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Abstract: The presence of an ancient, high-elevation pine forest in the Natural Park of Sierras de
Cazorla in southern Spain, including some trees reaching >700 years, stimulated efforts to develop
high-resolution temperature reconstructions in an otherwise drought-dominated region. Here, we present
a reconstruction of spring and fall temperature variability derived from black pine tree ring maximum
densities reaching back to 1350 Coefficient of Efficiency (CE). The reconstruction is accompanied by
large uncertainties resulting from low interseries correlations among the single trees and a limited
number of reliable instrumental stations in the study region. The reconstructed temperature history
reveals warm conditions during the early 16th and 19th centuries that were of similar magnitude to
the warm temperatures recorded since the late 20th century. A sharp transition from cold conditions
in the late 18th century (t1781–1810 = −1.15 ◦C ± 0.64 ◦C) to warm conditions in the early 19th century
(t1818–1847 = −0.06 ◦C ± 0.49 ◦C) is centered around the 1815 Tambora eruption (t1816 = −2.1 ◦C ± 0.55 ◦C).
The new reconstruction from southern Spain correlates significantly with high-resolution temperature
histories from the Pyrenees located ~600 km north of the Cazorla Natural Park, an association that is
temporally stable over the past 650 years (r1350–2005 > 0.3, p < 0.0001) and particularly strong in the
high-frequency domain (rHF > 0.4). Yet, only a few of the reconstructed cold extremes (1453, 1601, 1816)
coincide with large volcanic eruptions, suggesting that the severe cooling events in southern Spain are
controlled by internal dynamics rather than external (volcanic) forcing.

Keywords: maximum latewood density; climate reconstruction; dendrochronology; forest ecosystems;
climate change; Pinus nigra; Cazorla; Mediterranean

1. Introduction

The climate of the Iberian Peninsula is characterized by a sustained warming trend of >1.0 ◦C
since the late 20th century [1]. In southern Spain, this trend is accompanied by a precipitation decline
of ~50 mm since the 1960s [2], though these hydroclimatic changes are spatially and seasonally more
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variable, compared to temperature. The tendency towards an overall warmer and drier climate is
dynamically associated with a strengthening of the Azores High that has been projected to become even
more dominating throughout the 21st century [3]. Climate models also indicate increased frequencies
of extreme events, including persistent heatwaves but also severe flooding and drought, to occur over
the next 30–80 years in the western Mediterranean [4–6].

Placing these current and forthcoming dynamics into a longer-term context is challenging, as only
a few high-resolution reconstructions have been developed providing information on natural climate
variability and extremes on the Iberian Peninsula [7–9]. Documentary evidence on rogations [10–12]
and flood events [13–15] as well as larger tree-ring width (TRW) networks [16,17] have been used
to produce skillful reconstructions of hydroclimate variability over the past several hundred years.
Reconstructions of high-resolution temperature variability are less common and restricted to the
Pyrenees and Iberian Range in northern Spain, where networks of Pinus uncinata and Pinus sylvestris
sites have been established to estimate pre-instrumental temperature trends and extremes based on
measurements of tree-ring maximum densities (MXD) [18], TRW, and stable isotopes [7,19–23].

In southern Spain, the Cazorla Natural Park (CNP, Cazorla, Segura y las Villas Natural Park)
~150 km east of Murcia in the community of Andalusia, is the only location that has proven suitable for
the development of a longer-term temperature reconstruction (Figure 1). The CNP is the second largest
protected area in Europe and hosts some of the oldest trees in Spain, including several Pinus nigra
reaching ages >700 years [24–26]. TRW data from these trees have been used to develop a formal
reconstruction of late summer and fall temperature variability back to 1195 Coefficient of Efficiency
(CE) [27]. Further south, the next resource providing annually resolved climate estimates over the
past several hundred years, are the giant Cedrus atlantica from the Middle and High Atlas in Morocco
reaching ages >1000 years [28]. TRW, MXD, and stable isotope data from these trees all contain
hydroclimate signals [29,30], however, so that longer-term, high-resolution temperature estimates from
the south-western Mediterranean solely rely on data from the ancient Pinus nigra forests in the CNP.Atmosphere 2020, 11, x FOR PEER REVIEW 3 of 18 

 

 

Figure 1. Study site and climate. (a) Location of the Cazorla Natural Park (CNP) in southern Spain. 

Colors indicate mean summer temperatures exceeding 24 °C in yellow, 26 °C in orange, and 28 °C in 

red. (b) Climate diagram of the station located in the town of Cazorla ~10 km northeast but 1000 m 

below the black pine sampling site. (c) Photograph of the tree site in the CNP. 
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series sampled in 2015, produced in the laboratory in Mainz (Germany). The density profiles of these 

two campaigns have been developed using the same Walesch radiodensitometric setup [31–33], and 
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 Chronology variants 
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Mean series length 355 years 221 years 152 years 
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Interseries correlation 0.18 0.16 0.14 
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The combined MXD dataset covers the period from 1196–2014 CE and includes 18 series 

exceeding ages of 600 years (Figure 2a). The data contain an age trend composed of a notable ~0.2 

Figure 1. Study site and climate. (a) Location of the Cazorla Natural Park (CNP) in southern Spain.
Colors indicate mean summer temperatures exceeding 24 ◦C in yellow, 26 ◦C in orange, and 28 ◦C in
red. (b) Climate diagram of the station located in the town of Cazorla ~10 km northeast but 1000 m
below the black pine sampling site. (c) Photograph of the tree site in the CNP.

