
atmosphere

Article

Wave-Tracking in the Surf Zone Using Coastal Video
Imagery with Deep Neural Networks

Jinah Kim 1 , Jaeil Kim 2, Taekyung Kim 2, Dong Huh 2 and Sofia Caires 3,*
1 Korea Institute of Ocean Science and Technology, Ansan 49111, Korea; jakim@kiost.ac.kr
2 School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea;

jaeilkim@knu.ac.kr (J.K.); paperrune@naver.com (T.K.); her901210@naver.com (D.H.)
3 Deltares, Boussinesqweg 1, 2629 HV Delft, The Netherlands
* Correspondence: sofia.caires@deltares.nl; Tel.: +31-(0)8-8335-8219

Received: 14 February 2020; Accepted: 17 March 2020; Published: 21 March 2020
����������
�������

Abstract: In this paper, we propose a series of procedures for coastal wave-tracking using coastal video
imagery with deep neural networks. It consists of three stages: video enhancement, hydrodynamic scene
separation and wave-tracking. First, a generative adversarial network, trained using paired raindrop
and clean videos, is applied to remove image distortions by raindrops and to restore background
information of coastal waves. Next, a hydrodynamic scene of propagated wave information is separated
from surrounding environmental information in the enhanced coastal video imagery using a deep
autoencoder network. Finally, propagating waves are tracked by registering consecutive images in
the quality-enhanced and scene-separated coastal video imagery using a spatial transformer network.
The instantaneous wave speed of each individual wave crest and breaker in the video domain is
successfully estimated through learning the behavior of transformed and propagated waves in the surf
zone using deep neural networks. Since it enables the acquisition of spatio-temporal information of
the surf zone though the characterization of wave breakers inclusively wave run-up, we expect that
the proposed framework with the deep neural networks leads to improve understanding of nearshore
wave dynamics.

Keywords: coastal wave-tracking; coastal video imagery; video enhancement; hydrodynamic scene
separation; image registration; deep neural networks

1. Introduction

The understanding of wave dynamics in the nearshore is still challenging because of the high
variability of the nearshore wave process in both the surf and swash zones. Thus, investigation of
nearshore wave phenomena is necessary in itself, as well as essential to describe wave-induced coastal
disasters such as flooding, coastal erosion, and fragility of coastal structures.

Remote sensing is considered the most appropriate approach to describe nearshore waves taking
into account the difficulties of obtaining sufficient data that are continuous and quality controlled in
space and time in the conventional way [1].

A few studies have been published on tracking individual waves across a cross-shore transect of
interest in coastal video imagery on the surf and swash zone of natural beaches. Yoo et al. [2] used
filter-based image processing methods, in particular Radon transformation [3], to track individual
waves on time-space images, the called timestacks images, which do not contain the full variability of
wave parameters in the surf zone.

Vousdoukas et al. [4] introduced wave run-up measurements based on timestack images generated
from coastal video imagery by extracting and processing time series of the cross-shore position of
the swash extrema. The estimated wave run-up height was more accurate than those from available
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empirical formulations, but in their procedures manual supervision is required to accurately extract
the run-up height from the timestack images.

More recently, Stringari et al. [5] tacked waves in the surf zone using learning-based computer
vision techniques to detect breaking waves accurately. Breaking waves are derived from coastal video
imagery by identify the white foam and tracking accumulating timestack images in a cross-shore
direction. It detects white pixel intensity peaks generated by breaking waves, confirms these peaks as
true wave breaking events by learning from the data’s true color representation, clusters individual
waves and derives the optimal wave paths. Thus, it can be applied directly to any timestack
image without additional complex image transformation required as in Yoo et al. [2]. However,
the method still requires that timestack images are made for each specific cross-shore orientation and a
manually implemented training dataset of timestack images with labels identify breaking waves, sand,
and undisturbed water.

In this paper, we propose a new approach of observing the behavior of waves in the surf and
swash zone from coastal video imagery, which is a fully automated method of applying deep neural
networks to track individual transformed and propagated waves in space and time. It allows a full
characterization of the wave breakers including the wave run-up, with an unsupervised learning
approach, which tracks coastal waves from wave crest until they break and disappear in swash zone.

2. Methodology

Waves in the surf zone are traced by applying deep neural networks to coastal video imagery
taken at Anmok beach in Korea. The proposed wave-tracking framework consists of three parts:
image enhancement by preprocessing raw video images for learning, scene separation to consider only
the wave motion in the video and wave-tracking through unsupervised image registration. We next
describe the considered training and validation dataset and then these three procedures separately
with experiments.

