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Abstract: This study explores the correlation in measured hot running NO/CO2 ratios by a remote
sensing device (RSD) and dynamometer testing. Two large diesel cars (E4/E5) are tested on the
dynamometer in hot running conditions using a new drive cycle developed for this study and then
driven multiple times past the RSD. A number of verification and correction steps are conducted
for both the dynamometer and RSD data. A new time resolution adjustment of RSD acceleration
values proves important. Comparison of RSD and dynamometer data consistently shows a strong
weighted correlation varying from +0.89 to +0.95, despite the high level of variability observed in the
RSD measurements. This provides further evidence that relative changes in mean NO/CO2 ratios
as measured with the RSD should provide robust emissions data for trend analysis studies and as
inputs for regional emissions models. However, a positive bias of approximately 25 ppm NO/% CO2

is observed for the RSD, and bias correction of RSD measurements should be considered pending
further testing.

Keywords: remote sensing; on road; emission; dynamometer; NOx; NO2; NO; hot running;
CO2; humidity

1. Introduction

Motor vehicles are a major source of air pollution and greenhouse gas (GHG) emissions in urban
areas around the world. The close proximity of motor vehicles to the general population makes this a
particularly relevant source from an exposure and health perspective [1].

Comprehensive measurement of vehicle emissions in urban networks is cost prohibitive due to the
large number of on-road vehicles with different emission profiles, large spatial and temporal variability
in vehicle activity and many real-world factors that influence emission levels. Instead, emission
measurements are used to develop and validate vehicle emission (factor) models [2,3]. Models estimate
emission loads at various scales, varying from local to global applications. Of particular interest
is accurate quantification of on-road and real-world emissions. This information is essential for
implementation of cost-effective measures to improve air quality in urban areas [4].
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A range of methods is available to measure vehicle emissions. They include dynamometer and
on-board emission measurements (PEMS), remote sensing, near-road air quality measurements and
tunnel studies. However, all methods have their own strengths and weaknesses, and the weaknesses
in particular must be clearly understood and explicitly considered in any subsequent use of emissions
data, e.g., emission estimation and model validation [3].

The use of remote sensing to measure vehicle emissions is not new, dating back to 1971 [5].
Remote sensing devices (RSDs) have been used extensively for various purposes around the world
including, but not limited to, identification of high-emitting vehicles, examination of on-road vehicle
emissions distributions, trend analysis and model validation [5]. More recently, remote sensing has
gained interest regarding measurement of real-world emissions and development of robust vehicle
emission (e.g., [4–8]).

Given the increased use of remote sensing data and expansion of RSD data application, it is
important to understand the level of association with other types of instrumentation. Strong correlation
supports the combination of emission data sources, with or without correction for potential bias,
whereas weak correlation suggests that further post-processing and correction may be required,
if possible.

A recent study compared remote sensing with on-road air quality monitoring and found a
weak (NO, nitrogen oxide) to significant (CO, carbon monoxide) weighted positive correlation in
calm atmospheric conditions, and no significant correlation in other conditions [9]. Local dispersion
and atmospheric chemistry processes, as well as urban background concentration levels, weakened
the correlation between the RSD and air quality monitoring equipment. Following on, this paper
examines the correlation between remote sensing and dynamometer NOx measurements for two recent
technology diesel vehicles.

Previous RSD–dynamometer studies have reported different levels of correlation, varying from
poor to good [4,10–17]. This variability is attributed to, e.g., differences in experimental design,
differences in equipment used, different driving conditions, different levels of data aggregation and
different assumptions.

Previous studies suggest that CO, HC (hydrocarbons) and NO RSD measurements generally follow
the trends observed in dynamometer measurements, but that there is a substantial amount of scatter in
the measurements. Substantial differences between remote sensing and laboratory measurements occur
at the individual vehicle level, but aggregated emissions data is expected to yield reasonable agreement.

Older studies are likely less relevant, as remote sensing equipment has continued to evolve and
improve over time. In addition, average fleet emissions have substantially reduced as time progressed,
posing new challenges for remote sensing measurements. It is thus important to examine the correlation
for modern vehicles.

2. Methods

2.1. Site Selection for the Remote Sensing Device

An on-road measurement campaign has been conducted at three locations in Brisbane,
Australia [9,18,19]: a freeway on ramp (FWY, road gradient 2.9◦), a heavily trafficked urban road (URB,
road gradient 2.8◦), and a commercial road in an industrial area (COM, road gradient 0.4◦). The COM
site (Figure 1) is selected for its different land use, fleet mix and driving conditions, but also because it
is close to a dynamometer test facility. This allowed for a comparison between dynamometer testing
and remote sensing measurement, which is the subject of this paper. The other sites are shown in
Figure S1.1, Supporting Information.
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flow rate and the emission rate, as well as other variables such as speed, load and power, are 
measured and reported at a second-by-second time resolution. Figure 2 shows the dynamometer test 
set up with one of the test vehicles. 
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A portable transient vehicle dynamometer was used (Mustang Dynamometer, Model MD1000, 
Ohio, OH, USA). Dyno loading is achieved by two infinitely variable air-cooled Eddy current power 
absorbers, which are able to absorb power from the vehicle wheels up to 500 Hp (continuously) and 
1200 Hp (peak). The Exhaust Gas Sampling and Analysis System (EGSAS) integrates laboratory grade 
instruments in one package. EGSAS includes a Horiba Model MEXA-720 (NOx), a California 
Analytical Instruments Model 602 (CO2, CH4) and a TSI DustTrak Aerosol Monitor Model 8250 
(PM10). Ancillary equipment is included (Mid-West Instruments 301 Delta Tube Dilution Tunnel, 
Umwelt Technik Dilution Fan K52B and Schneider Electrical Microdrive Elite Variable Speed Drive 
or VSD). 

