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Abstract: The size distribution of volcanic ash is rarely measured in real time and Volcanic Ash
Advisory Centres (VAACs) often rely on a default particle size distribution (PSD) to initialise their
dispersion models when forecasting the movement of ash clouds. We conducted a sensitivity study
to investigate the impact of PSD on model output and consider how best to apply default PSDs in
operational dispersion modelling. Compiled grain size data confirm that, when considering particles
likely to be in the distal ash cloud (<125 µm diameter), magma composition and eruption size are the
dominant controls on grain size distribution. Constraining the PSD is challenging but we find that the
grain size of deposits from large hydromagmatic eruptions remains relatively constant with distance,
suggesting that total (whole-deposit) grain size distributions (TGSDs) for these eruptions could be
estimated from a few samples. We investigated the sensitivity of modelled ash mass loadings (in the
air and on the ground) to input PSDs based on coarse to fine TGSDs from our dataset. We found clear
differences between modelled mass loadings and the extent of the plume. Comparing TGSDs based
on ground-only and ground-plus-satellite data for the Eyjafjallajökull 2010 eruption, we found that
basing input PSDs on TGSDs from deposits alone (likely missing the finest particles) led to lower
modelled peak ash concentrations and a smaller plume.
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1. Introduction

Ash clouds from explosive volcanic eruptions can travel huge distances and cause severe disruption
to air traffic (e.g., [1]). To mitigate against aircraft encounters with ash clouds, Volcanic Ash Advisory
Centres (VAACs) issue Volcanic Ash Advisories (VAAs) and Volcanic Ash Graphics (VAGs) which
indicate the expected location of the ash cloud up to 18 h ahead. In Europe, there is an additional
requirement to provide forecasts of ash concentrations [2]. As part of their forecasting process, the VAACs
use atmospheric dispersion models to simulate the transport, dispersion and removal of ash from the
atmosphere [3–5]. Where ash falls as individual particles, residence time in the atmosphere is controlled
by particle parameters (grain size, density and shape), vertical advection and turbulence. Grain size
is typically the dominant particle parameter in controlling the ash settling velocity and whether the
ash residence time is significantly affected by turbulence [6–10]. It is, therefore, important to select an
appropriate particle size distribution (PSD) to initialise model runs, but data on the size distribution
of ash are rarely available in near real time and so most VAACs use default PSDs (e.g., [3,11,12]).

Atmosphere 2020, 11, 567; doi:10.3390/atmos11060567 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-7659-7769
https://orcid.org/0000-0001-9033-3930
http://dx.doi.org/10.3390/atmos11060567
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/6/567?type=check_update&version=2


Atmosphere 2020, 11, 567 2 of 25

In addition, many assume that only the smallest particles survive near-source removal processes,
i.e., they only consider particles with diameters, e.g., ~<100 µm (e.g., [3,4]). All of the ash in the air
eventually falls to the ground and previous studies of the deposits show that grain size distribution
varies greatly between eruptions, reflecting eruption intensity, magma composition and whether
the eruption is wet or dry (hydromagmatic or magmatic) (e.g., [13,14]). It is still not clear how best
to set a default PSD when measurements are not available. In this study, we test the sensitivity of
modelled ash plumes to the input PSD and investigate how best to apply default PSDs in operational
dispersion modelling.

The PSD of volcanic ash can be determined using a variety of methods but each approach has
its limitations. The ash cloud can be directly sampled with research aircraft, but sampling is usually
restricted to relatively dilute portions of the cloud over short periods (e.g., [15–18]). Remote sensing can
provide data on plume evolution, but standard retrieval techniques are only sensitive to particles up to
~32µm diameter (e.g., [19,20]). As the PSD of ash in the air is reflected in the PSDs of deposits at different
distances from the source, ground sampling is also a useful technique. The total grain size distribution
(TGSD) of the deposit can be determined from multiple samples (e.g., [21,22]), but compilation of a
reliable TGSD requires well-preserved deposits and spatially extensive sampling, particularly when
the range of grain sizes is large [23–25]. Sampling the whole extent of a deposit can be difficult because,
in the short term, there can be safety concerns in very proximal areas, whereas over time, preservation
will deteriorate in distal areas. In any case, deposit TGSDs do not include the most distal material that
is inaccessible (e.g., in the sea) or too thin and fine-grained to be visible (e.g., [26]). It is traditional
to use the term total grain size distribution (TGSD) when referring to the size distribution of grains
of an entire volcanic deposit and to use particle size distribution (PSD) for dispersion model inputs.
Of course an ash grain is a type of particle but we have kept the distinction in this paper to make clear
whether we are referring to model inputs (PSD) or deposit data (TGSD); in particular, we use deposit
TGSDs as the basis for model input PSDs.

We collate TGSDs from the literature and investigate dispersion model sensitivity to input grain
size distribution, considering both hydromagmatic and magmatic eruptions. We use the fine fraction
of TGSDs (<125 µm diameter) to initialise our model, as these particles travel the furthest and are
therefore the most important for modelling the long-range transport of volcanic ash. Deposit TGSDs
are determined after an eruption has ended (unlike direct sampling in the air and remote sensing) and
they can therefore be used to investigate ash emissions from past eruptions. Importantly, deposits
provide information on grain size and transport of ash from eruptions from potentially active volcanoes
that have not erupted historically and eruptions of higher intensity and magnitude than have occurred
since satellite remote sensing of ash was possible.

Unlike magmatic eruptions, where the grain size becomes more fine-grained with increasing
distance from the vent (reflecting sorting by particle terminal velocity until the ash is sufficiently fine
that turbulence dominates), when water interacts with magma (hydromagmatic conditions), grain size
in the deposit is often relatively constant with distance [14]. This raises the possibility that TGSDs for
hydromagmatic eruptions could be constructed from a limited set of samples. The lack of a fining
trend with distance from source may result from more efficient initial fragmentation conditions [27]
and/or distinct sedimentation processes. For example, water can enhance aggregation, with small
particles falling out in clusters close to source (e.g., [28,29]) or sedimentation of fine particles can be
driven by gravitational instabilities in the plume [30–32].