2.1. Unlabeled Video Dataset

The study area, Anmok beach, is a straight almost 4 km long micro-tidal wave dominated
environment located on the east coast of South Korea (Figure 1a,b). The wave climate during winter is
dominated by swells coming from the north-northeast, some of them severe and attacking the coastline.
The observed current magnitudes are generally low (in the order of 0.1~0.2 m/s). Most of the time the
significant wave height is low (Hs < 1.5 m) and the peak wave period is below 7.5 s. However, the coast is
occasionally hit by severe storms with maximum offshore significant wave height higher than 9 m [6].

Figure 1. Study area of (b) Anmok beach located in (a) north-eastern South Korea with (c) installed
CCTVs location and (d) a sample of recorded video image.
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In the last few decades, the east coast of South Korea has been suffering from erosion.
To understand the associated physical process, a video monitoring system using general CCTVs
(Closed Circuit Television) has been installed and video data has been stored since 2016 (Figure 1c,d).

The field of view covers a span of about 150 m in both the along-shore and cross-shore directions.
The spatial and temporal resolution of the video is 1920 × 1080 and 30 frames per second (FPS).
For training and validation of the proposed networks, we randomly selected 233 and 360 video clips
in November 2016 and 2017, respectively at an 8:2 ratio. All videos are recorded in daytime and cover
different wave breaking and light conditions and each video clip has about 10 min long. For the
unsupervised learning without any labeling task, all frames of the videos recorded at 30 FPS are used
without downsampling.

2.2. Video Enhancement

Computer vision is an interdisciplinary scientific field that deals with how computers can be used
to gain high-level understanding from digital images or videos. Deep learning has enabled the field of
computer vision to advance rapidly in the last few years.

Despite the advances in optical cameras, the captured image or recorded video often still come
with visual degradation due to the environmental conditions such as bad weather, low light and
underwater as well as features of optical system itself such system noise, optical distortion, motion
blur, downsampling and compression loss. Due to these issues comprehensive methods that improve
the perceptual quality of images or video are in high demand.

In recent years, deep image/video enhancement methods have demonstrated their superiority
for derain, dehazing, denoising, deblurring as well as super-resolution. Most of those problems can
be posed as translating an input image into a corresponding output image. In analogy to automatic
language translation, we define automatic image-to-image translation as the task of translating one
possible representation of a scene into another, given a large amount of training data.

The Pix2Pix architecture proposed by Isola et al. [7] is widely used as the baseline structure
for image-to-image translation. Pix2Pix uses a generative adversarial network (GAN) [8] to learn
a function to map from an input image to an output image. The network is made up of two main
pieces, the generator, and the discriminator. The generator transforms the input image to get the output
image. The discriminator measures the similarity of the input image with an unknown image (either
a target image from the dataset or an output image from the generator) and tries to guess whether it
has been produced by the generator.

The video of winter coastal hazardous regions is distorted by bad weather conditions such as
rainy weather, wind and fog. It is, therefore, essential to improve the quality of video imagery before
processing it further. In particular, image distortion caused by raindrops is a major problem in applying
visual intelligence for image-based wave-tracking. To remove raindrops and to restore background
information in coastal video imagery, a Pix2Pix network is implemented using a paired set of raindrop
and clear images. The network has a structure of a GAN with a generator and a discriminator, which
are trained simultaneously to transform distorted images by raindrop to clear images.

The architecture of the Pix2Pix is shown in Figure 2a. The network consists of the generator (G)
that generates a target image (y) from the input image (x), and a discriminator (D) that discriminates
between the generated image and the target image. x is input into the generator as the image impeded
by raindrops, and the generator uses this input to generate an image G(x) where the raindrops
are removed. The generator creates G(x) as close as possible to the corresponding target image y
without raindrop distortion and it also learns parameters to generate G(x) more realistic to fool the
discriminator which has a role to discriminate between G(x) and y. Through this repetitive learning
process, the generator and discriminator simultaneously are trained in an adversarial manner.
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Figure 2. The architecture of the proposed deep neural networks consisting of three parts: (a) video
enhancement, (b) hydrodynamic scene separation, and (c) unsupervised image registration.