2.3. Test Vehicles 

Test vehicle 1 is a MY 2016 4WD Ford Ranger (Euro 4) with a 2.2 litre diesel engine, a diesel 
oxidation catalyst (DOC) and Exhaust Gas Recirculation (EGR). Test vehicle 2 is a MY 2017 4WD Ford 

Figure 1. Remote sensing device (RSD) test route at the commercial RSD site.

2.2. Dynamometer Instruments and Procedures

A chassis dynamometer is an instrument that simulates road loads according to a predefined
speed–time profile (test or drive cycle) and load settings. During the test, exhaust concentration,
the flow rate and the emission rate, as well as other variables such as speed, load and power, are
measured and reported at a second-by-second time resolution. Figure 2 shows the dynamometer test
set up with one of the test vehicles.
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Figure 2. Transient vehicle dynamometer setup.

A portable transient vehicle dynamometer was used (Mustang Dynamometer, Model MD1000,
Ohio, OH, USA). Dyno loading is achieved by two infinitely variable air-cooled Eddy current power
absorbers, which are able to absorb power from the vehicle wheels up to 500 Hp (continuously) and
1200 Hp (peak). The Exhaust Gas Sampling and Analysis System (EGSAS) integrates laboratory
grade instruments in one package. EGSAS includes a Horiba Model MEXA-720 (NOx), a California
Analytical Instruments Model 602 (CO2, CH4) and a TSI DustTrak Aerosol Monitor Model 8250 (PM10).
Ancillary equipment is included (Mid-West Instruments 301 Delta Tube Dilution Tunnel, Umwelt
Technik Dilution Fan K52B and Schneider Electrical Microdrive Elite Variable Speed Drive or VSD).

2.3. Test Vehicles

Test vehicle 1 is a MY 2016 4WD Ford Ranger (Euro 4) with a 2.2 litre diesel engine, a diesel
oxidation catalyst (DOC) and Exhaust Gas Recirculation (EGR). Test vehicle 2 is a MY 2017 4WD
Ford Ranger (Euro 5) with a 3.2 litre diesel engine, a DOC, EGR and a diesel particulate filter (DPF).
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The vehicles are weighed on a weighing bridge before emission testing was conducted. It is noted that
Euro 6 emission standards are not yet implemented in Australia, with a likely implementation year of
2027. Table 1 shows a summary of test vehicle specifications, as well as average dynamometer results,
which will be discussed later.

Table 1. Test vehicle specifications and selected dynamometer test results.

Design Parameter/Test Variable Vehicle 1 Vehicle 2

Model/Make Ford Ranger Ford Ranger
Model year 2016 2017
Emission standard Euro 4 Euro 5
Engine capacity (litres) 2.2 3.2
Emission control technology DOC, EGR DOC, EGR, DPF
Tare weight (kg) 1938 2135
Test weight (kg) 2240 2700
Vehicle loading (%) 60% 53%
Gross vehicle weight (kg) 3200 3200
Rated engine power (kW) 118 147
CdA (m2) * 0.72 0.70
RSD test cycle average speed (km/h) 30 29
RSD test cycle average NOx emission factor (g/km) 1.1 1.3
RSD test cycle average CO2 emission factor (g/km) 458 506

* CdA is the product of the aerodynamic drag coefficient and the frontal area. DOC, diesel oxidation catalyst; EGR,
Exhaust Gas Recirculation; DPF, diesel particulate filter.

2.4. Dynamometer Test Cycle

A dedicated test cycle is developed from Australian drive pattern data with the aim to create
driving conditions that were similar to those encountered by a vehicle driving past the RSD. A number
of Australian real-world drive cycles have been developed for passenger vehicles since the 1970s.
The speed–time data for four light-duty vehicle drive cycles was combined to create an input file
for the power-based P∆P simulation tool [20,21]. The drive cycles included were the Sydney Peak
cycle [22], the Melbourne Peak Cycle [23], the Australian Urban Cycle [24] and the Composite Urban
Emission Drive Cycle [25]. The speed–time data of the four cycles combined (n = 4359 s) was input to
P∆P to examine the acceleration and predicted power distributions for both test vehicles. The data is
visualised in Figure 3.

Both distributions appear realistic and include high power demand situations and strong
accelerations in the full speed range (0–110 km/h) without exceeding rated engine power. The maximum
acceleration and deceleration are +3.5 and −4.4 m/s2, respectively, and the maximum power demand
83% (vehicle 1) and 67% (vehicle 2) of rated engine power.