We undertake a sensitivity study of dispersion model forecasts to the PSD used to initialise the
simulation by using PSDs representing the range of coarse to fine grain size distributions from our
hydromagmatic and magmatic eruption TGSD dataset. We compare results to simulations using the
default PSD used by the London VAAC during operational response. Almost all published TGSDs,
and so almost all our model PSDs, are determined from deposit samples only. We also investigate the
impact of the ash beyond the mapped deposit for the Eyjafjallajökull 2010 eruption for which there is a
TGSD based on a combination of deposit (ground) and satellite data. For this case, we compare model
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results for PSDs based on ground-only and ground-plus-satellite data to identify the impact of the
finest particles, while acknowledging that satellite retrievals have their own limitations (discussed
further in Section 5.2). Based on our results, we make recommendations for how to apply default PSDs
in operational atmospheric dispersion models. Our choice of dispersion model and model source
location in Iceland, and our emphasis on Icelandic eruptions in the TGSD compilation, make the results
particularly useful for the London VAAC, but the conclusions are more broadly applicable.

2. Compilation of Published Grain Size Data and Selection of PSDs for Modelling

We compiled published grain size distributions from hydromagmatic and magmatic eruptions
(Tables 1 and 2, respectively). The compilation includes eruptions for which at least one of the following
datasets was available:

• TGSD, compiled from samples collected at a range of distances from source and including grains
in the size range used by the VAAC default PSD (≤ 100 µm).

• Grain size distributions or median grain size at a range of distances from the source.

We have limited our investigations to vent-derived plumes and eruptions of juvenile magma and
so we excluded TGSDs from phreatic eruptions. We have not interrogated the quality of the grain size
data, but see, for example, [23,24] for recent discussions of how sampling strategy affects the reliability
of TGSD.

The eruptions (detailed in Supplementary Materials Section S1) range in composition from basaltic
(e.g., Hverfjall 2000 BP) to rhyolitic (e.g., Taupo 130 CE) and in eruption size (as measured by the
Volcanic Explosivity Index (VEI)) from VEI 2 (e.g., Hverfjall 2000 BP) to VEI 8 (e.g., Taupo 25.4 ka BP).
For the magmatic eruptions, we have focused on Iceland, as it is within the London VAAC’s area
of responsibility (e.g., basaltic Eldgja 10th Century, andesitic Hekla 1693 and rhyolitic Askja 1875
Layer D) but include some other eruptions. TGSDs have been compiled from ground samples except
for Eyjafjallajökull 2010, where TGSDs from ground observations alone and from ground observations
plus satellite data are both available [33].

Data on median grain size were included because they provide a simple measure of the stability
of grain size with distance from source and are reported as a function of distance for a wider range of
hydromagmatic eruptions than full grain size distributions.

2.1. Total Grain Size Distributions

Figures 1 and 2 show TGSDs for the hydromagmatic and magmatic eruptions listed in Tables 1
and 2, respectively. The eruptions cover a wide range of magma compositions from mafic (basalt,
≤52% SiO2) and intermediate (basaltic andesite—andesite, 52%–63% SiO2) to silicic (dacite—rhyolite,
>63% SiO2). Hydromagmatic eruptions show a smaller range of grain sizes than magmatic eruptions,
with medians from 0 to 4 Φ (62.5–1000 µm), with the larger eruptions (which are also all silicic),
e.g., Taupo Oruanui, Rotongaio and Hatepe and Towada (all VEI ≥ 6) having the finest TGSDs.
The magmatic eruptions have median values of −2–4 Φ (62.5–4000 µm). However, when we consider
only particles likely to be in the distal ash cloud (>3 Φ, <125 µm), TGSD is not a significant indicator of
the presence of external water, with a large overlap between hydromagmatic and magmatic eruptions
(Figure 3a). Magma composition and VEI seem to be more significant, with lower VEI and mafic or
intermediate eruptions having generally coarser TGSDs than silicic ones (Figure 3b). The link between
eruption size and magma composition is expected, both because melt viscosity (which depends on
composition) affects vesiculation kinetics (e.g., [13]), and the largest explosive eruptions tend to be
silicic. A limitation of this analysis is that we are not aware of any published TGSDs for large (VEI ≥ 5)
mafic or intermediate-composition hydromagmatic eruptions.
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Table 1. Details of hydromagmatic eruptions. VEI (Volcanic Explosivity Index), magnitude and intensity details come from references shown, the LaMEVE
database [34] and the Global Volcanism Program catalogue of Holocene eruptions [35].

Eruption Date VEI Magnitude Intensity Tephra vol/km3 Composition PSDs/Md Phi Dist
from Vent (km) Reference

Iceland
Askja Unit C 1875 5 4.9 10.9 0.45 Rhyolite 2–58 [36]

Eldgja 10th C 4 0.028 Basalt 11–43 [37]
Grímsvötn 2004 3 0.0005 Basalt 0.5–26 [38]
Grímsvötn 2011 4 4.4 0.1 Basalt 50–115 [39]
Hverfjall 2000 BP 2 0.08 Basalt 1–20 [27]

Jan Mayen 1732 4 0.4 Basanite 4.5–16.5 [40]
Reykjanes 1226 4 4.6 0.1 Basalt 10–64 [41]

Others
El Chichón Unit A 1982 5 5.1 11.17 0.29 Trachyandesite 17–70 [42]
Ilopango Unit A ~1.5 ka BP 4 ? 1 11.3 0.65 Dacite—rhyolite 15–21 [43]

