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Abstract: Retrievals of ice cloud properties require accurate estimates of ice particle mass. Empirical
mass–dimensional (m–D) relationships in the form m = aDb are widely used and usually universally
applied across the complete range of particle sizes. For the first time, the dependence of a and
b coefficients in m–D relationships on median mass diameter (Dmm) is studied. Using combined
cloud microphysical data collected during the Olympic Mountains Experiment and coincident
observations from Airborne Precipitation Radar Third Generation, Dmm-dependent (a, b) coefficients
are derived and represented as surfaces of equally plausible solutions determined by some tolerance
in the chi-squared difference χ2 that minimizes the difference between observed and retrieved radar
reflectivity. Robust dependences of a and b on Dmm are shown with both parameters significantly
decreasing with Dmm, leading to smaller effective densities for larger Dmm ranges. A universally
applied constant m–D relationship overestimates the mass of large aggregates when Dmm is between
3–6 mm and temperatures are between −15–0 ◦C. Multiple m–D relations should be applied for
different Dmm ranges in retrievals and simulations to account for the variability of particle sizes that
are responsible for the mass and thus for the variability of particle shapes and densities.

Keywords: mass–dimensional relationship; median mass diameter; radar reflectivity; equally
plausible surface

1. Introduction

Retrievals of ice cloud properties, such as radar reflectivity factor (Z) [1], snow rate [2,3], ice water
content (IWC) [3,4] and effective density (ρe) [5,6] require estimates of how ice particle mass (m) varies
with ice particle dimension (D). Accurate estimates of particle mass are thus essential to the accuracy
of cloud products retrieved from remote sensing measurements [7,8]. Furthermore, microphysical
parameterization schemes used in many numerical weather prediction models require accurate m–D
relations to quantify microphysical processes occurring in clouds [9,10]. The m–D relations are also
used to determine ice particle density, which is one of the key factors determining particle fall speeds
and representing ice cloud properties in weather and numerical models. Knowledge of these relations
is important because it is difficult to measure ice particle density and volume in situ because of the
variability in particle shape and habit [11], and because of processes such as aggregation, supercooled
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water accretion, and melting/refreezing that lead to variability in ice-air mixtures [12]. Therefore,
empirical power law m–D relationships taking the form

m = aDb (1)

have been widely used in numerical modeling and retrieval schemes.
Various techniques and probes have been used to derive the a and b coefficients, and variations

with temperature, particle habit, and cloud formation mechanism have been noted [13]. This is caused
by changes in the cloud microphysical properties in different environments due to variations in the
size, shape, and density of ice particles produced by the action of different microphysical processes.
Previous studies deriving a and b coefficients include the following: Baran et al. [14], who determined
a by comparing observed and calculated Z of cirrus, assuming an ensemble of ice aggregates and
fixing b = 2.0; Heymsfield et al. [5,15,16], Cotton et al. [6] and Abel et al. [17] who derived a and b
using measured size distributions and bulk mass contents to show variations in b depending on ice
cloud type; and McFarquhar et al. [18] and Fontaine et al. [19] who employed ice particle images and
observed bulk Z to derive the dependence of b on temperature.

Although the habit of an ice crystal is primarily a function of temperature and supersaturation [20–22],
in situ observations do not show a simple correlation between particle shape, mass, temperature
and humidity since many crystals are not observed in the environments in which they grow and
due to imperfections in crystal shapes [23]. Nevertheless, Mitchell et al. [2] deduced m–D relations
specific to various ice crystal habits by taking microphotographs of particles and using the melted
hemispherical drops to derive b ranging from 1.8 (needles and long columns) to 2.6 (short columns
and plates), and 2 for aggregated ice. Locatelli and Hobbs [24] also derived habit-specific m–D
relationships for 22 particle types. Such relations can be used in combination with automatic habit
classifications based on 2-D particle images [25–31] to derive IWC by applying specific m–D relations
for individual habits [28,32,33] to the measured size and shape distributions. In practice, application of
this technique is difficult since clouds usually consist of mixtures of complex particles, many of which
have irregular shapes that cannot be unambiguously identified or represented by one of the shapes for
which m–D relations are available. For these reasons, m–D relations are typically derived for mixtures
of particles. Parameterizations for mixtures of particles are also easier to apply in model and remote
sensing schemes.