It is noted that the official rated engine power should be treated as an indicative value.
Certification of rated engine power can be done following different protocols, e.g., they could
reflect net or gross power ratings (i.e., fully equipped engine system test versus a basic engine system)
or steady-state versus transient testing. In addition, certification requires specific operating and test
conditions (engine temperature, specific test fuels, air density). Finally, actual maximum vehicle power
can deviate from rated engine power for other reasons such as maintenance issues.

The combined drive cycle data was used to develop speed-dependent acceleration functions.
This was done by first binning the speed/acceleration data into 5 km/h speed bins (n = 22), and then
computing maximum acceleration, median acceleration and maximum deceleration values for each bin.
Subsequently, non-linear regression was used to fit reverse sigmoid models to the three operational
driving conditions, which are denoted as ‘strong acceleration’, ‘moderate acceleration’ and ‘strong
deceleration’. The process is visualised in Figure 4.
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Figure 4. Developing speed/acceleration functions from real-world drive cycles; red, green and blue
solid dot points show the binned (5 km/h bins) maximum, median and minimum acceleration values;
the corresponding coloured lines show the sigmoid models fitted to these points.

Finally, R code was created to develop a test cycle. This was done by defining a range of
operational conditions that are expected to be relevant for RSD measurements. These include i. a
strong or moderate acceleration to 60 km/h, followed by a strong deceleration to 10 s of idle, ii. a strong
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acceleration to 45 s of varying constant cruise speeds (10 to 80 km/h, with 5 km/h increments), followed
by a strong deceleration to 10 s of idle, and iii. repeat of i. but with different maximum speeds (50 and
40 km/h).

The sigmoid functions shown in Figure 4 were used in the cycle construction process. The functions
predict speed-dependent acceleration and deceleration values. Effectively, the RSD cycle was built in
second-by-second steps, where, for each subsequent time step, the previous speed value was used to
compute acceleration, which was then used to compute the new speed value, etc., until a particular
criterion was met (e.g., maximum speed of 60 km/h). Table S2.1 presents the second-by-second speed
time data of the RSD test cycle. The RSD test cycle is 1764 s in duration (Figure 5).

Atmosphere 2020, 10, x FOR PEER REVIEW 6 of 18 

 

Finally, R code was created to develop a test cycle. This was done by defining a range of 
operational conditions that are expected to be relevant for RSD measurements. These include i. a 
strong or moderate acceleration to 60 km/h, followed by a strong deceleration to 10 seconds of idle, 
ii. a strong acceleration to 45 seconds of varying constant cruise speeds (10 to 80 km/h, with 5 km/h 
increments), followed by a strong deceleration to 10 seconds of idle, and iii. repeat of i. but with 
different maximum speeds (50 and 40 km/h). 

The sigmoid functions shown in Figure 4 were used in the cycle construction process. The 
functions predict speed-dependent acceleration and deceleration values. Effectively, the RSD cycle 
was built in second-by-second steps, where, for each subsequent time step, the previous speed value 
was used to compute acceleration, which was then used to compute the new speed value, etc., until a 
particular criterion was met (e.g., maximum speed of 60 km/h). Table S2.1 presents the second-by-
second speed time data of the RSD test cycle. The RSD test cycle is 1764 seconds in duration (Figure 5). 

 

Figure 5. Drive cycle for RSD–dynamometer comparison. 

Both test vehicles follow the drive cycle once before testing to ensure vehicles are in hot running 
conditions. 

2.5. Dynamometer Time Alignment 

A strong correlation exists between instantaneous positive engine power and fuel consumption 
rate, or, alternatively, the CO2 emission rate, for quality-controlled emissions data. This relationship 
is distorted by, e.g., incorrect time alignment in relation to transport delays in the measurement 
system and analyser response times. A linear (Pearson) correlation coefficient (r) of at least 0.90 
between fuel consumption and positive instantaneous engine power is expected for laboratory grade 
dynamometer data [20], but has been relaxed for on-road (PEMS) emissions testing to r ≥ 0.85 [26]. 

A ‘window shifting’ procedure was applied to the test data to examine whether time shifting 
could improve the correlation between power and emission rates. The window shifting procedure 
shifts the estimated power trace 1 minute (60 seconds) to either side of t = 0 in one second steps, and 
re-computes r using test data, where instantaneous power is > 0 kW. The procedure then computes 
the point with a maximum correlation value and determines the time offset value for this point. A 
negative offset value to means the speed, acceleration and barometer traces is shifted forward by to 
number of seconds. It is noted that this method is a simplification of more sophisticated dynamic 
correction methods (e.g. 27). Nevertheless, it was found that shifting the CO2 emission trace with 3 
seconds results in a satisfactory improvement in the correlation coefficient from 0.65/0.68 (vehicle 1/2) 
to 0.95 (both vehicles). 