For the Pix2Pix network pre-training, we use an open dataset including paired images with and
without raindrops in the land environment collected by Qian et al. [9]. After the pre-training, we train
the pre-trained model using a dataset paired with and without raindrops, which was acquired directly
using two CCTVs installed side by side in Anmok beach [10]. 17,002 paired images are extracted from
the 10 min. long video clips. 12 video clips classified with raindrop patterns were used to fine-tune the
transferred pre-trained Pix2Pix network parameters of which some samples are shown in the Figure 3.

Figure 3. Samples of dataset paired with and without raindrops obtained from Anmok beach.
Top: The images contaminated by raindrops. Bottom: The corresponding ground-truth images.

2.3. Hydrodynamic Scene Separation

Understanding object motions and scene dynamics is also a key issue in computer vision for
both video recognition for behavior classification and video generation for future prediction. It is
a challenging problem to learn how scenes transform with time from large amounts of unlabeled video,
because there are a vast number of ways that objects and scenes can change.

Vondrick et al. [11] proposed a generative adversarial network for video with a spatio-temporal
convolutional architecture that untangles the scene’s foreground from the background to capture
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some of the temporal knowledge contained in large amounts of unlabeled video. They introduced
a two-stream generative model that explicitly models the foreground separately from the background,
which allows enforcing that the background is stationary, helping the network to learn which objects
move and which do not. The proposed concept is applied to separating wave motion from ambient
information in coastal video images.

Before tracking the coastal waves, a deep autoencoder network is established to extract the
hydrodynamic scene only, by minimizing the ambient light effect in the coastal video imagery.
The proposed model extends to an autoencoder which compresses and reconstructs the input video
images by removing the discriminator from the GAN structure and creating natural video images by
separating the foreground and background [12].

The proposed network shown in the Figure 2b generates a background image (b), which is
common across time, and foreground images (F), which represents temporal changes along time, in the
process of compressing and reconstructing sequential video frames. In addition, the pixel-wise weights
of all image sequences are determined in the process of restoring the original input video imagery by
combining the background image and the foreground image sequences. The maps of the pixel-wise
weights are called mask images (M) and contain the wave motion information along time.

As depicted in Figure 4, considering the input video imagery as V (V = {v0, v1, ..., vn}),
a generated video V′ can be expressed as follows by combining separated foreground image sequences
(F = { f0, f1, ..., fn}) and a common background image (b) with mask images (M = {m0, m1, ..., mn}):

V′ = {v′i|vi = (1−mi)b + mi fi, i = 0, 1, ..., n} (1)

Figure 4. Image sequences of separated scenes (F, M, b) from input video sequences (V) and generated
video sequences (V′) by combining separated scenes (F, M, b).

The separated background images contain solely the environmental factors, such as the ambient
light affecting the overall frame of the input video. In the mask sequences, spatio-temporal changes
between frames is expressed as real numbers in the range of 0 and 1. Furthermore, the solely the wave
propagation captured in the input video, is kept in the mask sequences.

2.4. Unsupervised Image Registration

Image registration is typically formulated as an optimization problem to seek a spatial transformation
that establishes pixel/voxel correspondence between a pair of fixed and moving images by maximizing
a surrogate measure of the spatial correspondence between images, such as structural similarity or image
intensity correlation between registered images.
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In particular, deep learning techniques have been used to build prediction models of spatial
transformations for achieving image registration. The models are designed to predict spatial
relationships between image pixel/voxel from a pair of images, to learn informative image features
and a mapping between the learned image features and spatial transformations that register images in
a training dataset.

In medical image analysis, non-rigid inter-modality image registration is a core problem for many
clinical applications, as is allows for the use of the complementary multimodal information provided
by different imaging protocols. Balakrishnan et al. [13] presented a learning-based framework for
deformable, pairwise medical image registration. It formulates registration as a function that maps an
input image pair to a deformation field that align these images. We adopt this framework for coastal
wave-tracking.

In the third and final procedure, the propagating waves are tracked by registering consecutive
images in the separated mask sequences (M) using a spatial transformer network to find nonlinear
spatial transformation between them. As shown in Figure 2c, by inputting two consecutive frames
(mi, mi+1), the spatial displacement map representing nonlinear spatial transformation from the current
mask frame (mi) to the next frame (mi+1) is generated. The displacement map includes the displacement
vector information from the pixels of the mi to the corresponding pixels of the mi+1.

Lreg =
1
2
{‖ φ

neg
i (mi+1)−mi ‖2

2 + ‖ mi+1 − φi(mi) ‖2
2}+ ‖ ∇φi ‖2 (2)

The spatial transformation network comprises the U-net [14] to generate affine transformation
parameters to convert each pixel of the two consecutive frames to the related pixel location. This neural
network also constructs the inverse transformation map, in which each displacement vector of the
constructed transformation map is inverted, and by learning to adjust mi and mi+1 to each other,
it realizes the diffeomorphic registration allowing the inverse operation of the transformation map.