For given conditions, the derived a and b are typically assumed to apply over the complete
range of particle sizes, and hence universally applied for all particle sizes in models and retrievals.
This implicitly assumes a and b are independent of particle size. However, the size dependence of a and
b has been noted as Locatelli and Hobbs [24] and Mitchell [11] used different prefactors and exponents
for different size ranges. Moreover, Erfani and Mitchell [34] proposed second-order polynomials
for m–D relations that could be reduced to power laws in which the final a and b are dependent on
D. In general, a continuous dependence of a and b on D is desired because the evaluation of the
mass function in some cloud schemes is based on derivatives with respect to D and discontinuities
at the overlap points produce numerical errors [35]. Furthermore, published m–D relations for large
aggregates (i.e., D > 5 mm) are rare, and it remains to be seen whether these particles’ masses scale as
their smaller counterparts, thus potentially justifying the use of separate m–D relations for hydrometeor
ensembles of small and large particles. This is potentially important for remote sensing retrievals of bulk
hydrometeor mass in particular, where particle habits are typically not known a priori, but parameters
related to number concentration and characteristic size may be retrieved in some fashion.

This paper aims to examine the dependence of a and b on a characteristic size parameter, the
median mass diameter (Dmm), so that the retrievals of ice cloud properties can be improved. Dmm is
defined as the D for which 50% of the accumulated total water content (TWC) is contained in smaller
particle sizes and 50% in larger particle sizes, indicating the size ranges of ice particles responsible for
the mass. The dependence of m–D relations on Dmm provides information for their dependence on
particle size without adding a discontinuity in the relation between D and m. Here, the a and b are
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derived following the approach of Finlon et al. [13] using in situ microphysical and coincident remote
sensing data collected during the 2015 Olympic Mountains Experiment (OLYMPEX) conducted in and
offshore of western Washington State [36]. The remainder of the manuscript is organized as follows.
Section 2 describes methods used to process in situ and coincident remote sensing data from OLYMPEX,
and to derive microphysical variables and m–D relations dependent on Dmm. The dependence of m–D
relations on Dmm is quantified and discussed in Section 3. The key results are summarized in Section 4.

2. Data and Methods

2.1. OLYMPEX Measurements

During OLYMPEX, the University of North Dakota Cessna Citation II (N55DS) [37] flew 20 missions,
collecting in-cloud measurements at temperatures between −60 ◦C and 12 ◦C. Optical Array Probes
(OAPs) that obtain particle images from the occultation of a laser beam incident upon an array of
fast response photodiodes included a 2D Stereo Probe (2D-S), nominally sizing particles from 10 to
1280 µm, and a Version 3 High Volume Precipitation Spectrometer (HVPS-3), sizing particles from
150 to 19,200 µm. Data from the OAPs were processed with the University of Illinois/Oklahoma Optical
Array Probe Processing Software (UIOOPS) using particle inter-arrival times to remove shattered
artifacts from the 2D-S data using algorithms introduced by [38,39]. Particle size distributions (PSDs)
for the maximum dimension 200–30,000 µm were determined by merging the 2D-S vertical array with
the vertically oriented HVPS-3 with a crossover between probes at 1000 µm. Particles larger than the
diode array were reconstructed following the method in [40] provided their center was determined to
be within the photodiode array.

To provide radar data that gives the larger scale context of the microphysics observations and
give data coincident with in situ microphysics observations, the National Aeronautics and Space
Administration (NASA) DC-8 aircraft carrying the Airborne Precipitation Radar Third Generation
(APR-3), a triple-frequency (Ku-, Ka-, and W-bands, 13, 35, and 94 GHz respectively) Doppler,
dual-polarization radar system [41,42], flew flights at mostly constant altitude above the Citation
during OLYMPEX. Radar volumes collected within 10 min temporally and 1 km spatially of the Citation
are regarded as collocated following Chase et al. [43]. More details about the specifics of collocation
and calibration of the radar measurements are found in [43].

In this study, the lower bound for the PSD is set at 200 µm to exclude any possible contributions
from supercooled drizzle drops whose maximum sizes were around 200 µm during OLYMPEX [43].
PSDs are averaged every 5 s and analysis is restricted to periods when the total number concentration
of particles with D > 200 µm was greater than 103 m−3 to ensure that the Citation was within
more than just a tenuous cloud. To restrict the analysis to ice-phase clouds, only periods with total
number concentrations measured by the Cloud Droplet Probe (CDP) [44] less than 10 cm−3 are used
following [45]. There are 5928 5-s observations (8.23 h in total) in ice clouds with coincident radar
observations at temperatures between −33 ◦C and −1 ◦C. For ice-phase clouds, the TWC is equivalent
to the IWC.