2.6. Power Use by the Air-conditioning System 

The use of air conditioning will impose an additional load on the engine, which is not measured 
by the dynamometer. Additional power demand due to air conditioning is estimated using the 
relationship between measured dynamometer power load and CO2 emission rates for each test 
vehicle with the air conditioning on and off using the RSD drive cycle (Figure 5). Linear (OLS) 
regression functions are fitted to each data set, as shown in Figure 6. 

Figure 5. Drive cycle for RSD–dynamometer comparison.

Both test vehicles follow the drive cycle once before testing to ensure vehicles are in hot
running conditions.

2.5. Dynamometer Time Alignment

A strong correlation exists between instantaneous positive engine power and fuel consumption
rate, or, alternatively, the CO2 emission rate, for quality-controlled emissions data. This relationship is
distorted by, e.g., incorrect time alignment in relation to transport delays in the measurement system
and analyser response times. A linear (Pearson) correlation coefficient (r) of at least 0.90 between fuel
consumption and positive instantaneous engine power is expected for laboratory grade dynamometer
data [20], but has been relaxed for on-road (PEMS) emissions testing to r ≥ 0.85 [26].

A ‘window shifting’ procedure was applied to the test data to examine whether time shifting
could improve the correlation between power and emission rates. The window shifting procedure
shifts the estimated power trace 1 min (60 s) to either side of t = 0 in one second steps, and re-computes
r using test data, where instantaneous power is > 0 kW. The procedure then computes the point with a
maximum correlation value and determines the time offset value for this point. A negative offset value
to means the speed, acceleration and barometer traces is shifted forward by to number of seconds. It is
noted that this method is a simplification of more sophisticated dynamic correction methods (e.g., [27]).
Nevertheless, it was found that shifting the CO2 emission trace with 3 s results in a satisfactory
improvement in the correlation coefficient from 0.65/0.68 (vehicle 1/2) to 0.95 (both vehicles).

2.6. Power Use by the Air-Conditioning System

The use of air conditioning will impose an additional load on the engine, which is not measured
by the dynamometer. Additional power demand due to air conditioning is estimated using the
relationship between measured dynamometer power load and CO2 emission rates for each test vehicle
with the air conditioning on and off using the RSD drive cycle (Figure 5). Linear (OLS) regression
functions are fitted to each data set, as shown in Figure 6.
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The functions are used to estimate the mean difference in the CO2 emission rate (∆CO2, g/s) for
each vehicle using mean dynamometer (engine) power as input. ∆CO2 is then divided by the slope
(g CO2/kW.s) of the regression function with air conditioning off to estimate the additional power
demand. This approach is valid as: i. the linear fit was satisfactory (R2 = 0.91 for all models), and ii. the
slope was similar for each test vehicle in air conditioning off/on conditions, i.e., 0.23/0.25 g CO2/kW.s
(vehicle 1) and 0.23/0.24 g CO2/kW.s (vehicle 2).

The analysis confirms that the air conditioning systems on the test vehicles impose a continuous
and constant additional power demand on the engine of 5.0 kW (vehicle 1, 4.3% of rated engine power)
and 3.4 kW (vehicle 2, 2.3% of rated engine power). These values are added to measured dynamometer
power to account for additional engine power use by the air conditioning system.

A Bootstrap analysis suggests that the uncertainty in estimated additional power demand is
small, i.e., 95% confidence intervals of 4.8–5.3 kW (vehicle 1) and 3.1–3.8 kW (vehicle 2). The bootstrap
resampling algorithm [28] is a technique for estimating standard errors and confidence intervals of an
estimate when an analytical sampling distribution is not available. Briefly, the bootstrap algorithm
resamples the data with replacement and the estimate is calculated for this new resampled data set.
This is repeated many times to form an approximate sampling distribution for the estimate, from which
standard errors and confidence intervals can be calculated. The accuracy of the bootstrap increases
as sample size increases and as the number of resamples increases, although, for the latter, a few
thousand resamples is usually enough to reach close to the maximum accuracy possible, given the
sample size. It is noted that fitting an alternative model for each vehicle using the full data set and
adding air conditioning on/off as a predictor variable gave similar results.

2.7. On-Road Instruments and Procedures (RSD)

An Accuscan RSD4600 is used to measure vehicle emission concentrations of CO, NO, HC, ‘UV
smoke’ and CO2, and includes a Source Detector Module (SDM), a speed/acceleration bar and a video
camera to capture an image of the vehicle’s license plate (LPN) [29]. The remote sensing system uses
the principle that the majority of gases will absorb light at particular wavelengths. It measures on-road
emissions by absorbance of ultraviolet (UV) and infrared (IR) light across an open (optical) path using
wave-length specific detectors for different air pollutants.

The two test vehicles are driven repeatedly past the RSD in hot running conditions following
a predefined route with a total length of 600 m (Figure 1). A wide range of driving conditions are
achieved, using three different drivers, varying from smooth constant speed driving at different speeds
to moderate and strong accelerations at different speeds. A clear path is a requirement to prevent
interference from other traffic. A total of 112 and 78 valid RSD samples were collected for test vehicle
1 and 2, respectively, with a high capture rate of 86% and 96% (total sample size: vehicle 1 = 130,
vehicle 2 = 81). The following ambient conditions applied during the tests: ambient temperature
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varied between 32.6 and 35.4 ◦C, relative humidity varied between 43% and 53% and atmospheric
pressure varied between 1004 and 1007 hPa.