The L2-norm loss function (‖‖2) for training the spatial transformer network in Equation (2) is
used to derive optimal spatial transformation map (φi) registering consecutive two input images by
maximizing similarity between images and minimizing abnormal image deformation.

∇φi is the differential value of transformation vector. The diffusion minimizing loss term performs
a regularization function that minimizes sudden changes in the displacement vectors. φ

neg
i is the

inverse map of the displacement map φi. The network computes the similarity measure after changing
each consecutive frame (mi, mi+1) using φi and φ

neg
i for the diffeomorphic coordination.

2.5. Experiments

The training dataset used for training the proposed model, as shown in Figure 2, consisted of
17 days of video taken in October 2016. From the video, 5,610,407 frames were extracted corresponding
to 187,013 seconds of daytime images from 9 a.m. to 6 p.m. 20 % of them were used as a validation
dataset for optimization. For successful unsupervised learning, the temporal resolution of the original
video, which is 30 FPS, was kept. However, considering the available computer resources and
computation time, the spatial resolution has been reduced from 1920× 1080 to 960× 540. In particular
the scene separation network is a very memory-intensive task because it needs to look at the whole
data during the learning process to separate a mask for the common background and the moving
foreground in successive frames from the training dataset.

The Adam optimizer [15] was used for training the model and the learning rate was set to 0.0001.
The server used in this experiment has an Intel i7 3.5 GHz, 128 GB memory CPU, and NVidia (Intel,
Santa Clara, CA, USA) Titan XP GPU with 12 GB video memory (Nvidia, Santa Clara, CA, USA). It
took approximately one and a half days to training the model.

In the scene separation network, the mean square error between the input image and the
reconstructed image was measured for the validation dataset, and early stopping [16] is used to
stop learning in the section where the error increases to prevent overfitting. In addition, considering



Atmosphere 2020, 11, 304 7 of 13

the memory-intensive task of model training, the batch size was set to 1, and group normalization [17]
was used instead of batch normalization.

For the image registration, the optimal epoch was determined by measuring the structural
similarity and mean squared error between the registered image at time t and the target image at time
t + 1 for the validation dataset, with a batch size of 5.

3. Results

Figure 5 shows the proposed wave-tracking process by visualizing the results of the deep neural
networks from Anmok beach video images. In Figure 5c, the displacement vectors between two
corresponding pixels in mi and mi+1 are represented using arrows.

Figure 5. Samples of results according to three procedures for wave-tracking: (a) video enhancement,
(b) hydrodynamic scene separation, and (c) unsupervised image registration.

The input video imagery passes through the first network for video enhancement, as shown
in Figure 2a for better image quality. For instance, if the input image is contaminated by raindrops,
the raindrops are removed and the wave information in the background is restored as shown in
Figure 5a. The enhanced video imagery is then used as the input data of the hydrodynamic scene
separation network as shown in Figure 2b, to separate the wave movement information from the
environmental information such as light effects. When the input image sequence passes through the
network, it is separated into the foreground, background, and mask. The mask M includes only the
wave movement information, as shown in Figure 5b, and is then used as input to the registration
network for wave-tracking, as shown in Figure 2c. The vector field shown in the left part of Figure
5c is a displacement map of the nonlinear spatial deformation vector, computed pixel-wise from the
register of two consecutive images.

The hyper-parameters of the networks were determined by assessing images similarity between
mi+1 and φi (mi). φi(mi) is the result of applying the nonlinear spatial deformation matrix φi to mi.
It is considered that the higher structural similarity of two images, for example mi+1 and φi(mi), the
better the tracking of the propagated waves. To avoid overfitting, we choose a model in epoch with
the lowest mean square error and standard deviation as well as high structural similarity during
the model validation process. It means that the correspondence between the transformed image
(φi(mi)) and the target image (mi+1) is the highest after image registration, and the displacement vector
field (φi) represents the movement of waves with high accuracy. The structural similarity is 0.983
and the mean squared error is 0.147. The index of structural similarity is calculated by obtaining
the correlation coefficient between two images in pixel-wise way, with a minimum value of 0 and
a maximum value of 1.
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To ensure the performance of wave-tracking visually in space and time, randomly assigned
multiple landmarks on the wave crest line in the video and tracking the movement of the landmarks
as the wave propagates, breaks and disappears. To visualize the coastal wave-tracking from shoaling
non-breaking to wave swash, 6 and 20 landmarks are assigned to the three test videos randomly
along the wave crest line with circles filled with red color in 6 and 20 pixels, as shown in Figure 6.
The position of the landmarks is individually updated by adding the displacement vectors with the
largest magnitude in the 3 × 3 neighbors around each landmark.