2.2. Derivation of Bulk Properties

Several bulk quantities can be calculated from the PSD when an m–D relation is assumed. First,
the IWC can be derived following

IWC =
∑Dmax

Dmin
m N(D) ∆D, (2)

where N(D) is the ice particle number distribution function for the size bin with midpoint D, and m is
crystal mass determined from Equation (1) and restricted to be less than the mass of an ice spheroid of
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the same D with aspect ratio 0.6 following the approach of Hogan et al. [46]. For ice-phase clouds, Dmm

is determined as
1
2

IWC =
∑Dmm

Dmin
m N(D) ∆D =

∑Dmax

Dmm
m N(D) ∆D. (3)

The Dmm derived from Equation (3) is mainly a function of b [47]. Initially, Dmm is calculated
using a prior m–D relation m = 0.0061D2.05 from a study of Heymsfield et al. in 2004 ([5], hereafter
HY04) and subsequently referred to as Dmm,hy. The HY04 coefficients a and b originally introduced
are specific to ice crystals generated in synoptically and convectively generated ice clouds, which
have been widely used in model parameterization schemes. Previous study has shown that the HY04
m–D relationship gives reasonable estimates of reflectivity at Ku-band for temperatures below 0 ◦C
during OLYMPEX [48]. Here, Dmm,hy is used as a descriptor of PSDs and for comparisons with results
generated from new (a, b) parameters. Sensitivity studies conducted here using other m–D relations
(e.g., [4]) showed that similar conclusions were reached regardless of what m–D was used to calculate
the initial values of Dmm (figures not shown).

The effective density of the ice particle population (ρe) for each 5-s PSD is calculated by

ρe =
TWC

V
, (4)

and
V =

∑Dmax

Dmin
0.6×

π
6

D3N(D)∆D, (5)

where V is the total volume of all ice particles assuming they are spheroids with diameter D and aspect
ratio 0.6. ρe describes the density of a collection of ice particles rather than of single ice particles.

For all D corresponding to the center of the size bins and for given a and b coefficients, the radar
reflectivity factor at the Ku-band is forward modeled using the Rayleigh–Gans spheroid approximation
that was described in detail by Hogan et al. [46] and integration of backscatter cross-section over the
PSD yields total reflectivity. The Rayleigh–Gans theory was first introduced by van de Hulst [49],
and modifies the Rayleigh scattering law to incorporate the interference of out-of-phase scattered
waves of the scatterer. It has been found that the Rayleigh–Gans spheroid approximation performs
well for modeling the scattering properties of aggregates in ice clouds for particle sizes no larger than
the wavelength considered [46]. Other scatter models including the Rayleigh theory and a Self-Similar
Rayleigh–Gans theory [50], are also examined here and further discussed in Section 3. The Ku-band is
used because it experiences less attenuation and fewer non-Rayleigh scattering effects than other bands
of reflectivity collected during OLYMPEX (Ka and W band), and thus these scattering models should
perform well in this scattering regime. The systematic errors of Rayleigh–Gans approximation are
reported to be very small at Ku-band for unrimed snowflakes with mean bias of at most 1dBZ [51,52].

As stated in Section 2.1, particles smaller than 200 µm are removed to eliminate any possible
influence of supercooled liquid droplets in the measured N(D). To assess the contribution of small
particles to derived properties, using the same HY04 m–D relation, the ratios of Dmm, IWC and equivalent
radar reflectivity factor Z derived from PSDs with minimum sizes of 125µm and 200µm were calculated.
The average ratios Dmm,PSD>200/Dmm,PSD>125, IWCPSD>200/IWCPSD>125, ZPSD>200/ZPSD>125 are 1.03, 0.98,
and 0.99 respectively, showing small particles with 125 µm < D < 200 µm, where there are the larger
uncertainties in the measured PSDs [53], contribute less than 5% to those derived quantities. Reliable
PSD observations for ice particles with D < 125 µm are not available during OLYMPEX, but their
contributions to mass and reflectivity are expected to be minimal [53].

2.3. Constraint of m–D Relationships

The estimates of (a, b) parameters consistent with the measured bulk properties can be determined
by minimizing the chi-squared differences (χ2) between quantities derived from size distributions and
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bulk measured values. In particular, the χ2 metric defining the difference between Ku-band Z derived
from N(D) (ZKu,psd) and those directly measured by the Ku-band APR-3 (ZKu), is given by

χ2(a, b) =
1
n

∑ (
ZKu,psd −ZKu

)2

ZKu,psd ×ZKu
, (6)

where n is the number of samples. The definition of χ2 in Equation (6) follows Finlon et al. [13].
The bulk measured TWC by Nevzorov probe could also be used to calculate χ2 taking into account
differences between both derived and observed Z and TWC [13], where TWC is equal to IWC for
ice-phase clouds. However, the Nevzorov probe has been found to underestimate the TWC in previous
studies due to the potential problem of ice crystals bouncing out from its sensor especially for particles
larger than 4 mm [54,55], and thus is not used in this study.