Kelut 1919 4 4.3 0.1 Basaltic andesite–andesite 2–360 [44,45]
Soufriere St Vincent 1979 3 Basaltic andesite 10–36 [46]

Taupo Hatepe 130 CE 6 6.7 12.1 13.5 for both phases Rhyolite 10–95 [47]
Taupo Rotongaio 130 CE 6 6.7 12.1 Rhyolite 7–68 [47]
Taupo Oruanui 25.4 ka BP 8 8.1 11.2 430 Rhyolite 11–111 [48,49]

Towada 13 ka BP 6 6.7 11.34 0.29 Dacite 15–60 [50,51]
1 Based on plume height of 29 km and erupted volume of 0.35 km3 for Unit A [43].
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Table 2. Details of magmatic eruptions. VEI, magnitude and intensity details come from references shown, the LaMEVE database [34] and the Global Volcanism
Program catalogue of Holocene eruptions [35].

Eruption Date VEI Magnitude Intensity Tephra vol/km3 Composition PSDs/Md Phi Dist
from Vent (km) Reference

Iceland
Askja Unit D 1875 5 ? 1 1.37 Rhyolite 2.5–150 [36,52]

Eldgja 10th C 4 Basalt 1–21 [37]
Eyjafjallajökull 2010 4 4 8.65 > 0.1 Trachyte 2–56 [33]

Grímsvötn 2011 4 4.4 0.7 Basalt 15–70 [53]
Hekla 1104 5 5.1 1.2 Dacite 7–216 [21]
Hekla 1300 4 4 0.1 Andesite 10–212 [21]
Hekla 1693 4 4.3 0.2 Andesite 9–166 [21]
Hekla 1766 4 4.3 0.2 Andesite 6–218 [21]
Hekla 1845 4 4.3 7.86 0.2 Andesite 5–90 [54]
Hekla 1991 3 0.16–0.19 Basaltic andesite 5–195 [22]
Hekla 2000 3 0.01/0.001 Basaltic andesite [55,56]

Others
Campi Flegrei, Agnano Monte Spina 4.1 ka BP 5 5.4 >1.1 Trachyte 5–460 [57]

Campi Flegrei, Astroni-6 4.2 ka BP 4 4.4 0.23 2 Trachyte 2–460 [57]
Chaitén 2008 4 4.9 10.7 0.75 Rhyolite 3–310 [58]

Cordón Caulle 2011 5 5 1.0 Dacite 1–240 [59]
Fuego 1974 4 4.4 10.75 1.2 Basalt 8–60 [60]

Ilopango Unit B ~ 1.5 ka 3 ? 3 11.3 1.84 Dacite—rhyolite 10–33 [43]
Pululagua 2450 BP 6 6 11.3 1.1 Dacite 5–30 [61]
Ruapehu 1996 3 0.006 Andesite 0.4–177 [62]
Rungwe ~ 4 ka BP 5 5 11.24 >= 2.2 Trachyte 8–28 [63]

Mt St Helens 1980 5 4.8 11.06 1.2 Dacite 10–480 [64]
Spurr Aug and Sep 1992 4 4 10.38 > 0.04 Andesite 5–370 [65]

1 Based on plume height of 26 km and erupted volume of 1.37 km3 for Unit D [66]. 2 Includes deposit from fallout and pyroclastic density current [57]. 3 Based on plume height of 7 km
and erupted volume of 1.84 km3 for Unit B [43].
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Figure 1. Total grain size distributions for hydromagmatic eruptions based on deposits. The legend lists
eruptions in order of VEI (large to small; see Table 1). Magma composition: 5 silicic, o mafic/intermediate.
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lists eruptions in order of VEI (large to small; see Table 2). AMS = Campi Flegrei, Agnano Monte Spina.
Magma composition: 5 silicic, o mafic/intermediate.
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Figure 3. The < 125 µm fraction of total grain size distributions based on deposits for all eruptions from
Figures 1 and 2 (i.e., normalized to 125 µm), highlighting (a) hydromagmatic vs. magmatic eruptions,
(b) mafic (≤ 52% SiO2) vs. intermediate (52–63% SiO2) vs. silicic (> 63% SiO2) eruptions.

2.2. Change in Grain Size with Distances from Source

Many of the hydromagmatic eruptions show little variation in PSD with distance, particularly for
larger eruptions (Figure 4). Similarly, when considering locations beyond the influence of near-source
processes (>~20 km from source), median grain size is relatively constant (or even coarsens slightly with
distance) at tens or even hundreds of km from source for larger hydromagmatic eruptions (Figure 5).
These data include the silicic eruptions of Oruanui 25.4 ka BP, and Rotongaio and Hatepe 130 CE,
and the mafic/intermediate eruptions of Reykjanes 1226 and Kelut 1919. For El Chichón 1982 Layer A
(VEI 5), this trend is seen ≥ 65 km from source, but we have no medial data (between 22 and 65 km).

The only dataset which has sufficient samples to allow a robust comparison of the hydromagmatic
and magmatic phases from the same eruption is from Askja 1875 (units C and D, respectively; [36]).
Figure 6 shows a more constant median for the hydromagmatic phase of this eruption than for the
magmatic phase, where there is a significant fining with increasing distance from the vent. Other median
grain sizes for the hydromagmatic and magmatic phases from the same eruption are included in
Supplementary Materials Section S2; for Eldgja 10th century and Ilopango ~1.5 ka BP, samples from
>20 km from source are available for only one phase and for Grímsvötn 2011, there are only three
hydromagmatic data points, prohibiting robust conclusions.
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individual sites. 