Figure 6. Visualization of wave-tracking by placing circles filled with red color along the wave crest
line on the image sequences of propagated waves from left to right with 2 sec. time interval for the 3
test video clips of (a–c) taken at 17:00 7 November 2016.

In Figure 6a,b, the image registration algorithm visually confirms that the 6 landmarks on the
wave crest are reasonably well tracked during 30 s. considering in total 900 frames. In Figure 6c, it is
also visualizing the wave-tracking performance using the 20 landmarks on the wave crest during 40 s.
considering in total 1200 frames. If you look at the four landmarks on the left, you can see that the
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remaining 16 landmarks track well along the wave crest, while the tracking accuracy degrades for
(t + 8) s. ∼ (t + 20) s. The reason is that as shown in Figure 7, when registering successive images,
the shape of wave crest in the input target image is not clear itself. Thus, the next position of the 4
landmarks to be tracked is determined by referring to the neighbor’s movement.

Figure 7. Successive images at (t + 8) s., (t + 8.3) s., and (t + 8.6) s. causing inaccuracy in tracking the 4
landmarks on the left side of Figure 6c with an indefinite wave crest against propagating waves in red
square region.

The tracking algorithm helps to track the wave crest more correctly against image noise and
abnormal movement by using a model that learned the behavior of wave propagation from the training
dataset and neighbor’s movement in test dataset. The landmarks are not merged, but they can overlap
together depending on the tracking result.

To demonstrate the tracking of broken waves, Figure 8 shows the tracking points of two sequential
waves mapping with circles filled with red and green colors on the edge of white foam of breaking
waves. We assigned 14 and 10 landmarks respectively at 10∼12 pixels intervals. The location of
each landmark was updated by adding displacement vectors, which were estimated through the
unsupervised image registration at each pixel, every 0.03 s. As shown in Figure 8, the landmarks on
the breaking foam of white pixel were tracking well the individual waves that broke and disappeared
as they propagated over time. After the tracking, we confirmed that the landmarks were properly
positioned at the edges of the white foam.

Figure 8. Visualization of wave-tracking by placing circles filled with red and green color on the image
sequences of propagated breaking waves from one wave crest line from left to right with 2.14 s. time
interval for 10.7 s. with 320 frames.

Figure 9a provides an illustration of timestack images, as used in conventional image processing
approaches for the analyzes the coastal waves. The timestack images for one min. are produced from
images in Figure 8 along the transect connection R_7 and G_5 shown in the leftmost image in Figure 8.
The two landmarks of R_7 and G_5 in Figure 8 were selected in the cross-shore transect, and the
tracking results for the two landmarks during 8 s. are shown in Figure 9b.
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Figure 9. (a) Timestack images along the transect connecting R_7 and R_5 for 1 min. with 1800 frames
in Figure 8 with 10 frames interval and (b) tracked two landmarks of R_7 and G_5 in the timestack
images for 8 s.

In Figure 9a, a time series of wave trajectories including the incipient shoaling and breaking
points with created turbulent whitewater spilling for breaking waves are clearly visible. Furthermore,
in Figure 9b, we can visually confirm that our tracking results agree well with the wave trajectories for
the two landmarks.

The time series of velocity estimated by tracking at each landmark are shown in Figure 10.
The velocity at randomly selected 6 landmarks, shown in the leftmost image in Figure 8, was calculated
based on pixels of the image moving per 0.3 s. The pixels containing each landmark are at a distance
of approximately 0.1 to 0.35 m. The velocity at each landmark on the edge of white foam of broken
waves was estimated during 10.7 s. with 320 frames. The velocity was calculated from the real distance
and time required for the pixels corresponding to each landmark. From Figure 10b, it can be seen that
the velocity decreased as the landmarks move approaching to the swash zone, i.e., as the white foams
disappeared. Because when the broken waves reach the shore, they dissipate their energy in the form
of wave swash.