In the calculation of χ2, Equation (1) is slightly modified to the form

m = a
(

D
D0

)b

, (7)

where D0 = 1 cm, so that b is dimensionless and a has a single physical dimension of mass, such as
grams, rather than having its units depending on b. Equation (7) solves the potential problem of
comparing incommensurable quantities a in g cm-b with varying values of b. The χ2 is computed for
all a and b for 2.00 × 10−4 < a < 0.05 g and 1.00 < b < 5.00 with increments of 2.00 × 10−4 g for a and 0.02
for b in order to find the minimum χ2 (hereafter χ2

min) and thus most likely a and b. It is assumed that
all a and b that have χ2 < χ2

min + ∆χ2 are equally plausible solutions, where ∆χ2 defines the allowed
tolerance. The choice of ∆χ2 is discussed in Section 3.

3. Results

3.1. Dependence of (a, b) on Dmm

3.1.1. Behavior of Equally Plausible Surfaces

The 5-s time averaged PSDs are sorted into different populations according to Dmm,hy. For each
population, χ2 is calculated using Equation (6) by summing over PSDs in the appropriate population.
One population includes all PSDs with 200 ≤ Dmm,hy < 500 µm whereas the other 11 populations
correspond to Dmm,hy equally spaced between 500 and 6000 µm. PSDs with Dmm,hy larger than 6000 µm
were excluded from the analysis because there were only 37 (0.62% of the total) such PSDs which
was not regarded as statistically significant. The (a, b) minimizing χ2 was hence determined for
each population.

Different uncertainty sources are considered to define the tolerance of the minimum χ2 for
each population. When conducting fits to observed PSDs, McFarquhar et al. [56] defined ∆χ2 =

max
(
∆χ1

2,χ2
min

)
, where ∆χ1

2 represented uncertainties in the observed PSDs due to statistical
sampling uncertainties and χ2

min characterized the robustness of the minimization procedure related
to how well the observed PSD fit the assumed gamma distribution and how much variability there was
in the size distributions. Here, this technique was followed and ∆χ1

2 for each Dmm,hy bin is defined
using the statistical uncertainty in the sampled PSD as

∆χ1
2
(
Dmm,hy

)
=

1
2n

∑
(
ZKu,psd,max −ZKu,psd

)2

ZKu,psd,max ×ZKu,psd
+

(
ZKu,psd,min −ZKu,psd

)2

ZKu,psd,min ×ZKu,psd

, (8)

where ZKu,psd are calculated using the most likely (a, b) that minimizes χ2, ZKu,psd,max and ZKu,psd,min are
the maximum and minimum Z derived using the maximum and minimum N(D) using the same m–D
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relation. The maximum and minimum N(D) are determined by adding and subtracting the square root
of the number concentration in each size bin corresponding to adding or subtracting square root of the
number of counts in that bin [56,57] as the square root of the number of counts gives a measure of the
statistical uncertainty based on Poisson Statistics.

Uncertainties associated with the observed N(D) by OAPs and Ku-band Z by APR-3, are also
considered using ∆χ2

2, which is defined as

∆χ2
2
(
Dmm,hy

)
= 1

2n
∑

[
(ZKu,psd,max2−ZKu,psd)

2

ZKu,psd,max2×ZKu,psd
+

(ZKu,means,max−ZKu)
2

ZKu,means,max×ZKu,psd

]
[
(ZKu,psd,min2−ZKu,psd)

2

ZKu,psd,min2×ZKu,psd
+

(ZKu,means,min−ZKu,psd)
2

ZKu,means,min×ZKu,psd

]
,

(9)

where ZKu,psd,max2 and ZKu,psd,min2 are the maximum and minimum Z derived assuming that the N(D)
measured by the OAPs has 50% uncertainties [58]. The ZKu,meas,max and ZKu,meas,min represent the
maximum and minimum measured Z derived by the uncertainties of measured ZKu during OLYMPEX
of 1 dB following Chase et al. [43].