Figure 4. Hydromagmatic total grain size distributions (TGSDs) and particle size distributions (PSDs)
at varying distance from source. Colours indicate distance of PSD from source: <10 km red/yellow;
10–50 km greens; >50 km blues. TGSDs are in black. Dotted line shows the median grain size (i.e.,
50% mass fraction). PSDs for Towada and El Chichón are only for grain size ≤4 Φ. TGSD for Ilopango
Unit A [43] was not included as it seems inconsistent (too coarse) with grain size data from the
individual sites.
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Figure 5. Change in median grain size with distance from source for hydromagmatic eruptions
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straight-line fits to data >20 km, except for El Chichon which uses ≥65 km.
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Figure 6. Change in median grain size with distance from source for hydromagmatic (Unit C) and
magmatic (Unit D) phases of Askja 1875 [36]. Note: hydromagmatic data point at 110 km is reweighed
sample AS82 described in Supplementary Materials Section S2.

3. Methods

We perform a sensitivity study using the dispersion model Numerical Atmospheric Dispersion
Modelling Environment (NAME) [67] to investigate how the PSD used to initialise a simulation affects
the model output. NAME is used by the London VAAC and has been extensively validated against
observations, including satellite retrievals, lidar data and measurements taken by research aircraft
(see for example, [16,68–71]). We use coarse to fine grain size distributions from across the range of our
dataset to initialise simulations and compare the results to simulations initialised with the default PSD
currently used at the London VAAC.
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3.1. The London VAAC Default PSD

The London VAAC uses a default PSD, given in Table 3, which is based on airborne measurements
of an ash cloud taken on January 8, 1990 following the eruption of Mount Redoubt, USA [4]. Figure 7
shows the size distribution of ash particles in samples taken 2.5 and 7 h after the eruption [15].
The simplified curve used for the default NAME modelling, based on these samples is also shown,
and includes linear extrapolation for particle diameters > 30 µm. To obtain the default PSD, the mass
distribution for each particle size bin was calculated assuming particles are spheres of constant density
(i.e., volume is proportional to mass). In addition, a ‘token’ percentage of mass was added in the
30–100 µm bin to account for large particles in the distal ash plume [72].

Table 3. Default particle size distribution (equivalent sphere diameters) used by the London Volcanic
Ash Advisory Centre (VAAC) for forecasting ash dispersion.

Particle Diameter (µm) Mass Fraction (%)

0.1–0.3 0.1
0.3–1 0.5
1–3 5.0

3–10 20.0
10–30 70.0
30–100 4.4
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Figure 7. Particle number size distributions in emissions from Mount Redoubt, January 8, 1990 eruption.
Curve B: 4.0 km above sea level (asl), ~130 km downwind and ~2.5 h after eruption. Curve C: 2.6 km
asl, ~170 km downwind and ~7 h after eruption [15]. Met Office simplified plot is used for NAME
default particle size distribution from data in [72].

3.2. The Phi (Φ) scale for PSDs

NAME defines particle size in microns (µm) but grain size measurements of ash samples taken
from deposits often use the phi (Φ) scale [73]:

Φ = −log2 (D/D0) (1)
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where D is the particle size in mm, and D0 is a reference value of 1 mm. To make it easier to compare
results from NAME simulations using TGSDs defined in the phi scale, we compiled micron equivalents
of whole-Φ and half-Φ scales (Tables S1 and S2). We then calculated mass fractions equivalent to the
VAAC default PSD and compared results from NAME simulations of the Eyjafjallajökull 2010 eruption
using the new scales and the current VAAC default. Air mass loadings showed very little difference
between the three scales for all cases where the plume is dispersed beyond the immediate source area.
Further details of the calculations and the tests are shown in Supplementary Materials Section S3;
statistical tests are defined in Supplementary Materials Section S4.

3.3. Normalising TGSDs to ≤ 125 µm and Selecting Eruptions for Modelling

We selected TGSDs from four hydromagmatic eruptions that cover the range of coarse to fine TGSDs
(Eldgja, Grímsvötn 2004, Rotongaio and Oruanui). In addition, one fine (Eyjafjallajökull 2010) and one
coarse (Hekla 1991) magmatic TGSD were included. The Eyjafjallajökull 2010 TGSD is compiled from
both ground samples and satellite data [33] and so, to investigate the impact of including satellite
retrievals in TGSDs, we also added the Eyjafjallajökull 2010 TGSD derived only from ground samples
(Figure 8).
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Figure 8. TGSDs, normalised to 125 µm, selected for the Numerical Atmospheric Dispersion Modelling
Environment (NAME) model runs.

The TGSDs were then normalised to include only grains ≤125 µm diameter to assist comparison of
model outputs with those using the VAAC default PSD (≤100 µm). On the Φ scale, we selected reported
grain sizes ≥4 Φ (3.5 Φ for results reported on the half-Φ scale), because although 4 Φ = 62.5 µm,
for sieve results, the 4 Φ bin contains particles from 3 to 4 Φ, i.e., from 62.5 to 125 µm. Similarly, on the
half Φ scale, the 3.5 Φ bin contains particles from 3 to 3.5 Φ (88.4–125 µm).

3.4. NAME Simulations

NAME was run on the JASMIN scientific data analysis environment [74] with the input parameters
shown in Table 4. The PSD used to initialise the run was varied and all other eruption source parameters
and met data were kept the same. Particles were assumed to be spherical and to have a density of
2300 kg m−3 (see Appendix A, Table A1 for a list of the PSDs considered).
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Table 4. Input parameters for NAME runs.

Parameter Values

Source location (latitude, longitude) −19.62, 63.63
Summit height (m asl) 1666

Source shape Cuboid, uniform (top hat) distribution
No of particles 15,000/h
Particle shape Spherical

Particle density 2300 kg m−3

Deposition
Dry deposition—Yes;

Wet deposition—Yes, bulk scheme.
Scavenging parameters as recommended in Thomson et al. [75] (Table 1)

Met data Global configuration of the Unified Model, ~25 km horizontal resolution
(mid-latitudes) and 3 hourly temporal resolution [76]

NAME represents the long-range transport of volcanic ash in the atmosphere [67]. It also includes
schemes to represent near-source processes such as buoyant plumes [77] and umbrella clouds [78]
but does not explicitly represent all near-source processes. Particles only fall out individually under
gravity, with no collective settling as aggregates or from density-driven (‘en masse’ or ‘streaking’)
instabilities [4].

