport of pollutants in autumn and winter was mainly affected by the northwest airflow.
Because the northwest airflow path area was close to the desert and the low temperature in winter
leads to more anthropogenic emissions, the concentration of pollutants was highest in winter.

Overall, the spatial distributions of pollutant concentrations in this study area are similar to those
in Changchun, Lanzhou, Toronto (Canada) and Lombardy (Italy) [39–41,45]; in terms of temporal
variation, the results of this study are consistent with the previous studies in most parts of China (Fen Wei
Plains, Sichuan Basin, Yangtze River Delta, Pearl River Delta, eastern Jianghan Plains) [51,58,60,63,64],
Israeli and Kolkata (India) [56,59]; the conclusions of the study on the correlations between pollutant
concentrations are similar to those in Jiangsu Province and Delhi (India) [69,70]; the correlations
between pollutant concentration and meteorological factors are consistent with those in Yangtze River
Delta, Beijing, Nagasaki (Japan) [71,72,74,75].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/7/766/s1,
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