Uncertainties from different sources are compared in Figure 1a. It is found that ∆χ1
2/χ2

min < 10−3

for all 12 populations, which means the robustness of the minimization procedure is a greater uncertainty
than the statistical uncertainty associated with the PSD sampling. The ∆χ2

2/χ2
min ranged between

0.16 and 0.64 with a mean value of 0.34, suggesting that observation uncertainties are comparable with
the robustness of the minimization procedure, but it is still the minimization procedure that mainly
dominates in the variability of the relationship.
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Figure 1. (a) Sources of uncertainties as a function of Dmm,hy; (b) Equally plausible surfaces determined
by χ2 = 2χ2

min for different Dmm,hy range bins indicated by the color bar beneath the plot. Circles with
corresponding colors denote the locations of χ2

min for each Dmm,hy bin. (c) Same as (b) but equally
plausible surfaces determined by χ2 = χ2

min + ∆χ2
2.
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Equally plausible surfaces for each population colored by Dmm,hy using the tolerance χ2
min and

∆χ2
2 are shown in Figure 1b,c respectively. As χ2

min is greater than ∆χ2
2 for each population, the areas

of surfaces determined by χ2
min are larger than those determined by ∆χ2

2. However, all surfaces have
narrow spheroid-like shapes in the parameter space with their locations offset from each other as a
function of Dmm,hy. As Dmm,hy increases, the surfaces tend to rotate clockwise with the orientation of
surfaces getting more horizontal and more prolate, indicating a smaller range of allowable values of a
and larger variations of b for larger Dmm,hy.

The same clockwise shift of the equally plausible surfaces with increasing Dmm,hy is present when
the tolerance of surfaces differs, showing the dependence of how the surfaces varied with Dmm,hy
is robust. However, the exact range and location of the surfaces depend on the methodology and
threshold used to generate the surfaces. For example, the surfaces can even extend beyond the sample
ranges of a and b for Dmm,hy < 500 µm and Dmm,hy > 4500 µm especially (Figure 1b).

3.1.2. Quantitative Dependences of (a, b) and ρe on Dmm

To further demonstrate the dependence of a and b on Dmm,hy, 300 (a, b) solutions are randomly
chosen from each of the equally plausible surfaces in Figure 1b. These solutions are used to examine
the physical realism of the solutions, and for examining the dependence of a, b and ρe on Dmm.

The equally plausible surfaces in Figure 1 are showing that b coefficients could be greater than 3,
which may seem physically impossible as the mass of a particle cannot be greater than that of an ice
sphere with the same D. However, due to the covariability of a and b, b > 3 does not necessarily imply
the particle has a mass greater than a sphere. Instead, it merely indicates how the mass (and hence
density) varies as a function of D. In the absence of any additional information (e.g., role of fractal
dimension in determining the value of b), minimizing the difference between bulk measured quantities
and those obtained by integrating PSDs does not constrain values of b to be less than 3. Furthermore,
Abel et al. [17] previously used b values greater than 3 to calculate the IWC from size distributions
where highly rimed particles dominated. It is verified that all random (a, b) solutions within the equally
plausible surfaces in Figure 1, including those with b > 3, generate smaller mass of single particle than
that of an ice sphere with the same maximum dimension D. It means that these solutions represent
physically realistic values. However, if b were greater than 3, the density of particles would necessarily
increase with maximum dimension, which has not been commonly observed. Given that no consensus
has been reached on the possibility of b > 3 and because physical arguments mean such values are
likely unrealistic, b > 3 solutions are excluded in subsequent analysis.

The mean and quartiles of the a and b randomly selected from the surfaces are shown in Figure 2a,b
as a function of Dmm,hy. As Dmm,hy gets larger, a prominently decreases with Dmm,hy, especially for
Dmm,hy > 2000 µm. This is consistent with the clockwise rotating surfaces with Dmm,hy in Figure 1b.
Significant linear correlation is found between the mean values of a solutions and Dmm,hy with
correlation coefficient equal to −0.83. The large mean values and spreads of a over Dmm,hy < 500 µm
and Dmm,hy between 1500–2500 µm are caused by the larger surfaces for these Dmm,hy range, where the
uncertainties from minimizing procedures (χ2

min) are larger than other Dmm,hy ranges. Clear decreasing
variation of b with Dmm,hy is also denoted by a negative slope (−0.04 mm−1) between the mean values
of random b solutions and Dmm,hy, which is significant at the 95% confidence level. Compared to the
HY04 m–D relation coefficients, for Dmm,hy < 3000 µm, most of the a (75.7%) and b (70.4%) solutions
are greater than those of HY04, but for Dmm,hy between 3–6 mm, most of a (95.6%) and near half of b
(41.8%) get lower values than HY04.
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Figure 2. (a) Equally plausible solutions of a and (b) b determined by the equally plausible surfaces in
Figure 1b. The blue solid lines, lower bounds and upper bounds of the blue shading areas represent
mean values, 25% and 75% percentiles of a and b solutions respectively in each Dmm,hy bins. Blue
dashed lines indicate the beat estimate of (a, b) that minimizes χ2 in each Dmm,hy bins. Red lines show
the linear regression lines of mean values with linear correlation coefficients r shown in legends. Black
lines indicate the a and b coefficients of HY04 m–D relationship.