2.8. On-Road Speed and Acceleration Measurement

Speed and acceleration affect vehicle emissions. Traffic situations that require high engine power
(e.g., high speeds, strong accelerations) or generate a high level of speed variability (e.g., stop and go
conditions, queuing) lead to elevated CO2 and NOx emissions [20].

Three sets of automatic pneumatic loop detectors were installed at the URB and FWY
sites (Figure S1.1, Supporting Information), with the specific aim to compare speed/acceleration
measurements with the RSD [19]. The loop pairs (i.e., two closely spaced loops) had a separation
distance of 1 m and the distance between the loop pairs was 14 m (URB) and 19 m (FWY). The middle
loop set was located as close to the RSD acceleration/speed bar as possible (approximately 2 m upstream).

Figure 7 shows the speed and acceleration distributions measured by both loop detectors and RSD
at the urban and freeway site. The two-sample Kolmogorov–Smirnov test computes p values < 0.001
for both the speed and acceleration distributions, which means that the distributions measured with
the RSD and loop detectors are significantly different.
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Figure 7. Speed and acceleration data measured with two devices at the urban and freeway test sites.

Valid RSD accelerations vary between −6.0 and +4.0 m/s2, whereas the loop detectors have a
narrower range and vary between −3.8 and +2.9 m/s2, as is shown by the ellipse-shaped cloud of data
points. Note that the acceleration axis range in Figure 7 is capped at 3.5 m/s2 for readability purposes,
but that 9% of the RSD data is not shown as a result.

At least to some extent, the difference between RSD and loop detector data is explained with the
short distance of the RSD speed/acceleration bar (0.9 m) in comparison with the longer loop detector
distances (14–19 m). For a travel speed of 50 km/h, it will take a vehicle approximately 0.05 s to pass
the RSD bar and approximately 1.0–1.5 s to pass the loop detectors, providing a longer averaging times
(and hence reduced variability) in the loop speed measurements.

Speed/acceleration (v/a) data is highly correlated in time, e.g., a high speed measured by the RSD
would not suddenly change to a low speed an instant later. The same applies to acceleration over
short time periods. In addition, it is unlikely that concentration ratios measured by the RSD are as
stable as v/a measurements. RSD concentrations may therefore not always be accurately allocated to a
particular instantaneous v/a measurement, due to, e.g., the level of real-world variability in plume
dispersion. It appears therefore valid to adjust instantaneous RSD v/a data to obtain more robust and
representative v/a values that have a similar time resolution as the dyno data (and modal emission
models). Nevertheless, it is recommended that further independent v/a testing is done with the aim to
establish agreed-upon generic correction factors for RSD measurements.

The time resolution of the loop detector speed and acceleration measurements is closer to the time
resolution of the dynamometer data (1 Hz) for speeds above approximately 10 km/h. A correction
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of RSD speed and acceleration data ensures the data is comparable to the time resolution of the
dynamometer emissions data. Figure 7 suggests there is tendency for the RSD to report speeds that are
too low for speeds below 35 km/h. A linear model (OLS), shown as a black dotted line, was used to
correct RSD speeds (R2 = 0.80):

νcorr = 3.54 + 0.91 νrsd. (1)

The linear model to correct acceleration, however, has poor prediction performance (R2 = 0.05).
The mean negative and positive accelerations for the RSD are –0.60 and +0.52 m/s2, whereas, for the
loop detector measurements, they are –0.45 and +0.31 m/s2 (75% and 60% of RSD values, respectively).
Therefore, a simple adjustment is applied to RSD acceleration values, i.e., multiplication with 0.75 and
0.60 for negative and positive accelerations, respectively. This factor is effectively a time resolution
adjustment factor for RSD acceleration measurements.

2.9. Engine Power Measurement and Predictions

The dynamometer measures and reports load (N) and power (kW) exerted at the wheels, whereas
the RSD reports vehicle specific power (VSP, kW) using measured speed, gradient and acceleration
data. VSP is expressed as kW/tonne and is computed by the RSD using measured vehicle speed,
acceleration and road gradient (e.g., [30]). VSP is expressed as kW through multiplication with vehicle
test weight.

The power-delta-power or P∆P model predicts emissions, energy use and fuel consumption at
a high resolution, and has been used in various studies in Australia [21,31], Europe [32] and Hong
Kong [26]. The P∆P model uses a more comprehensive model formulation. P∆P specifically considers
the use of air-conditioning and vehicle specific parameters such as rated engine power, tare weight,
test weight, rolling resistance coefficients, frontal area and aerodynamic drag coefficient (Table 1).

A comparison of VSP and and P∆P engine power shows similar results. Figure 8 compares VSP
and P∆P engine power using RSD speed/acceleration gradient data. It also shows the corrected P∆P
engine power using RSD acceleration values that were adjusted for time resolution.
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Figure 8. Estimates of engine power using RSD data for the two test vehicles (RSD = original measured
acceleration, RSD* = adjusted acceleration).