As we are investigating the extent to which input PSD influences cloud size and ash concentration,
we are interested in relative rather than absolute changes in the cloud. For each simulation, particles
were released above the vent of Eyjafjallajökull volcano with a uniform distribution, from the vent to
the plume top. The source strength was calculated from reported plume heights [79] using the method
of Mastin et al. [6], and we took just 5% of the calculated MER to represent the total erupted material in
the distal plume. The buoyant plume and umbrella cloud schemes were not invoked. This follows the
London VAAC default approach; it accounts for the largest particles falling out close to source and the
fact that NAME does not represent all near-source processes [4].

Modelled ash mass loadings in the air and on the ground were output onto a grid with a horizontal
resolution of 33 km and a 3 h temporal resolution. These were chosen as a balance between time taken
for the simulations to run and resolution required to identify the impact of changing PSD on modelled
ash mass loadings.

Results were compared to runs using the VAAC default PSD for the period 4–8 May 2010, chosen
as this was the period relating to the published Eyjafjallajökull 2010 TGSD [33]. However, we were not
aiming to replicate the Eyjafjallajökull 2010 cloud and deposit, rather, we used it as a benchmark from
which to consider the sensitivity of the simulated plume to the input PSD. Within this time frame, total
column mass loadings in the air (g m−2) were selected for comparison on 2 days: one with a narrow
plume (6 May 12:00 UTC) and one with a more extensive plume (8 May 00:00 UTC). Deposition for the
period 4–12 May was considered, as ~95% of the mass was found to deposit within this timeframe.

3.5. Quantifying the Impact on Dispersion Model Forecasts

To investigate the sensitivity of the model output to the input PSD used, we compared NAME
simulations initialised using the VAAC default to those using our other selected PSDs. We compared ash
concentration within the model plumes, the different spatial extents of the model plumes, and differences
in deposit concentrations. No one statistical test can comprehensively describe differences for dispersion
model results and so we selected four tests (used in previous studies [8,80] and described in detail in
the Supplementary Materials Section S4), to give a broad evaluation of the samples being compared:

• Fractional bias (FB) measures systematic bias, with values ranging from +2 to −2 and positive
values indicating an overprediction.

• Pearson’s Correlation Coefficient (PCC) tests ash mass loadings paired in time and space and
quantifies differences in extent and concentration of the plumes, with values of +1 and −1
indicating a positive and negative linear relationship, respectively.
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• Figure of Merit in Space (FoM) compares the spatial extents of the plumes, with values of 0 for no
overlap to 100 for complete overlap.

• The Kolmogorov–Smirnov Parameter (KSP) represents the difference between concentration
distributions, but takes no account of the spatial distribution. Values vary between 0 for identical
distributions and 100 for distributions with no common values.

Statistical analyses are usually used to compare model results with a limited set of observed
values, and hence to make the tests meaningful we applied thresholds before comparing model runs
with different input parameters. We considered ash mass loadings > 0.2 g m−2, which is the minimum
threshold represented by ash concentration charts (assuming a 1 km deep plume) and ash deposits
with mass loadings > 0.1 g m−2, chosen as it covers a similar area to the air concentrations.

4. Results

This section presents our results on the sensitivity of dispersion model outputs to the initialising
grain size distribution. We compare results from model simulations using the London VAAC default
PSD to simulations initialised using varying PSDs which reflect different magma compositions and
eruption styles.

4.1. Total Column Mass Loading and Sensitivity to PSD

Figures 9 and 10 show modelled total column mass loadings on 6 May 2010 12:00 UTC (high plume)
and 8 May 2010 00:00 UTC (low plume), respectively. In each case, when the VAAC default PSD is
used, the plume extends further than when any of the other PSDs are used to initialise the model run.
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Figure 9. Total column mass loadings for 6 May 2010 12:00 UTC using a range of input PSDs. The extent
of plume using VAAC default PSD is shown as a green outline on each plot.

Residual ash mass loading was calculated by subtracting the modelled ash concentrations
simulated using the VAAC default PSD from the modelled concentrations when the input PSD is
varied. Figure 11 shows the results for total column mass loadings on 6 May 2010 12:00 UTC and 8 May
2010 00:00 UTC, for the coarsest (Hekla 1991) and finest (Eyjafjallajökull 2010) PSDs. Values for the
remaining PSDs are shown in Figures S5 and S6. Peak values of total column mass loading are up to
5-fold greater using the VAAC default PSD than for all other PSDs, with the most extreme differences
observed when comparing the VAAC default to the coarsest PSDs (Eldgja and Hekla) (Figure 10).
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Figure 11. Residual mass loadings derived by subtracting the modelled mass loading using the VAAC
default PSD from the result with either the coarse (Hekla 1991; left) or fine (Eyjafjallajökull 2010; right)
PSD. The top two rows are residual total column mass loadings (in the air) on 6 May 2010 12:00 UTC
and 8 May 2010 00:00 UTC (see Figure 10 for equivalent non-residual maps); the bottom row is residual
deposit mass loadings (on the ground) for the period 4–12 May 2010 (see Figure 12 for equivalent
non-residual maps).
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Figure 12. Deposition for the period 4–12 May 2010 using a range of input PSDs. The extent of the
simulated deposit using the VAAC default PSD is shown as a green outline on each plot.