The best estimates of (a, b) pairs that minimize the χ2 in each Dmm,hy bin generally exhibit similar
trends to the statistics of random selected solutions. However, these best a and b estimations are
almost all smaller than the first quartiles of random solutions in their corresponding Dmm,hy ranges.
For Dmm,hy < 2500 µm, the best a and b fluctuate around the HY04 m–D values, indicating that the
HY04 m–D relationship performs well for most ice clouds during OLYMPEX with Dmm,hy < 2500 µm
(81.3%). For 19.4% of the total periods with Dmm,hy > 2500 µm, except b = 2.04 for Dmm,hy between
4500–5000 µm and b = 2.26 for Dmm,hy between 5500–5000 µm, best estimations of a and b are notably
smaller than the a and b in the HY04 m–D relation. This implies that the HY04 m–D relationship
conceivably overestimates particle mass when Dmm,hy is greater than 3 mm.

Knowledge of the ice effective density (ρe) can also be informative. As shown in Figure 3, different
m–D relationships produce consistently decreasing ρe with increasing Dmm,hy. For Dmm,hy < 500 µm,
although the ρe derived from the HY04 m–D relationship (henceforth ρe0) are lower than ρe derived
from randomly selected (a, b) solutions in Figure 2 (henceforth ρe1), there is no significant differences
between ρe0 and ρe1 as ρe1 is highly variable as a function of Dmm,hy. For Dmm,hy > 1500 µm, ρe0 is
significantly greater than ρe1 with a mean difference of 2.21 ± 0.89 g cm−3. The ρe0 and ρe1 tend to
converge at Dmm,hy around 4500 µm to 0.03 g cm−3 and 0.01 g cm−3, respectively.
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3.2. Implications for Dmm,hy between 3–6 mm

By minimizing the χ2 of Ku-band radar reflectivity between APR-3 observations (ZKu) and those
derived from PSDs (ZKu,psd), the dependence of m–D relation coefficients on Dmm,hy was demonstrated
in Section 3.1. The best estimates of a and b coefficients differ from the HY04 coefficients especially
when Dmm,hy is greater than 3 mm (Figure 2). This is also revealed by the comparisons between ZKu and
ZKu,psd using the HY04 (Figure 4a) coefficients and the Dmm,hy-dependent m–D relationships (Figure 4b).
The HY04 m–D relation provides accurate estimates of radar reflectivity for Dmm,hy < 3000 µm, with a
median ratio of ZKu,psd/ZKu (hereafter Rz) 1.01 and a mean ratio of 1.52 ± 2.75, which means an average
bias of 0.34 ± 4.37 dB; For Dmm,hy > 3000 µm, Rz tends to increase with Dmm,hy, with median values
rising from 1.80 to 9.81 and mean values rising from 2.15 to 12.87, indicating average overestimates of
ZKu,psd of 4.00–11.10dB. Using the Dmm,hy-dependent m–D relationships derived from the best estimates
of a and b that minimized the χ2 in each population of PSDs, the overestimated Zku,psd for Dmm,hy >

3000 µm are much improved with a median Rz of 0.90 and mean Rz of 1.42 ± 1.92 (Figure 4b).
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Figure 4. Ratios of radar reflectivity derived from PSD (ZKu,psd) to the bulk measured Ku-band
reflectivity (ZKu) using (a) HY04 m–D relation and (b) best estimate of (a, b) that minimizes χ2 in each
Dmm,hy bins. The black solid lines and error bars represent median values, 25% and 75% percentiles of
ZKu,psd/ZKu in each Dmm,hy bins. Yellow plus signs are the mean values for each Dmm,hy bins. Black
dashed lines denote the 1:1 line.