Here, we present a combined MXD data set from 51 high-elevation CNP black pines reaching back
to 1196 CE. We detail the age trend inherent to these data and develop several detrended chronologies
integrating differently old tree rings, so called age-band chronologies. The chronologies are calibrated
against instrumental temperature data with particular emphasis on the effects of representative climate
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stations (or lack thereof) on MXD signal estimation and reconstruction uncertainty. We finally present
a formal temperature reconstruction derived from Pinus nigra MXD data and compare this record with
existing records from CNP TRW and Pyrenees MXD data.

2. Materials and Methods

2.1. Tree-Ring Data and Detrending

Whereas most of the CNP is dominated by relatively young trees, there are a few high-elevation
sites towards the southern end of the park covered by an ancient Pinus nigra forest including several
individuals reaching ages >700 and even >800 years (Table 1). These sites have been subject to the
development of large tree-ring datasets, including several hundred TRW series [25], though only a
few MXD series have been produced so far [26]. Here, we combine the MXD series sampled in 2007,
produced in the tree-ring laboratory in Tharandt (Germany), with a larger compilation of the new
MXD series sampled in 2015, produced in the laboratory in Mainz (Germany). The density profiles of
these two campaigns have been developed using the same Walesch radiodensitometric setup [31–33],
and the site MXD chronologies share high fractions of common variance over the past 450 years
(r1557–2006 = 0.80), justifying the amalgamation of MXD data into one pool of 88 series from 51 trees
(see Supplementary Table S1 and Figures S1–S3).

Table 1. Cazorla Natural Park maximum densities (MXD) data and chronology characteristics. The last
line indicates the age range over which MXD age trends (second last line) were calculated.

CNP MXD Data

37◦48’ N, 2◦57’ W
1800–2000 m a.s.l.

1196–2014 CE
88 radii from 51 trees

Chronology variants
ALL ABC300 ABC200

Mean series length 355 years 221 years 152 years
Average MXD 0.84 g/cm3 0.85 g/cm3 0.86 g/cm3

Interseries correlation 0.18 0.16 0.14
Age trend per 100 years −0.033 g/cm3

−0.031 g/cm3
−0.046 g/cm3

Age range (years) 101–400 101–300 101–200

The combined MXD dataset covers the period from 1196–2014 CE and includes 18 series exceeding
ages of 600 years (Figure 2a). The data contain an age trend composed of a notable ~0.2 g/cm3 increase
over the first 90 years of cambial age, followed by a persistent, though much shallower, negative
trend over the subsequent 500 years (−0.12 g/cm3 from 100–500 years). This Hugershoff-shape [34]
age trend is characteristic for conifer MXD data [35,36] and represents noise from the perspective of
a climate reconstruction. This noise is here removed by applying Regional Curve Standardization
(RCS) to preserve high-to-low frequency variance in detrended index chronologies [37,38]. However,
successful RCS-detrending typically requires the application to combined datasets integrating series
from living and dead trees, so that younger and older tree-rings are spread throughout time, rather
than being concentrated at the beginning (young rings) and end (old rings) of a chronology [39].
To produce such chronology variants, characterized by flat instead of monotonically increasing mean
age curves, we removed all rings older than 300 (200) years from the MXD data and calculated 1–300
(1–200) year age-band chronologies, here labeled ABC300 and ABC200 [40]. The differentiation by
cambial age is illustrated in Figure 2, showing the replication and regional curves (RCs) of all MXD
data in gray, and the 1–200 and 201–300 sections in blue and black, respectively. Figure 3 illustrates the
effects of data truncation on the temporal distribution of MXD data throughout the past 800 years and
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demonstrates that any chronology derived from the 1–200 year age band data is weakly replicated in
the late 16th century, for instance (see the circle in Figure 3c).
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Figure 2. Replication and regional curves (RCs) of the combined Cazorla MXD data. (a) The number of
MXD series after aligning the data by cambial age. Rings younger than 200 years highlighted in blue,
from 200 to 300 years in black, and older than 300 years in gray. (b) The RCs of the three age bands.
Thick curves are 100-year low pass filters.Atmosphere 2020, 11, x FOR PEER REVIEW 5 of 18 
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Figure 3. Replication of the full and age-band MXD datasets. (a) Bar plot of all MXD measurement
series from the Cazorla Natural Park. Each horizontal bar represents one series. Bar plots (b,c) are the
same as in (a) but for the 1–300 (black) and 1–200 age band chronologies (blue), respectively.