Figure 10. Time series for the estimated velocities of 6 landmarks indicated in the leftmost image
of Figure 8: (a) velocity of tracked waves at the R_3, R_7, and R_11 and (b) velocity of tracked waves at
the G_3, G_5, and G_6.
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From numerical experiments using CST3D-WA validated with in situ measurements, Kim et al. [18]
report that the instantaneous current speed was about 0.46 m/s in the onshore of Anmok beach in
January 2015. In addition, Lim et al. [19] conducted multiple Lagrangian GPS drifter experiments to
measure the surface nearshore currents in Anmok beach for 2 hours in January 2016 and February 2018.
They presented that the current speed on onshore of Anmok beach is about 0.25 and 0.38 m/s. Although
the quantities presented in each study do not exactly match, as well as the measured times and methods
all differ, they can be roughly regarded as in close range. For a quantitative evaluation and accurate
comparisons, it is necessary to further examine and plan experimental and analysis methods.

4. Conclusions

In this work, we introduced deep neural network approach to tracking waves using coastal video
imagery in the surf and swash zones. It contains not only wave-tracking but also video enhancement
to improve the quality of images contaminated by raindrops and hydrodynamic scene separation to
extract only the movement of waves excluding the effects of ambient light.

The proposed method consists of three parts: (1) video enhancement, (2) hydrodynamic scene
separation and (3) wave-tracking. For video enhancement, a Pix2Pix network, trained using paired
raindrop and clean videos, was applied to remove image distortions by raindrops and to restore
background wave information. Next, a hydrodynamic scene of propagated wave information was
separated from ambient information in the enhanced coastal video imagery using a deep autoencoder
network. For coastal wave-tracking, propagating waves were tracked by registering consecutive images
in the quality-enhanced and scene-separated coastal video images using a spatial transformer network.

The instantaneous wave speed of each individual wave crest and breaker in the video domain
was estimated through learning the behavior of transformed and propagated waves in the surf zone.
Unlike the conventional approach, the learning-based method takes time to training the model, but
it has the advantages that it is possible to use a trained model in near real time for inference and
prediction. It also allows longer time tracking than conventional methods, and simultaneously can
track multiple groups of waves in an arbitrary region, rather than being limited to individual waves
across a particular cross-shore transect in coastal video images. Moreover, the applicability of the
proposed approach is high given that it uses unsupervised learning, which learns the behavior of
breaking waves from large amounts of video images without labor-intensive labeling. Since annotating
video is expensive and ambiguous, we believe learning from unlabeled data without supervision is
a promising direction.

From the visualization of water tracking by placing multiple points along the wave crest line and
breaking waves on the image sequence of propagated waves, the tracking results mostly matched
well visually, but were somewhat inaccurate when the crest line were not clearly distinguished and
the breaking waves were widely scattered or disappeared. To learn the wave movement robustly
in surf and swash zone, it is necessary to use higher-resolution video images or a variety of videos
acquired from other coasts. Because the higher spatio-temporal resolution of the video, the better we
can examine the water evolution.

We have also been working on lab experiment and on the validation of the techniques presented
in this article for hydrodynamics scene separation and unsupervised image registration-based coastal
wave-tracking [20]. These techniques were applied to wave flume videos and compared with the results
of an acoustic Doppler velocimetry (ADV) measurement and of one conventional image processing
technique of particle image velocity. The comparisons were done for the location where the ADV
was installed and the estimated wave celerity by the proposed approach showed good agreement
with the ADV measurement. However, to evaluate the performance of the applied techniques more
accurately, more measurements from multiple points are required. In addition, for further verification
of the proposed approach validation data should be obtained through field measurements despite the
difficulties of collecting them.
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In terms of computational effort, our proposed model under the experimental conditions described
in Chapter 2 took one and a half days to train. However, the advantage of our proposed method
and other machine learning approaches, is that once the model has finished the training, the input is
analyzed immediately. Conversely, in conventional image processing approaches, the processing of
each new image involves going through the whole process from image processing to analysis.

The proposed shore-based remote sensing with unsupervised deep learning framework has the
potential to be used in novel investigations of understanding and modeling nearshore wave dynamics
and surf and swash zone phenomena such as dune process for beach erosion and accretion that require
wave-tracking. In particular, the propose method can be used to improve swash dynamics prediction
through more accurate measurement of run-up height by characterizing breaking waves in the swash
zone [21].

For the future work, we will evaluate the inverted depth in shallow water and wave speed
obtained through wave-tracking quantitatively by comparing with in situ measurement of depth and
water elevation using multi-beam and pressure sensors in coastal wave domain and the network will
be improve based on that comparison.
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