Table 5 summarises statistical comparisons of the modelled total column mass loadings using the
VAAC default PSD compared to simulations initialized with the other PSDs. All PSDs produced lower
total column mass loadings than the VAAC default, as shown by the negative FB (−0.218–−1.522).
Bias was more extreme when the plume was more dispersed on 8 May. PCC values were high for
total column mass loadings, ranging from 0.846 to 0.992, with the highest values seen with the more
concentrated plume. The pattern was similar for FoM, where values for total column mass loadings
ranged from 38.68 to 90.25 and again the highest values were seen with the more concentrated plume.
The modelled total column mass loadings using the finest PSD (Eyjafjallajökull 2010 including satellite
observations) to initialise NAME were most similar to the modelled mass loadings using the VAAC
default PSD across all measures. Using the coarsest PSD (Hekla 1991) resulted in the biggest differences
in the modelled plume, except for KSP values for 6 May, where Eldgja had the highest value. It should
be noted that the discrepancies in modelled plumes using different PSDs to initialise the simulation
will grow with time and as the plume becomes more dispersed.

Table 5. Statistical differences between VAAC default PSD and all other PSD results. FB = fractional bias;
PCC = Pearson’s Correlation Coefficient; FoM = Figure of Merit in Space; KSP = Kolmogorov–Smirnov
Parameter. Pink indicates closest to VAAC default, and blue is furthest away.

Rotongaio Oruanui Grímsvötn 2004 Eldgja Hekla 1991 Eyja EyjaG

Air
6 May 2010

12:00

FB −0.412 −0.228 −0.584 −0.449 −0.743 −0.218 −0.318
PCC 0.973 0.992 0.947 0.965 0.916 0.992 0.983
FoM 83.17 89.47 71.36 71.36 63.32 90.25 85.93
KSP 9.0 9.4 13.9 22.9 21.0 4.6 7.4

Air
8 May 2010

00:00

FB −0.807 −0.464 −1.165 −1.270 −1.522 −0.325 −0.636
PCC 0.987 0.995 0.956 0.905 0.846 0.990 0.991
FoM 80.18 89.82 68.79 58.41 38.68 89.94 85.32
KSP 13.2 8.2 18.0 19.7 23.8 5.6 10.4

Deposit
4–12 May 2010

FB 0.265 0.201 0.336 0.361 0.398 0.068 0.213
PCC 0.599 0.686 0.569 0.634 0.542 0.671 0.642
FoM 64.62 82.04 47.17 52.40 35.97 81.20 72.17
KSP 18.9 9.4 28.9 30.4 38.5 12.9 16.0

Supplementary Materials Section S4 includes tables comparing values of FB, PCC, FoM and KSP
among PSDs. The tables show each statistic for pairwise comparisons of all eruptions considered.
Eruptions with the finest PSDs (Eyjafjallajökull 2010, Oruanui and VAAC default) rank highest across all
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measures (lower FB, higher PCC and FoM and lower KSP) when compared with each other, and lowest
when compared to eruptions with the coarsest PSDs (Hekla 1991 and Eldgja).

4.2. Deposit Mass Loading

Figure 12 shows the modelled deposit mass loading for the period 4–12 May 2010. Using the
VAAC default PSD extends the deposit further than when using any other input PSD, but proximal
deposit mass loadings are lower (and so show positive residuals in Figure 11 and Figure S7), reflecting
the low mass fraction of larger particles (≤5 Φ, ≥31.25 µm). Proximal mass loadings of these relatively
coarse particles are high for all other input PSDs, covering the whole range of magma compositions
from basaltic, e.g., Hekla 1991, to rhyolitic, e.g., Rotongaio (Figure 13).
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Particles ≤5 Φ (≥31.25 µm) reached distances up to ~1500 km from source (Figure 13), highlighting
a limitation of using remote sensing alone when compiling grain size distributions, as satellite retrievals
are usually not configured to identify such large particles [19]. For the smaller particles (>5 Φ,
<31.25 µm), using the VAAC default PSD results in a more extensive deposit with higher mass loading
of ash, and the difference is largest when compared with using the coarsest (mafic/intermediate) PSD
(Hekla 1991). In this case, the VAAC PSD is likely to substantially overestimate the extent of the plume
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and the distance travelled by the small particles before deposition, because there is too much mass on
small particles.

Statistical comparisons of the VAAC default PSD with all other PSDs (Table 5) show that using the
Eyjafjallajökull PSD produced deposits with the lowest bias; the Oruanui PSD produced deposits that
were most similar in the other measures, and the Hekla 1991 PSD produced a deposit that was most
different. All PSDs resulted in higher deposit mass loadings compared to using the VAAC default PSD,
although FB values were smaller (0.068–0.398) than when comparing column mass loadings. PCC
values were 0.542 to 0.686, FoM values were between 35.97 and 82.04 and KSP ranged from 9.4 to 38.5.

Binned median values of the modelled deposit grain size, calculated at each grid point (Figure 14),
show that the median modelled grain size is ≤ 5 Φ (≥ 31.25 µm) to ~1400 km from source. The VAAC
default deposit most closely matches deposits modelled with the finest input PSDs (Eyjafjallajökull
2010 and Oruanui ~25.4 ka BP).
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5. Discussion

5.1. Grain Size Distributions for Hydromagmatic Eruptions

Grain size distributions of deposits from hydromagmatic eruptions can be relatively constant
over large distances from source (Figures 4–6). This is in contrast to magmatic eruptions, where the
deposits (and therefore, median grain size) become finer as distance increases (e.g., Figure 6 and
Figure S1). The lack of fining with distance in large hydromagmatic deposits suggests that it may be
possible to obtain reliable estimates of TGSD from relatively few sampling locations, at least for the
largest eruptions. This could be valuable in enlarging the dataset available to dispersion modellers
and would aid studies of the fundamental physics of magma fragmentation and controls of eruption
intensity. However, the consistency in grain size with distance indicates that the addition of water
promotes aggregation and/or en masse settling of particles, which needs to be considered in forecasts
of hydromagmatic ash clouds. Both of these processes are promoted by high ash concentrations and
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so tend to be more important close to source. Accretionary lapilli (compound particles much larger
than their component ash particles) found in proximal samples (e.g., [46,51]) can help to explain the
relative abundance of fine particles close to source and may account for slight increases in median
grain size with distance as seen in Figure 5. Gravitational instabilities in the plume can cause en masse
settling of a range of grain sizes including the finest particles, resulting in deposition where grain
size is independent of distance [30]. Sedimentation by gravitational instabilities has been observed,
for example during eruptions at Eyjafjallajökull in 2010 and Sakurajima in 2015 [17,32].