The ALL, 1–300 and 1–200 year datasets were RCS-detrended by calculating ratios between the
single MXD series and the smoothed mean of the age-aligned data, the so-called regional curves
(RCs, shown in Figure 2b). The resulting index values were averaged using the arithmetic mean,
and uncertainties estimated by calculating 95% bootstrap confidence limits derived from re-sampling
and averaging the detrended MXD data with replacement 1000 times [37]. Mean tree age and segment
length curves, as well as running inter-series correlations (Rbar) [41] and the Expressed Population
Signal (EPS) [42] were calculated for each of the chronology, ALL, ABC300, and ABC200, to illustrate
temporal changes in the structure and coherency of the underlying data over the past 700 years.
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2.2. Climate Data, Calibration and Transfer

The ALL, ABC300 and ABC200 chronologies were calibrated against gridded monthly temperatures
(CRU TS4.03) using the KNMI Explorer [43] to assess the seasonality and spatial extent of MXD climate
signals. Station temperature records from five locations in the vicinity of the proxy site were used to
evaluate the temporal robustness of climate signals as well as the fidelity of the observational data to
represent the conditions at the high elevation CNP tree site. The station records are located in distances
between 10 km (Cazorla) and 165 km (Murcia) from the MXD site, cover varying periods between
1905–2014 CE, and contain changing numbers of missing values ranging from 3% in Murcia to 24%
in Jaen (Table 2). Four of the station records (Jaen, Ciudad Real, Albacete, Murcia) are used in the
gridded temperature products (CRU TS4.03), whereas the station closest to the tree site (Cazorla) is not
included in the international climate databases [1,44,45].

Table 2. Temperature stations in the surroundings of the CNP. Last two columns show the average
correlations with all other stations, and with the ABC300 chronology using February–May and
September–October (FMAM&SO) temperature means.

Inhabitants Distance to Tree Site Period Missing Values Correlation

horizontal vertical with stations with ABC300

Cazorla 7000 10 km 1100 m 1911–2012 39 (3%) 0.49 0.32
Jaen* 113,000 75 km 1350 m 1922–2014 263 (24%) 0.57 0.44

Ciudad Real 75,000 145 km 1270 m 1905–2014 55 (4%) 0.66 0.46
Albacete* 173,000 150 km 1210 m 1905–2014 108 (8%) 0.71 0.43
Murcia* 453,000 165 km 1830 m 1905–2014 33 (3%) 0.66 0.40

* Combined record of two stations within one city.

The MXD chronologies were compared with the instrumental temperatures using the Pearson
correlation coefficient calculated over a longer 1905–2014 period as well as over a shorter, but observationally
better replicated, 1961–2014 period. Thirty-year running correlations were applied to emphasize temporal
changes in signal strength throughout the 20th and early 21st centuries. In addition, we assessed the
covariance of monthly and seasonal temperatures among the station records and evaluated the effects of
deviating cold periods and extreme years on proxy data calibration.

The ABC300 chronology was finally transferred into estimates February–May and September–October
(FMAM&SO) temperatures by scaling the MXD mean and variance against the mean of the five station
records over the 1905–2014 period. The skill of the reconstruction was estimated considering the Reduction
of Error (RE) and Coefficient of Efficiency (CE) statistics calculated over an early 1905–59 (55 years) and
late 1960–2014 (55 years) calibration/verification period, after regressing the ABC300 chronology against
the instrumental data [46]. The Durbin–Watson statistic (DW) was calculated to evaluate autocorrelation
in the residuals between the instrumental temperatures and regressed MXD chronology [47]. Temporally
changing uncertainties of the reconstruction were estimated using the 95% bootstrap confidence limits of
the ABC300 chronology, after smoothing these estimates using a 30-year low-pass filter, to emphasize
long-term confidence changes over the 1350–2014 reconstruction period. The coldest and warmest
reconstructed 30-year periods, before and after 1700 CE, as well as the ten coldest and ten warmest years
since the mid-14th century were highlighted for further discussion.

The FMAM&SO temperature reconstruction was compared with annually resolved temperature
histories from a MXD network in the Pyrenees, located ~600 km north of the CNP [19], as well as a
previous-year September–October temperature reconstruction derived from TRW data of the CNP
black pines [27]. These comparisons were conducted using the original as well as high-pass filtered
versions of the reconstructions to evaluate covariance in the high-to-low frequency domains. Particular
attention is paid to the reconstructed cold extremes, their coherency between southern (CNP) and
northern Spain (Pyrenees), and the potential underlying forcing that exist as a result of large volcanic
eruptions since 1350 CE [48–52].



Atmosphere 2020, 11, 748 6 of 17

3. Results and Discussion

3.1. Cazorla MXD Chronologies and Effects of Data Truncation

The RCS-detrended chronologies (ALL, ABC300, ABC200) share high fractions of high-to-low
frequency variance, but also include substantial trend differences, e.g., since the mid-20th century, during
the mid-19th century, and the mid-16th century (Figure 4a, Supplementary Figure S4). The original
and 30-year low-pass filtered chronologies correlate at rOrig = 0.89 and rLF = 0.81 since 1300 CE,
respectively, indicating that the truncation of tree-rings older than 300 and 200 years had a stronger
effect on the low frequency variance. Over the most recent ~70 years, the smoothed ABC200 chronology
deviates substantially from the two other chronologies, including highest values in 2014. The ALL
chronology, instead, shows a decline since the 1980s, whereas the ABC300 chronology remains
in-between, i.e., shows high values in the 1980s but also a (minor) increase during the most recent years.
Similar inter-chronology deviations are seen in the early and mid-19th century including high ABC200
and low ALL values, and the mid and late 16th century including low ABC200 and high ALL values.
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Figure 4. Cazorla MXD chronologies and characteristics. (a) Thirty-year smoothed Regional Curve
Standardization (RCS) chronologies of the full MXD data (gray), the 1–300 age band data (black),
and the 1–200 age band data (blue), shown together with their replication (b) and mean age curves (c).
See Supplementary Figure S4 for the original (non-smoothed) chronologies and mean segment
length curves.