Figure 8 shows that uncorrected VSP and P∆P engine power (denoted with RSD) are similar: data
points are close to the dashed 45◦ line. Figure 8 shows that the uncorrected values exceed rated engine
power (red dashed line) for vehicle 1. The P∆P engine power based on adjusted acceleration values
achieves a realistic power range for both test vehicles and is used in further analysis.

2.10. RSD NO2 Emission Correction

Although NO2 measurement has recently become a feature of remote sensing [4], remote sensing
studies have traditionally used RSDs that measure NO only, as is the case in this study. In contrast,
dynamometer measurements relate to the sum of NO and NO2 (i.e., NOx, expressed as NO2 equivalents).
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Direct use of NO data from RSD would therefore result in an underestimation (bias) of RSD NOx

emission rates.
Primary NO2-to-NOx ratios (fNO2) are critically dependent on type of emission control technology

used. A review of the available evidence suggests that these ratios are significant for diesel E4 and
E5 cars, varying between 25% to almost 80% in individual cases [19]. In addition, there is some
evidence that larger (diesel) cars have higher NO2 emission rates [4], and that NO2-to-NOx ratios
reduce as vehicles age [33]. There is limited information on the relationship between fNO2 and engine
power. A few studies reported no discernible relationship between fNO2 and speed/acceleration
or VSP [34–36]. The measured RSD NO concentration data was converted to NOx by computing
NO/(1-fNO2), assuming an fNO2 value of 50% and 45% for the E4 and E5 test vehicle, respectively,
based on a review of published data [19].

2.11. Humidity Correction

NOx emissions are a function of humidity, where an increase in ambient humidity lowers NOx

emissions and vice versa (e.g., [37]). The RSD does not correct NO for humidity on NO emissions.
Few remote sensing studies have actually measured humidity (e.g., [38]), or corrected remote sensing
measurements for humidity [39].

In contrast, dynamometer NOx measurements report results in reference test conditions and
use absolute humidity (g/kg dry air) to correct measured NOx within a specified temperature range
(e.g., [40]). The aggregated humidity correction factor (KH factor) is reported for each dynamometer
test. It varied between 1.10 and 1.15. Dividing the test results with the KH factor provides an estimate
of uncorrected NOx emissions on the dynamometer. They are used in the next section.

3. Results and Discussion

3.1. Emission Measurement Results

Figure 9 shows the combined results for the dynamometer (DYN) and RSD hot running
emission measurements.

The scatter plots on the left show the speed/acceleration data for the dynamometer test and RSD
measurements, either uncorrected (RSD) or corrected (RSD*). RSD* represents the corrected speed
and acceleration values, as discussed in Section 2.8. The blue shaded area presents the dynamometer
operational envelope. The shaded area was created by computing minimum and maximum acceleration
values for incremental 5 km/h speed bins and applying cubic spline interpolation for missing data points.

It can be seen that the RSD operates in a small speed/acceleration area. The reason for this is that
the RSD tends to automatically discard measurements in operating modes that generate relatively low
emission levels (e.g., idling, deceleration, cruise). Corrected RSD speed/acceleration values fall within
the operational area of the dynamometer test, which confirms that corrected values should be used in
the equipment comparison.

The scatter plots on the right show the measured emissions and power data. The RSD reports
concentration levels in the exhaust gas, i.e., CO2 (%), CO (%), HC (ppm) and NO (ppm), corrected for
water and excess oxygen not used in the combustion process. However, the exhaust plume path length
and the density of the observed plume are highly variable from vehicle to vehicle and are a function of
the height of the vehicle’s exhaust pipe, wind direction and speed, and turbulence behind the vehicle,
amongst other factors. The RSD can therefore only reliably measure ratios of CO, HC and NO to CO2.
Emissions are therefore presented as measured NOx/CO2 ratios for both the dynamometer and RSD
(ppm/%). Note that NOx and CO2 distance-based emission factors (dynamometer test) are presented
in Table 1.

The two test vehicles were tested using the dedicated test cycle in two operating modes, air
conditioning on and off. Figure 9 shows the emission measurement results for the two vehicles
with air conditioning on. Figure 9 shows that a substantial power range is achieved, with the range
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increasing as speed increases. The maximum power for vehicle 1 and 2 is 64 kW (54% of rated engine
power) and 87 kW (59% of rated engine power), respectively. The blue shaded area presents the
dynamometer power-emission envelope. It is clear that uncorrected RSD power and VSP values are
too high, significantly exceeding rated engine power in a few cases. The adjusted RSD power values
fall within the dynamometer power-emission envelope.Atmosphere 2020, 10, x FOR PEER REVIEW 11 of 18 
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dashed red line).