Questions remain about the extent of water-induced secondary fragmentation of particles in
large explosive eruptions, especially ‘phreatoplinean’ (hydromagmatic Plinian) eruptions. It may
be that in the largest hydromagmatic eruptions, water has relatively little effect on the ash size
distribution (i.e., the ash is dominantly the result of primary fragmentation) [81]. If this is the case,
the hydromagmatic TGSDs could also be useful for estimating TGSD of equivalent magmatic eruptions,
particularly where the most distal (fine-grained and thin) portions of the deposits are not mapped and
so are not readily included in TGSDs [82,83].

5.2. Sensitivity of Modelled Ash Mass Loadings to Input PSDs

Modelled total column and deposit mass loadings show significant differences depending on
the input PSD used, with results using the VAAC default PSD being most similar to the finest PSDs
tested, which are from silicic eruptions. However, the VAAC default PSD is based on measurements
in the air [15,72], and the PSDs compiled in this study, with the exception Eyjafjallajökull 2010,
were determined using only samples collected on the ground. Ground-based TGSDs will generally
underestimate the mass fraction of the finest material because there is fine ash beyond the mapped
deposit (e.g., [83]) and indeed satellite data for Eyjafjallajökull 2010 added significant mass on particles
≥7 Φ (≤7.8 µm) [33]. This is important because VAAC dispersion modelling aims to quantify distal
airborne concentrations of the smallest particles.

Comparison of the results for Eyjafjallajökull 2010 using PSDs defined by (1) the TGSD based
on ground-only, and (2) ground-plus-satellite data shows that using ground-based TGSDs produces
lower peak ash concentrations and reduces the spatial extent of the plume. This accords with results
of other studies highlighting the importance of compiling TGSDs from both ground and airborne
measurements (e.g., [84,85]). However, satellite retrieval data can also be problematic as the particles
are generally assumed to be dense spheres and the retrieval algorithm is set to interpret brightness
temperature difference as coming from particles with effective radius <~16 µm. This does not take
into account that reflection off bubble walls of larger particles would also give the same brightness
temperature difference [19]. Further work is required to understand how satellite data can best be
used to improve TGSDs of modern historic eruptions. In addition, we have no satellite and aircraft
sampling for some types and sizes of eruptions that have not occurred in recent decades (e.g., VEI 7
eruptions) and for these, deposit-only TGSDs are key for assessing suitable PSDs for simulations.

Our study focused on particle size, but shape and density are also important factors when
considering ash transport and deposition (e.g., [7,9,86]) and the mass fraction held within the finest
particles also affects plume and deposit concentrations. For the eruptions selected for our sensitivity
tests, we used the London VAAC assumption that particles in the distal ash cloud (which we have
taken as ≤125 µm) represent 5% of the mass erupted. However the mapped deposits (TGSD) in our
entire dataset have mass fractions of particles >3 Φ (≤125 µm) ranging from 3% to 73%. The range
for those that are the basis of the PSD for our simulations is 14% to 73%. So including only 5% of
total mass erupted in the simulations implies that most of the fine ash is deposited sufficiently close
to source that it is not of interest for the applications of the modelling results. There is debate about
the mass fraction typically in the distal ash cloud, with comparisons of masses of distal ash based on
satellite data to total masses based on ground data, suggesting that the distal ash fraction may be only
0.1% of erupted mass for the largest eruptions [87], but other analyses of the spatial distributions of
tephra and fine ash contents of deposits suggest much higher distal fine ash fractions [26,83].
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5.3. PSDs for Real-Time Forecasting During an Eruption

In this study, we ran simulations with PSDs based on the TGSDs of hydromagmatic and magmatic
deposits of a range of compositions. The TGSDs for hydromagmatic eruptions (Figure 1) fall within the
range of TGSDs for magmatic eruptions (Figure 2) but are less variable and tend to be finer (greater in
Φ scale); however, when we consider only particles likely to be in the distal ash cloud (>3Φ, <125 µm),
there is almost total overlap of hydromagamatic and magmatic grain size distribution data, with
composition (and VEI) being the most important factor (Figure 3). Our NAME simulations using PSDs
based on the < 125 µm portion of deposit TGSDs show clear differences between total column mass
loadings for mafic/intermediate and silicic eruptions, with modelled concentrations using the current
VAAC default PSD more closely matching results for silicic eruptions with the finest PSDs. This could
be a problem particularly for forecasting ash plumes from coarse-grained, mafic/intermediate eruptions
which occur frequently in Iceland (as shown in Tables 1 and 2).

Model PSDs derived only from ground samples are likely to underestimate the mass of the finest
particles and this would need to be considered when choosing any new coarse-grained default PSD.
One option would be to explore more sample eruptions where satellite data are also available, as done
for Eyjafjallajökull 2010 [33]. Alternatively, a statistical distribution could be used, based on best
fit with sampled data (e.g., [59]). Pioli et al. [23] suggest lognormal and Weibull (Rosin–Rammler)
distributions are suitable for modelling deposits with fine tails.