The effects of data truncation are obvious in the chronology replication and mean age curves
showing increasing inter-chronology differences towards present (Figure 4b,c). The sharp negative
deviation of the ABC200 chronology in the mid-16th century occurs during a period of minimum
replication (n1551–1560 ≤ 8 MXD series), indicating that this low frequency departure is potentially
less reliable, compared to the better-replicated chronologies (nABC300 ≤ 17 and nALL ≤ 22 series).
On the other hand, the truncation of rings older than 200 years in the ABC200 chronology, produced
an almost horizontal mean age curve, revealing that the age-structure of this dataset is most suitable
for the application of RCS detrending [38,39,53].

The ABC300 chronology is also derived from a relatively even-aged dataset characterized by an
age range of only 103 years between the 1360s and 1540s (age1351–60 = 61 years, age1541–50 = 164 years).
In comparison, the monotonically increasing mean age curve of the ALL chronology, from 60 to
331 years (see Supplementary Figure S4b for the segment length curves) biases the RCS detrending and
produces an artificial shift towards the long-term mean, due to the dominance of old tree-rings from
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recent calendar years in the biologically old sections of the RC (the gray curve in Figure 2b; details
in [38,54,55]). Mitigating this bias motivated the development of age-band detrending, a technique
that was successfully applied to a large data set of Northern Hemisphere MXD sites [40].

The removal of data older than 300 and 200 years produced chronologies that are likely more
reliable over the most recent centuries, during which the ALL chronology is characterized by a
monotonic age increase. During earlier chronology periods, particularly before 1650 CE in ABC200,
the data truncation likely weakened the age-band chronologies, as the already reduced replication of
the ALL chronology is further lowered by removing old rings. Before 1500 CE, however, these effects
become negligible, as the ALL chronology is composed of only a few young rings, i.e., no additional
rings were removed in the ABC300 and ABC200 chronologies.

3.2. MXD Climate Signals and Uncertainties

The seasonality of MXD temperature signals is bimodal, including significant fields in February–March,
May, and September–October surrounding the CNP (Figure 5). February and September temperatures
are most influential, particularly when focusing on the shorter, and observationally better replicated
1961–2014 period, during which correlations near the CNP tree site exceed r = 0.5 (Supplementary Figure S5).
The bimodal nature of the signal, comprising a lack of forcing during the warm June–August summer
months, is similar to the climate sensitivity reported from high-elevation Pinus uncinate MXD data in the
Spanish Pyrenees [19]. The underlying physiological mechanisms are likely related to the insensitivity
of cell wall formation to summer warmth, when temperatures do not fall below thresholds relevant to
carbohydrate production and mobilization in high elevation black pines (see [19] for a detailed discussion).

Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 18 

 

warm June–August summer months, is similar to the climate sensitivity reported from high-elevation 

Pinus uncinate MXD data in the Spanish Pyrenees [19]. The underlying physiological mechanisms are 

likely related to the insensitivity of cell wall formation to summer warmth, when temperatures do 

not fall below thresholds relevant to carbohydrate production and mobilization in high elevation 

black pines (see [19] for a detailed discussion). 

 

Figure 5. Correlation fields. Maps showing the spatial correlation patterns of the ABC300 chronology 

against gridded monthly temperatures (CRU TS4.03) from 1905–2014. Colored areas are significant at 

p < 0.1. 

The bimodal response characteristic for CNP (and Pyrenees) MXD data is unique if compared 

with other long MXD chronologies from cold environments in the Mediterranean, central and 

northern Europe, which are all unimodal, i.e., show a maxima during summer months [39,56–58]. For 

instance, the millennium-length MXD chronologies from Greece [59], the Swiss Alps [60], and 

Fennoscandia [35,37,61] correlate best with July–September, June–September and June–August 

temperatures, respectively. The CNP MXD data, at the southern end of such a European transect, 

thereby reinforces a fading importance of the conditions during the warmest summer months, a 

tendency already demonstrated in the Pinus uncinata MXD data from the Spanish Pyrenees [19]. 

Besides the shift in seasonality towards bimodal, the correlations are also lower compared to the 

MXD counterparts from the Pyrenees (r = 0.72) and Greece (r = 0.73), but also the Alps (r = 0.69) and 

northern Europe (r = 0.77). The CNP black pine correlations against varying seasonal targets, 

including FMAM&SO, hardly exceed r = 0.4 over the 1905–2014 period (Figure 6). The values increase 

over the shorter 1961–2014 period, though only the trials against the shorter February plus September 

(F&S), February–March plus September (FM&S), and February–March plus September–October 

(FM&SO) seasons benefit from constraining the calibration period to the most recent, and 

instrumentally best-replicated, decades (the blue, orange and gray bars in Figure 6a). On the other 

hand, the longer FMAM&S and FMAM&SO seasons correlate better, if both the instrumental and 

proxy data were filtered to emphasize high frequency variability in the timeseries. 