Various scattering models including the Rayleigh–Gans spheroid approximation, Rayleigh, and
the Self-Similar Rayleigh–Gans approximation are examined to evaluate the uncertainties of the
derived ZKu,psd. Using the same HY04 m–D relationship, the overall average ratios of Z based on
the Rayleigh–Gans spheroid approximation to the Z based on Rayleigh approximation and the Z
based on the Self-Similar Rayleigh–Gans approximation are 0.92 and 1.00 respectively with differences
between them less than 0.1 dB; Restricted to Dmm,hy between 3–6 mm, these ratios are 0.80 and 0.93.
The ratios of Rz exhibit undistinguishable trends with Dmm,hy as shown in Figure 4a regardless of the
scatter scheme. The discrete dipole approximation [59], which is commonly used as the reference
method of choice for snowflake scattering calculations [60,61], is not examined given the limitation of
computation resources. However, given recent studies by Leinonen et al. [52], the average scattering
properties given by the Rayleigh–Gans approximation are in good agreement with the discrete dipole
approximation for all but the most heavily rimed snowflakes, with the mean bias in the backscattering
cross-section no more than 1 dB. Therefore, uncertainties brought by the scattering scheme do not
affect the fact that HY04 m–D relation overestimates Z for Dmm > 3 mm in ice only clouds.

The characteristics of clouds with large Dmm,hy are shown in Figure 5. The number of particles
smaller or greater than 3 mm in the PSDs varies considerably depending upon Dmm,hy. The number of
particles greater than 3 mm tends to increase sharply with Dmm,hy and the number of those smaller than
3 mm decreases with Dmm,hy. This confirms that Dmm,hy gives information about the shapes of PSDs and
shows the size ranges responsible for mass. Dependence of a and b on Dmm,hy also implies dependence
on particle size dimension D. Clouds with Dmm,hy between 3 and 6 mm were mainly observed when
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temperatures ranged between −15–0 ◦C during OLYMPEX, of which 65.7% were between −15–−10 ◦C
and 27.7% were between −10–−5 ◦C (Figure 5b). Examples of typical particle images for large Dmm,hy
periods are shown in Figure 5c: aggregates of dendrites with sizes between 3 and 5 mm and even
snowflakes near 1 cm are evident. These dominant secondary habits clearly illustrate that aggregation
is a dominant growth mechanism for these particles.
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Figure 5. (a) Averaged PSDs for different Dmm,hy ranges indicated by the color bar; (b) Histograms of
temperature for all ice clouds (gray) and Dmm,hy between 3–6 mm (red); (c,d) typical particle images
from HVPS probe for Dmm,hy between 3–6 mm.

Previous studies have rarely focused on establishing an m–D relation for particles with D greater
than 3 mm or periods when median mass dimensions Dmm are greater than 3 mm. Mitchell [3] suggests
two m–D relationships for aggregates of side planes between 600–4100 µm and for aggregates of
side planes, columns, and bullets between 800–4500 µm respectively; Leroy et al. [62] analyzed the
size characteristics of tropical storm clouds with Dmm ranging between 250 and 800 µm and peaking
up to 2 mm, in which the vapor deposition contributes the major growth of ice particles. Therefore
m–D relations for natural conditions where single pristine shapes are not present and where particles
with dimensions larger than 3 mm are present have not been discussed before, making the relations
presented here unique.

However, many different m–D relationships for aggregates have been reported based on field
measurements: Schmitt and Heymsfield [63] give a = 0.0068, b = 2.22 for aggregates, which are both
greater than the a and b of HY04 and will overestimate IWC and Z compared with the results of this
study; Locatelli and Hobbs [24] give a = 0.0037, b = 1.9 for rimed aggregates of dendrites; Mitchell [3]
reports a = 0.033, b = 2.22 for aggregates of side planes and a = 0.028, b = 2.1 for aggregates of side
planes, columns, and bullets; Tyynelä et al. [60] obtain a = 0.0036, b = 1.57 for the fernlike aggregates.
Single particle masses derived from these m–D relations are plotted in Figure 6 and compared with
the mass derived from the best estimates of a and b shown in Figure 2. All four of the m–D relations
reported for the different kinds of aggregates in Figure 6 produce smaller particle masses for particles
with D greater than 3 mm compared to HY04 (black dashed line). Furthermore, they produce smaller
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m for D greater than 3 mm compared to the Dmm,hy-dependent m–D relations derived for Dmm,hy <

2500 µm, but larger m than that using the m–D relations derived for Dmm,hy > 3 mm. Given that
the HY04 m–D relationship predicts particle masses larger than the other relationships when large
aggregates greater than 3 mm are abundant, it or any other constant m–D relationships is likely not
appropriate for use under such conditions.
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Figure 6. Single particle mass derived from different m–D relations. Colored solid lines are the single
particle masses derived from the best estimates of (a, b) in Figure 2 for different Dmm,hy ranges indicated
by the color bar.