The default PSD used by the London VAAC is from aircraft samples, taken from the margin of the
ash cloud, during the 1990 eruption of Mount Redoubt and so it represents only a snapshot from that
eruption. The ash cloud was generated when a (possibly hydromagmatic) vent explosion and dome
collapse created a co-pyroclastic density current (co-PDC) andesitic–dacitic plume [15,72,88]. Because
only the finest particles are entrained into co-PDC plumes, the resulting TGSD is likely to be finer than
for a vent-derived plume [89].

6. Conclusions

The grain size distribution of an ash cloud is rarely measured in real time but operational
dispersion model simulations used to forecast the location and concentration of ash in the atmosphere
are highly sensitive to this parameter. VAACs often rely on using a default PSD to initialise model
runs but it has not been clear how best to constrain these.

In this study, we have focused on constraints on PSD from the deposits resulting from ash in the
air landing on the ground. We compiled published grain size data from the deposits of hydromagmatic
and magmatic eruptions and found that, while grain size distributions for magmatic eruptions change
with distance from source, for large hydromagmatic eruptions, grain size remains relatively constant
with distance. This suggests that TGSDs for these eruptions could be compiled from fewer samples
than are required for typical magmatic eruptions, potentially providing a larger dataset of TGSDs in
the future. For the largest hydromagmatic eruptions, if water impacts transport and deposition of
particles but has relatively little effect on the ash size distribution, the TGSDs could also provide useful
estimates of PSDs for modelling ash dispersion from the equivalent magmatic eruptions.

Although TGSDs for hydromagmatic eruptions tend to be finer than for magmatic eruptions
(c.f. Figures 1 and 2), they are similar for the fine portion (< 125 µm) that is likely to be in the distal ash
cloud (Figure 3a). Previous studies, focusing on the whole range of grain sizes, have found that TGSD
is dominantly controlled by magma composition (and eruption size), with silicic eruptions (>63% SiO2)
typically generating finer TGSDs than eruptions of more mafic magma (e.g., [13,24]). We have found
that this relationship also holds true for this fine fraction.

We investigated the sensitivity of modelled ash mass loadings to input PSDs using end-members
which represented a coarse PSD from a mafic/intermediate eruption and a fine PSD from a silicic eruption.
There are clear differences between mass loadings for forecasts with PSDs based on mafic/intermediate
and silicic eruption TGSDs. For the default PSD used by the London VAAC, simulations were most
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similar to those generated using the finest PSDs based on silicic eruptions and peak values of total
column mass loading were up to 5-fold greater than for the coarsest PSD (based on Hekla 1991).

Our input PSDs were based on ground samples, which are likely to lack the most distal material
and so adding mass on the finest particles could produce more representative results. Nevertheless,
we have constrained end-members representing coarse- and fine-grained PSDs, which could be used
by the VAACs to assess the sensitivity of their forecasts to the PSD applied (within the caveats of the
limitations associated with the measurement methods).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/6/567/s1,
Section S1: details of eruptions considered; Section S2: Change in median grain size with distance from source for
eruptions with samples for both the hydromagmatic and magmatic phases; Section S3: Comparison of current
VAAC default particle size distribution (PSD) with equivalent values on whole-Φ and half-Φ scales; Section S4:
Statistical tests and residual mass loadings; Section S5: References to supplementary material. Figure S1 Change
of median grain size with distance from source for eruptions having both phreatomagmatic and magmatic phases,
Figure S2 VAAC default particle size bins and Φ values plotted on a log scale Φ bins, Figure S3 Log values of Φ
and micron scales a) general case. b) example for 8—9 Φ bin, Figure S4 Comparison of NAME output for total
column mass loading using VAAC default PSD, whole-Φ scale PSD, half-Φ scale PSD, for times of high and low
wind and high and low plume during the Eyjafjallajökull eruption 2010, Figure S5 Residuals for total column
mass loading for 6 May 2010 12:00 UTC after removing VAAC default PSD values, Figure S6 Residuals for total
column mass loading for 8 May 2010 00:00 UTC after removing VAAC default PSD values, Figure S7 Residuals for
deposit mass loadings for 4–12 May 2010 after removing VAAC default PSD values. Table S1 Micron equivalents
of whole-Φ particle size scale and corresponding mass fractions for the VAAC default particle size distribution,
Table S2 Micron equivalents of half-Φ particle size scale and corresponding mass fractions for the VAAC default
particle size distribution, Table S3 Fractional bias of whole-Φ and half-Φ results (Figure S4) when compared with
the VAAC default PSD.
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Appendix A. NAME Input Data

Table A1. Input file particle size distributions and cumulative mass fractions for NAME runs.

Phi

PSD Cumulative Fraction

Diameter Range
Boundary (µm) Oruanui Rotongaio Grímsvötn

2004
Eldgja
10th C

Eyjafjallajökull
2010

Eyjafjallajökull
2010 Ground Only

Hekla
1991

11 0.4883 0
10 0.9766 0 0.0186 0
9.5 1.3811 0.0198
9 1.9531 0 0 0.0221 0.04 0.0283

8.5 2.7613 0.0292
8 3.9063 0.0157 0.0466 0.0381 0 0.1194 0.0566 0

7.5 5.5243 0.0541 0.0031 0.008
7 7.8125 0.08 0.1274 0.0734 0.0093 0.2767 0.1419 0.0138

6.5 11.049 0.0992 0.0247 0.0291
6 15.625 0.3086 0.2014 0.1353 0.0617 0.4609 0.2855 0.0539

5.5 22.097 0.1906 0.142 0.0859
5 31.25 0.6286 0.4288 0.254 0.2901 0.6184 0.4851 0.155

4.5 44.194 0.3723 0.4969 0.2766
4 62.5 0.7914 0.637 0.5425 0.6975 0.8063 0.7428 0.4338

3.5 88.388 0.7756 0.858 0.6499
3 125 1 1 1 1 1 1 1
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