Figure 5. Correlation fields. Maps showing the spatial correlation patterns of the ABC300 chronology
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The bimodal response characteristic for CNP (and Pyrenees) MXD data is unique if compared
with other long MXD chronologies from cold environments in the Mediterranean, central and
northern Europe, which are all unimodal, i.e., show a maxima during summer months [39,56–58].
For instance, the millennium-length MXD chronologies from Greece [59], the Swiss Alps [60],
and Fennoscandia [35,37,61] correlate best with July–September, June–September and June–August
temperatures, respectively. The CNP MXD data, at the southern end of such a European transect, thereby
reinforces a fading importance of the conditions during the warmest summer months, a tendency already
demonstrated in the Pinus uncinata MXD data from the Spanish Pyrenees [19].

Besides the shift in seasonality towards bimodal, the correlations are also lower compared to the
MXD counterparts from the Pyrenees (r = 0.72) and Greece (r = 0.73), but also the Alps (r = 0.69) and
northern Europe (r = 0.77). The CNP black pine correlations against varying seasonal targets, including
FMAM&SO, hardly exceed r = 0.4 over the 1905–2014 period (Figure 6). The values increase over the
shorter 1961–2014 period, though only the trials against the shorter February plus September (F&S),
February–March plus September (FM&S), and February–March plus September–October (FM&SO)
seasons benefit from constraining the calibration period to the most recent, and instrumentally
best-replicated, decades (the blue, orange and gray bars in Figure 6a). On the other hand, the longer
FMAM&S and FMAM&SO seasons correlate better, if both the instrumental and proxy data were
filtered to emphasize high frequency variability in the timeseries.
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Figure 6. Temperature signal estimation. (a) Correlations of the ALL, ABC300 and ABC200 chronologies
against seasonal temperatures (F&S, FM&S, FM&SO, FMAM&S, FMAM&SO) over the 1905–2014
period (left panel), 1961–2014 period (middle panel), and 1905–2014 period after high-pass filtering the
data (right panel). (b) The ABC300 chronology in black shown together with five seasonal temperature
records. The MXD chronology was scaled to the mean and variance of the FMAM&SO temperatures
from 1905–2014. (c) Thirty-year running correlations between the seasonal temperatures and the
ABC300 chronology from 1905–2014.

Beyond these seasonal and frequency-dependent changes, the different chronologies—ALL,
ABC300 and ABC200—all produce similar results, i.e., the calibration differences are statistically
insignificant (not shown). Likely more important are the temporal changes in signal strength,
as revealed by the running window correlations, demonstrating substantially higher proxy-target
covariances since the 1980s for the shorter F&S, FM&S, and FM&SO seasons (the blue, orange and gray
curves in Figure 6c). On the contrary, the longer FMAM&S and FMAM&SO seasons correlate better
during the early period of overlap with instrumental data, whereas the shorter season correlations
decline before the 1960s. Such early-calibration-period decreases are fairly common [62] and are
typically related to increased observational temperature uncertainties due to changes in instrumentation,
data gaps, station relocations, etc. [44,63–71]. The recent, post-1980 correlation decline, seen in the
longer seasonal means (FMAM&S and FMAM&SO), is more relevant, however, and deserves further
attention before producing a formal temperature reconstruction based on the CNP MXD data.

3.3. Outlier Effects on Proxy Calibration

Considering the transferred ABC300 chronology, the fit with post-1960 FMAM&SO temperatures
is characterized by (i) an offset during the 1970s and early 1980s, and (ii) two negative extremes in
1999 (−2.60 ◦C) and 2005 (−2.55 ◦C) that are not reflected in the observational data (Figure 7). During
the 1970s, the average reconstructed temperature is ~1 ◦C warmer than the average instrumental
temperature (see the horizontal bars in Figure 7a), marking a substantial decadal scale proxy-target
difference and questioning the reliability reconstructed temperatures at this frequency. However,
this offset is substantiated by markedly cooler temperatures recorded at the Cazorla temperature station
(dark green in Figure 7b, t1971–80 = −3.19 ◦C), compared to the other stations records from Jaen, Ciudad
Real, Albacete, and Murcia (t1971–80 = −0.93 ◦C). Of the five records compared here, Cazorla is the
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only station not included in the Global Historical Climatological Network (GHCN) [72], which could
serve as an argument to exclude these data from calibration trials. On the other hand, Cazorla is the
closest, and is therefore likely the most representative station for the calibration of high-elevation CNP
MXD data (Table 2), which again supports its use. An assessment of the underlying reasons of the
deviating 1970s temperatures, be it changes in the station’s environment and instrumentation or (real)
spatial variability, would require studying the station history and metadata, and monitoring current
temperatures at historical sites [66,67], which is beyond the scope of this paper. From a tree-ring
perspective, the 1970s proxy-target difference reported here adds uncertainty to any reconstructed
lower frequency deviation derived from the CNP MXD data.
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Figure 7. Post-1960 recorded and estimated temperatures. (a) Mean February–May and September–October
(FMAM&SO) temperatures from five instrumental stations in Albacete, Cazorla, Ciudad Real,
Jaen, and Murcia (green curve). The black curve is the ABC300 chronology scaled to the temperature
timeseries from 1905–2014. Horizontal bars indicate the mean temperatures from 1971–80. Circles indicate
the temperatures in the (proxy) extreme years 1999 and 2005. (b) The FMAM&SO temperature records
form Cazorla (dark green) and the four other stations (light green) since 1960. Note the gaps in the station
records, e.g., before 1968 in Jaen. Horizontal bars as in (a).