The Dmm,hy has been used here as a surrogate for the actual value of median mass dimension Dmm.
The actual Dmm is dependent on the a and especially the b coefficient derived; the dependence of a and b
on this Dmm could thus be derived with an iterative approach. Figure 7 shows the relationship between
Dmm,hy and Dmm. The Dmm derived from random selected solutions within equally plausible surfaces
(Figure 2) are well correlated with Dmm,hy with a correlation coefficient 0.91 and mean difference
137.53 ± 455.30 µm. For the best estimates of (a, b), although the mean Dmm is 1.1 mm smaller than
Dmm,hy for Dmm,hy between 3–4.5 mm, there is still a significant linear correlation between Dmm and
Dmm,hy for all Dmm,hy ranges with a correlation coefficient 0.89. The sharp decrease of the best estimate
of b between 3 and 4.5 mm seen in Figure 2 is responsible for the Dmm being smaller than Dmm,hy in this
size range. As shown in Figure 1b, for Dmm,hy between 3 and 4.5 mm, the position of the minimum
χ2 is near the lower left, meaning the best a and b that minimize χ2 are both very small. These low
values of a, b and Dmm show why a single best estimate of (a, b) for characterizing the m–D relation is
inadequate: although the best estimate of a and b between 3 and 4.5 mm are inconsistent with values
in other size ranges, the (a, b) surface is consistent with the other surfaces showing the need for a
statistical approach.

Thus, it is seen that the dependence of a and b on Dmm,hy derived in this study is well representative
of how they vary with Dmm,hy. Therefore, Dmm,hy in this paper is regarded as an index describing the
ice particle size ranges responsible for masses. With the difficulties to identify every particle’s habit
in retrievals and simulations, Dmm is thus a better descriptor than temperature for constraining m–D
relationships. Dmm has its unique advantage in identifying periods when large aggregated particles
with maximum dimensions greater than 3 mm dominate. Multiple m–D relations should be applied
for different Dmm ranges so that the masses of large and less dense particles such as aggregates can be
better represented.
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4. Conclusions

The dependence of ice particle mass–dimensional relationships on median mass diameter (Dmm)
is illustrated using Finlon et al.’s [13] technique for characterizing (a, b) mass–dimensional (m–D)
coefficients as surfaces of equally plausible solutions. Using in situ observations of PSDs and coincident
radar reflectivity (Z) observations at 13 GHz collected during OLYMPEX, surfaces of equally plausible
(a, b) coefficients were derived by minimizing the chi-square difference between the observed Z and
those computed from the PSDs. All solutions within a predefined threshold were deemed equally
plausible. The 5928 5-s averaged data points with coincident radar and in situ measurements are sorted
into 12 different populations using the median mass diameter defined using Heymsfield et al.’s [5]
previously derived (a, b) coefficients (Dmm,hy) to explore this dependence.

A significant dependence of the m–D coefficients on Dmm,hy was established for ice-phase clouds.
Regardless of how the uncertainties from different sources are characterized and the choice of allowed
tolerance, the same clockwise shift of the equally plausible surfaces with increasing Dmm,hy is found,
indicating a robust dependence of m–D coefficients on Dmm,hy. Statistics of 300 random equally
plausible surfaces show significant negative correlation between Dmm,hy and the mean values of both a
and b solutions. The best estimates of (a, b) pairs that minimize the χ2 for each population are shown to
be smaller than the HY04 coefficients and produce smaller effective densities when Dmm,hy > 2500 µm.

Periods with large Dmm,hy between 3 and 6 mm are further discussed. The HY04 m–D relation
generally accurately estimates Z for Dmm,hy < 3 mm, but increasingly overestimates Z for Dmm,hy
between 3 and 6 mm. Extensive large aggregates ranging in size with D between 3 and 5 mm and up to
1 cm were observed by the HVPS at temperatures −15–0 ◦C during OLYMPEX. Previous m–D relations
designed for aggregates are also shown to produce less mass than HY04 m–D and those m–D relations
derived for Dmm,hy < 3 mm in this study. The use of Dmm,hy-dependent m–D parameters improves
agreement between the Z derived from PSDs and those bulk measurements.

Thus, the use of a constant m–D relationship is not able to explain particle mass when aggregates
greater than 3 mm dominate. Multiple m–D relations are recommended to apply for different Dmm

ranges. This could improve the retrievals of cloud bulk properties associated with hydrometer mass
in remote sensing retrieval algorithms and numerical models. Future studies should further explore
whether the same trends observed here also exist for clouds of different types and observed in different
geographical locations and meteorological regimes, and assess to what extent the Dmm-dependent m–D
relations improve the retrieval of cloud properties and the simulation of cloud processes.
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