Figure 9 shows that RSD NOx/CO2 ratios are significantly outside the range of observed NOx/CO2

ratios in the dynamometer tests. The ratio of maximum RSD to maximum DYN values is 2.9 for vehicle
1 (fNO2 = 0.50) and 3.8 for vehicle 2 (fNO2 = 0.45). However, a zero value for fNO2 for both vehicles
brings the results in better agreement (Figure 10).
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The discrepancy in measured NOx/CO2 ratios is likely caused by different factors, or a combination.
First, it is unlikely that the fraction of NO2 in the exhaust (fNO2) is zero. Therefore, the dynamometer
NOx sensor may not adequately measure NO2, thereby underestimating NOx. The Horiba MEXA 720
NOx analyser uses a zirconia oxide sensor, and although measuring NOx is specified, it may provide a
limited response to NO2 [41].

Alternatively, the measured RSD NOx/CO2 ratios may be biased high, leading to overestimated
ratios. As compared with the more controlled environment of dynamometer measurements, it is more
challenging for remote sensing to measure vehicle emissions accurately. Exhaust emissions dilute
rapidly, and the RSD needs to strike the right balance between measuring emissions from as many as
possible vehicles and preventing incorrect or inaccurate measurements due to low signal-to-noise ratios.

RSD bias and associated offsets have been observed and discussed in the past (e.g., [16,42,43]).
Optical misalignment and equipment vibration due to moving vehicles shaking the roadway or
producing air pulses were reported as possible causes. Nevertheless, other studies have shown no
significant bias issues with the low NO RSD emission measurements (e.g., [44]).

The correlation analysis in the next section assumes that the dynamometer has effectively measured
NO and not NOx. As a consequence, for computational purposes, fNO2 is considered to be zero.
The sensitivity of this assumption is verified later.

3.2. RSD–DYNO Correlation and Bias

To compare RSD and DYN emissions, emissions data is binned into 5 kW power bins and averaged
(Figure 11). The relationship between power and NOx/CO2 ratio is hyperbolic with low NOx/CO2

ratios at low power levels and stable or reduced ratios at high power levels.Atmosphere 2020, 10, x FOR PEER REVIEW 13 of 18 
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Figure 11. Mean hot running emission ratios versus power, including 95% confidence intervals.
The open dot points represent data with a single observation.

RSD data is naturally noisy and sufficiently large sample sizes are required to obtain significant
results. This is reflected in the large confidence intervals in all power bins. The variability observed in
the NOx/CO2 ratios measured by the dynamometer is significantly smaller. There are several data
points where the confidence intervals for RSD and DYN do not overlap, in particular for vehicle 2,
which indicates that there is generally a systematic difference in absolute measurements between the
RSD and DYN. Figure 12 shows the mean observed NOx/CO2 ratios, including the 95% confidence
intervals for the two emission measurement methods. The black dotted line represents the 45◦ line,
whereas the red line represents a weighted least-squares regression (WLS) fit including 95% confidence
intervals (red shaded polygon).
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The weighted correlation coefficient rw was computed, where the effective variance in the binned
remote sensing and dynamometer samples were used as weights [45,46].

Effective variance is a measure of the combined uncertainty when both the y- and x-values of
an observation have measurement error. The standard variance (square of the standard error) of the
y-value is added to the standard variance of the x-value multiplied by the slope, which is assumed to
be 1. The weight for the observation is the inverse of the effective variance. Computation of rw for
vehicle 1 and 2 showed a strong correlation between the dynamometer and RSD, i.e., +0.89 (vehicle 1)
and +0.95 (vehicle 2).

Figure 12 also shows that there are significant positive intercepts for the fitted linear regression
lines, i.e., vehicle 1 (21 ± 14 ppm/%) and vehicle 2 (30 ± 9 ppm/%) (mean ± 95% CI). This suggests
that, in an absolute sense, low measured NO/CO2 ratios are not replicated in the remote sensing data.
This bias is visible for both vehicles. For vehicle 1 the 95% confidence intervals are either close or
overlap with the 45◦ line, which suggests that the differences may in fact not (always) be statistically
significant, when considering the combined variability in the RSD and dynamometer data. It is unclear
at this stage what causes the difference between the vehicles, but it could be related to different NO2

emission levels.
A second WLS model including ‘vehicle’ as a covariate is fitted to all data to examine this.

The model has an intercept of 21 ppm/% (p < 0.01). The difference in intercepts between the two
vehicles is 17 ppm/% and is statistically significant (p = 0.03). The interaction term was not significant
(p = 0.91). This suggest that a constant bias correction between 21 and 30 ppm/% (e.g., 25 ppm/%) may
be applicable to the RSD measurements, assuming that the DYNO measurements are more accurate.

Nevertheless, it is recommended that further dynamometer testing be conducted, preferably with
an RSD and dynamometer facility that measure both NO and NO2. If a systematic and consistent
bias is observed for multiple vehicles, a correction final function for RSD NO/CO2 ratios could be
implemented, which could be either a constant offset value, or a linear function (offset, slope). It would
be interesting to examine whether different vehicle types with different emission profiles (petrol car,
diesel truck, motorcycle) will produce similar results. The evidence presented in this study may
not be sufficient to develop robust correction functions for RSD4600 NO/CO2 ratio measurements,
if indeed they are required pending further research. However, the analysis shows that the correlation
between the RSD and dynamometer is strong, despite the high level of variability observed in the
RSD measurements.