The two extremely negative deviations in 1999 and 2005 in the transferred ABC300 chronology are
reflected in the shorter season (F&S, FM&S, FM&SO) temperature data, but disappear when including
April and May in the seasonal means (the yellow and green curves in Figure 8a). The absent cooling in
the longer seasons (FMAM&S, FMAM&SO) impacts the running correlations, and the removal of the
1999 and 2005 data from these calculations mitigates the correlation gap after 1990 and entirely closes it
between 1985 and 1990 (Figure 8b,c). We do not propose that such data removal should be considered
for the calibration and transfer of the CNP proxy data, but intend to emphasize the causes of the post
1980 correlation decline when considering the longer season FMAM&S and FMAM&SO temperature
data for calibration. The temporal variability of proxy-target correlations, composed of (i) a pre-1960
decline in the shorter season means and (ii) a post-1980 decline in the longer season means, translates
into large uncertainties when transferring the CNP MXD data into temperature estimates. In addition,
it is not feasible to statistically validate the seasonality of such a reconstruction based on the calibration
against heterogeneous instrumental temperatures. However, since the overall highest correlations were
recorded using the ABC300 chronology and FMAM&SO season over the long 1905–2014 calibration
period (Figure 6), and since the other chronologies either do not meet RCS-detrending requirements
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(ALL) or suffer from low sample replications (ABC200; Figure 4), we opt for this combination (ABC300
and FMAM&SO) when producing a formal reconstruction.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 18 
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Figure 8. Effects of non-coherent extremes. (a) The scaled ABC300 chronology (black curve) shown
together with the seasonal temperature means of five regional stations (colored curves). (b) Thirty-year
running correlations between the ABC300 chronology and seasonal temperatures. (c) Same as in (b),
but without the 1999 and 2005 instrumental and proxy data.

3.4. Temperature Reconstruction and Benchmarking

Given the overall weak interseries correlation among the MXD data, and the caveats of signal
estimation against heterogenous regional climate data, one could argue that a proxy transfer
into temperature estimates and publication of a formal reconstruction is not fully warranted.
On the other hand, the CNP is perhaps the only location in southern Spain providing annually
resolved estimates of temperature variability over the past several centuries. It therefore appeared
reasonable to scale the dimensionless MXD index values against instrumental data [73] and produce a
reconstruction of FMAM&SO temperature variability reaching back to 1350 CE, though we remind
users of this reconstruction to consider the limitations und uncertainties detailed in the previous section.
The ABC300 chronology correlates at r = 0.49 over the long 1905–2014 calibration period against
mean FMAM&SO temperatures of five instrumental stations. Positive RE and CE values ranging
from 0.18–0.39 and 0.15–0.29, respectively, indicate that the reconstruction has some statistical skill.
This conclusion is supported by a high Durbin–Watson value of 1.4, indicating that the proxy-target
residuals contain no substantial drift throughout the calibration period.

The FMAM&SO temperature reconstruction reveals warm conditions during the early 19th,
early 17th, and 16th centuries that were of similar magnitude than warmth recorded since the second
half of the 20th century (Figure 9). The 95% bootstrap confidence limits demonstrate that none of these
periods is significantly warmer than any other period, however, and it also remains unclear whether
the reconstruction presented here captures the full spectrum of low frequency variance. The latter
is concluded because the original CNP MXD data is composed of samples from only living trees,
and we here “just” truncated the biologically older rings >300 years to produce a dataset characterized
by relatively flat mean age and segment length curves (Figure 4, Supplementary Figure S4) to meet
requirements for RCS detrending [38]. The data truncation reduced the replication of the ABC300
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chronology particularly after 1600 CE, but also the early chronology periods before 1584 CE are
replicated by fewer than 20 MXD series. These values are overall not impressive if compared with the
worldwide best-replicated MXD-based reconstruction from the Spanish Pyrenees integrating >100
MXD series throughout the 16th century [19].Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 18 

 

 

Figure 9. Cazorla temperature reconstruction and extremes back to 1350 Coefficient of Efficiency (CE). 

(a) The ABC300 MXD chronology (black) scaled over the 1905–2014 period against regional 

FMAM&SO temperatures (green) shown together with the 30-year smoothed 95% bootstrap 

confidence limits (red). (b) The same reconstruction with the 10 coldest and warmest years 

highlighted in blue and red, and the coldest and warmest 30-year periods before and after 1700 CE 

(blue and red horizontal lines). 