3.3. Sensitivity Analysis

A number of assumptions are made in this research. First, the RSD4600 does not measure NOx,
but only NO. Therefore, an assumption is made regarding the proportion of direct NO2 in order to
convert measured NO to NOx. Second, the use of 5 kW increments to define power bins appears to
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strike a reasonable balance between sample size and granularity but it is arbitrary. Third, the impact
of including or excluding a humidity correction for NOx is of interest. Finally, given the widespread
use of VSP in RSD studies, it is of interest to assess the impact of using VSP as reported by the RSD
instead of simulated (P∆P) engine power. The sensitivity of the correlation between RSD and DYN to
the assumptions used in this study have been quantified by varying the assumptions one-at-the-time
(OAT) within a plausible range, while other settings are held constant [47]. The results are presented in
Table 2.

Table 2. Weighted correlation coefficients for different scenarios.

Scenario Description Scenario Definition Vehicle 1 Vehicle 2

Base case

fNO2 (Veh 1) = 0, fNO2 (Veh 2) = 0

0.89 0.95
RSD acceleration = adjusted
RSD power definition = P∆P engine power
Power bin increment = 5 kW
Humidity correction = excluded

Original RSD Base case, but RSD acceleration = original 0.83 0.62
Original RSD VSP Base case, but RSD VSP = original 0.73 0.64
Minimum power bin Base case, but Power bin increment = 1 kW 0.39 0.85
Maximum power bin Base case, but Power bin increment = 10 kW 0.93 0.94
Minimum fNO2 Base case, but fNO2 (Vehicle 1/2) = 0.28/0.25 0.88 0.95
Maximum fNO2 Base case, but fNO2 (Vehicle 1/2) = 0.77/0.70 0.88 0.94
Humidity correction Base case, but humidity correction applied 0.89 0.94

Table 2 shows that the use of original RSD speed/acceleration or VSP data results in significant
reductions in correlation. Correction of speed and acceleration (time resolution adjustment),
and recalculation of VSP or other power estimation methods, is important. This is a relevant
finding for emission factor development and model validation studies. The definition of power bin
increments also has a substantial impact. An increase in the size of power bin increments may slightly
improve the correlation, whereas a decrease in power bin increments can lead to a substantial reduction.
This is due to the averaging effect of bin size on the total number of (mean) data points and the impact
on ‘within-bin’ sample size, and consequently standard deviation, which are used as weights.

The plausible range in fNO2 values correction hardly impact on correlation. This is expected,
as fNO2 adds a constant offset to the RSD and is assumed to be independent of engine power.
The assumption of a constant fNO2 appears reasonable based on the available literature. Similarly,
humidity hardly affects the correlation as it scales all emissions data using the KH factor. The use
of different fNO2 values and humidity correction factors do impact on RSD bias correction. It is
recommended that the correlation is further examined with an RSD that is capable of measuring both
NO and NO2.

4. Conclusions

This study explores the correlation between a remote sensing device (RSD) and dynamometer
testing. Two diesel cars were tested on the dynamometer and driven multiple times past the RSD in
hot running conditions. A new dynamometer drive cycle was developed with the aim to replicate a
range of typical driving behaviour that is expected to be observed in remote sensing studies, consisting
of moderate to strong accelerations with different end speed points. A number of verification and
correction steps were conducted for both the dynamometer and RSD data.

Dynamometer CO2 emissions were time aligned to ensure that good correlation between the
emission rate and positive engine power was achieved. Additional power use by the air-conditioning
systems was quantified through statistical analysis of dynamometer tests with air conditioning on and
off. The humidity correction for NOx was reversed as RSD does not correct for humidity.

A time resolution adjustment factor was developed for RSD acceleration measurements after
analysis of speed and acceleration data collected with automatic pneumatic loop detectors at two RSD
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sites. The adjustment factor creates more realistic acceleration and power estimates. The RSD NO
emissions data is also converted to NOx by adding a plausible range of NO2 emissions.

Comparison of RSD and dynamometer data consistently shows a strong weighted correlation
varying from +0.89 to +0.95, despite the high level of variability observed in the RSD measurements.
This provides further evidence that relative changes in mean NO/CO2 ratios as measured with the
RSD should provide robust emissions data for trend analysis. The correlation was not sensitive to
humidity correction or assumptions regarding additional NO2 emissions. The correlation was sensitive
to application of the acceleration adjustment factor and power bin definition.

In an absolute sense, discrepancies were observed where measured mean NOx/CO2 ratios with the
RSD were significantly and systematically higher as compared with the dynamometer tests. To some
extent, this may be caused by the dynamometer NOx sensor, which may not adequately measure NO2

emissions. Further testing is recommended for at least two test vehicles, preferably with an RSD and
dynamometer facility that measure both NO and NO2.

If a systematic and consistent bias was then observed for multiple vehicles, a correction function
for RSD NO/CO2 ratios could be considered. The evidence presented in this study does not provide
sufficient data to develop robust correction functions for RSD4600 NO/CO2 ratio measurements, but the
evidence suggests that a significant positive bias may be present in RSD data.
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