The most striking, and statistically significant feature is the ~1 °C change from exceptionally cold 

late-18th-century conditions (t1781–1810 = −1.15 °C ± 0.64 °C) to record levels of warmth in the early 19th 

century (t1781–1810 = −1.15 °C ± 0.64 °C). This rapid temperature increase is centered around the Tambora 

eruption in 1815 that is marked by cold FMAM&SO temperatures in the 1816 “year without a 

summer” [74] (t1816 = −2.1 °C ± 0.55 °C, the 14th coldest year since 1350 CE). Whether this change from 

colder to warmer conditions is related to external climate forcings could perhaps be evaluated by 

comparison with climate model simulations [75]. The rapid transition from low-to-high temperatures 

throughout the Dalton Solar Minimum from 1790–1830 [76] suggests, however, that this lower 

frequency temperature change is not related to solar forcing. Before this period, and particularly 

before 1600 CE, the bootstrap confidence limits (red curves in Figure 9) markedly increase, 

demonstrating that the FMAM&SO temperature estimates are less reliable back in time 

(Supplementary Figure S7). 

As with the early 19th century temperature shift, the annual cold extremes reconstructed over 

the past 650 years (blue dots in Figure 9) appear to be only partly related to external climate forcings, 

as only two large volcanic eruptions in 1600 (Huaynaputina in Peru) and 1452 (unknown) [77], 

recorded in bipolar ice core records [51], coincide with substantial cooling in subsequent years: t1601 = 

−2.4 °C ± 0.74 °C is seventh coldest year and t1453 = −1.8 °C ± 1.32 °C is the tenth coldest year since 1350 

CE (ranks after high-pass filtering the data). Interestingly, the cold extremes are fairly evenly 

distributed throughout the past 650 years, whereas several of the warm extremes are clustered 

between the late 15th and early 16th centuries. This concentration of warm events is linked to an 

increase in interseries correlation (Rbar, Supplementary Figure S7a) enhancing the high-frequency 

variability of the mean chronologies during this period. We did not remove this variance surplus 

using adjustment techniques [78], as it appeared unrelated to structural changes in the underlying 

data. This variance could reflect a period during which the climate was potentially more variable. The 

underlying forcing for this high-variance period in the CNP reconstruction remains unknown, however. 

Comparison of the CNP MXD record with warm season temperature reconstructions from a 

MXD network in the Spanish Pyrenees [7,16,19,20] and a previous-year September–October 

temperature reconstruction from CNP TRW data [27] reveals substantial covariances over the past 

650 years (Figure 10). The correlations against the Pyrenees data, from sites located ~600 km north of 

Figure 9. Cazorla temperature reconstruction and extremes back to 1350 Coefficient of Efficiency (CE).
(a) The ABC300 MXD chronology (black) scaled over the 1905–2014 period against regional FMAM&SO
temperatures (green) shown together with the 30-year smoothed 95% bootstrap confidence limits (red).
(b) The same reconstruction with the 10 coldest and warmest years highlighted in blue and red, and the
coldest and warmest 30-year periods before and after 1700 CE (blue and red horizontal lines).

The most striking, and statistically significant feature is the ~1 ◦C change from exceptionally cold
late-18th-century conditions (t1781–1810 = −1.15 ◦C ± 0.64 ◦C) to record levels of warmth in the early
19th century (t1781–1810 = −1.15 ◦C ± 0.64 ◦C). This rapid temperature increase is centered around the
Tambora eruption in 1815 that is marked by cold FMAM&SO temperatures in the 1816 “year without a
summer” [74] (t1816 = −2.1 ◦C ± 0.55 ◦C, the 14th coldest year since 1350 CE). Whether this change
from colder to warmer conditions is related to external climate forcings could perhaps be evaluated by
comparison with climate model simulations [75]. The rapid transition from low-to-high temperatures
throughout the Dalton Solar Minimum from 1790–1830 [76] suggests, however, that this lower frequency
temperature change is not related to solar forcing. Before this period, and particularly before 1600 CE,
the bootstrap confidence limits (red curves in Figure 9) markedly increase, demonstrating that the
FMAM&SO temperature estimates are less reliable back in time (Supplementary Figure S7).

As with the early 19th century temperature shift, the annual cold extremes reconstructed over
the past 650 years (blue dots in Figure 9) appear to be only partly related to external climate forcings,
as only two large volcanic eruptions in 1600 (Huaynaputina in Peru) and 1452 (unknown) [77],
recorded in bipolar ice core records [51], coincide with substantial cooling in subsequent years:
t1601 = −2.4 ◦C ± 0.74 ◦C is seventh coldest year and t1453 = −1.8 ◦C ± 1.32 ◦C is the tenth coldest year
since 1350 CE (ranks after high-pass filtering the data). Interestingly, the cold extremes are fairly evenly
distributed throughout the past 650 years, whereas several of the warm extremes are clustered between
the late 15th and early 16th centuries. This concentration of warm events is linked to an increase in
interseries correlation (Rbar, Supplementary Figure S7a) enhancing the high-frequency variability of
the mean chronologies during this period. We did not remove this variance surplus using adjustment
techniques [78], as it appeared unrelated to structural changes in the underlying data. This variance
could reflect a period during which the climate was potentially more variable. The underlying forcing
for this high-variance period in the CNP reconstruction remains unknown, however.
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Comparison of the CNP MXD record with warm season temperature reconstructions from a MXD
network in the Spanish Pyrenees [7,16,19,20] and a previous-year September–October temperature
reconstruction from CNP TRW data [27] reveals substantial covariances over the past 650 years
(Figure 10). The correlations against the Pyrenees data, from sites located ~600 km north of the CNP,
are all significant (p < 0.01) and increase when removing lower frequency variance from the timeseries
using 10-year spline filters (the right panel in Figure 10a). The values are statistically indistinguishable
among the four Pyrenees records and slightly increase from a minimum of r = 0.41 calculated over
the full 1350–2005 period of overlap to a maximum of r = 0.46 calculated of the most recent period
since 1901. Similarly, the correlations with the (reversed) CNP TRW-based reconstruction also increase
towards present, though the change is much larger reaching from r1350–2005 = 0.39 to r1901–2005 = 0.66.
Whereas the covariance between the CNP and Pyrenees MXD records declines when low-pass filtering
the data (not shown), the CNP MXD and TRW records also correlate significantly at r1350–2005 = 0.45
after smoothing the timeseries (Figure 10b). Note, however, that the TRW-based reconstruction was
reversed and shifted by one year in these comparisons, as the correlations were otherwise close to zero
(r < 0.1).
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Figure 10. Comparison with existing reconstructions. (a) Pearson correlations of the ABC300
temperature reconstruction with warm season temperature reconstructions from the Pyrenees
(Bün08, Bün10, Bün17, Dor12) and a previous-year late summer temperature reconstruction from
CNP tree-ring width (TRW) data (Dor15). The Dor15 record has been reversed and shifted by one
year (see Methods). The left panel shows the results for the original reconstructions, right panel
after 10-year high-pass filtering the timeseries. (b) The 10-year smoothed ABC300 reconstruction
plotted together with the (reversed) Dor15 reconstruction since 1350 CE.

Whereas the high covariance of the CNP FMAM&SO temperature reconstruction with the highly
replicated MXD network from the Pyrenees is reconfirming that the reconstruction presented here
contains useful climatic information (albeit the large uncertainty limits), the lacking coherence with the
original TRW-based reconstruction from CNP Pinus nigra requires further explanation. After reversing
the TRW-based reconstruction, we effectively demonstrate that MXD and TRW data from the same
CNP pine forest correlate substantially. The correlation increases towards the present, likely affected by
the replication changes of the underlying TRW and MXD data. This temporal change in co-variance is
much smaller, however, when comparing the MXD-based reconstructions from the CNP and Pyrenees,
suggesting a stronger temporal weakening of the signal in TRW. The lacking correlation between
the MXD-based and original (non-reversed and shifted) TRW-based CNP reconstructions is in line
with expectations based on the correlation of instrumental previous-year late summer temperatures
(targeted by the TRW reconstruction) and current-year FMAM&SO temperatures (targeted by the
MXD reconstruction), which are also insignificant. Disentangling this complicated association
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between previous-year and current-year climate signals recorded in CNP TRW and MXD data appears
challenging, and we are currently in the process of developing a large earlywood/latewood width
dataset from hundreds of the CNP black pines to address this conundrum.

4. Conclusions

Ancient black pine trees from the Cazorla Natural Park (CNP) in southern Spain were used to
develop one of the worldwide southernmost MXD-based temperature reconstructions produced so far.
The underlying measurement series of this reconstruction were truncated at a biological age >300 years
to support the application of a detrending method (RCS) capable of preserving low-frequency variability
in the resulting index chronology. The reconstruction derived from this chronology is accompanied by
large uncertainties arising from (i) relatively feeble calibration statistics (e.g., 25% explained FMAM&SO
temperature variance), and (ii) a decline in sampled replication from >35 series in the 20th century to
<18 series before 1500 CE. Additional assessments of the instrumental station records in the study region
showed, however, that the calibration statistics were not only controlled by uncertainties inherent
to the tree-ring proxy, but that the long distances of reliable instrumental data and inhomogeneities
among these timeseries additionally affect the reconstruction skill estimates.

The final FMAM&SO temperature reconstruction shows relatively limited centennial scale
variability, such as a prolonged Little Ice Age and transition into warmer 20th-century conditions,
as reported from sites in central and northern Europe [35,59,60]. Instead, the most striking feature
is a rapid warming trend from the late 18th to the early 19th century, subsequent to a gradual
cooling trend throughout much of the 17th and 18th centuries. The influence of external (solar and
volcanic) climate forcings appears to be of minor importance, as the high-to-low frequency variance
of the new reconstruction does not cohere particularly well with prominent solar minima and large
volcanic eruptions over the past 650 years. The MXD-based temperature reconstruction from the
CNP represents a new benchmark for high-resolution, pre-instrumental climate variability in the
southwestern Mediterranean region, though users of this record are reminded of the large uncertainties,
particularly before 1600 CE.
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interseries correlations, Expressed Population Signals, and correlation pairs.
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