
atmosphere

Article

A Long-Term, 1-km Resolution Daily Meteorological
Dataset for Modeling and Mapping Permafrost
in Canada

Yu Zhang 1,* , Budong Qian 2 and Gang Hong 1

1 Canada Centre for Remote Sensing, Canada Centre for Mapping and Earth Observation,
Natural Resources Canada, 560 Rochester Street, Ottawa, ON K1S 5K2, Canada; gang.hong@canada.ca

2 Ottawa Research and Development Centre, Science and Technology Branch,
Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
budong.qian@canada.ca

* Correspondence: yu.zhang@canada.ca

Received: 20 October 2020; Accepted: 14 December 2020; Published: 16 December 2020
����������
�������

Abstract: Climate warming is causing permafrost thaw and there is an urgent need to understand
the spatial distribution of permafrost and its potential changes with climate. This study developed
a long-term (1901–2100), 1-km resolution daily meteorological dataset (Met1km) for modeling and
mapping permafrost at high spatial resolutions in Canada. Met1km includes eight climate variables
(daily minimum, maximum, and mean air temperatures, precipitation, vapor pressure, wind speed,
solar radiation, and downward longwave radiation) and is suitable to drive process-based permafrost
and other land-surface models. Met1km was developed based on four coarser gridded meteorological
datasets for the historical period. Future values were developed using the output of a new Canadian
regional climate model under medium-low and high emission scenarios. These datasets were
downscaled to 1-km resolution using the re-baselining method based on the WorldClim2 dataset
as spatial templates. We assessed Met1km by comparing it to climate station observations across
Canada and a gridded monthly anomaly time-series dataset. The accuracy of Met1km is similar to or
better than the four coarser gridded datasets. The errors in long-term averages and average seasonal
patterns are small. The error occurs mainly in day-to-day fluctuations, thus the error decreases
significantly when averaged over 5 to 10 days. Met1km, as a data generating system, is relatively
small in data volume, flexible to use, and easy to update when new or improved source datasets are
available. The method can also be used to generate similar datasets for other regions, even for the
entire global landmass.
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1. Introduction

Permafrost is an important component of the global landmass, underlying 9–14% of world land
surface [1]. In the Northern Hemisphere, permafrost underlies about 24% of exposed ground [2].
Climate warming is increasing permafrost temperatures [3], deepening summer thaw depths (e.g., [4]),
and completely degrading permafrost in some areas (e.g., [5–7]). These changes have significant
environmental and socioeconomic impacts from the local to global scales, including active-layer
detachments and thaw slumps, ground subsidence, damage to infrastructure, changes in hydrology,
ecosystems, animal habitats, and impacts on the global climate system (e.g., [8–10]). Therefore, there is
an urgent need to improve our knowledge about the spatial distribution of permafrost and its potential
changes with climate warming in the future.
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Meteorological data are essential for understanding, modeling, and mapping the spatial
distribution of permafrost and its potential changes. Since permafrost occurs beneath the layer
of ground that freezes and thaws seasonally, it is difficult to detect it directly using satellite remote
sensing. In addition, remote sensing and site observations alone cannot predict potential future
changes. Permafrost distribution and its changes with climate are usually quantified using models
of varying complexity with input data of climate, vegetation, soil, surficial geology, and topography
(e.g., [1,11–18]). Statistical and analytical permafrost models are mainly driven by air temperature data
(e.g., [1,11,12,18]) and assume that permafrost is in equilibrium with the climate. However, other climate
variables, such as precipitation, solar radiation, vapor pressure, wind speed, and downward longwave
radiation also affect permafrost through their impacts on surface energy fluxes, snow conditions,
and soil moisture. Process-based permafrost models integrate these variables based on the surface
energy balance and water dynamics. More importantly, process-based models can quantify transient
changes in permafrost conditions, which are not in equilibrium with the climate at present and would
not be in the coming decades to centuries [14].

Meteorological datasets currently available are not adequate for modeling and mapping permafrost
in terms of climate variables required, data length, and spatial and temporal resolutions. Table A1 in
Appendix A lists some of the gridded meteorological datasets covering Canada’s landmass. Generally,
datasets interpolated from climate stations have a high spatial resolution but usually include a limited
number of variables (commonly only air temperature and precipitation). Their temporal resolution
is long (the reliability is higher for monthly than for daily data) and the temporal consistency can
be influenced by changes in climate stations. A combination of station observations and climate
model reanalysis can reduce these limitations, but the resulting spatial resolutions are coarse. Recently,
Thornton et al. [19] developed a 1-km resolution daily meteorological dataset (Daymet) from 1980 to
2017 for North America, Puerto Rico, and Hawaii. Daymet was developed by interpolating climate
station data using the spatial convolution of a truncated Gaussian weighting filter with the set of
station locations [20]. The accuracy in Canada is unclear as observation stations in northern Canada
are sparsely distributed compared to most areas in the USA. In addition, the data length is not ideal for
permafrost modeling and does not include wind speed, downward longwave radiation, and future
climate scenarios. Cao et al. [21] developed a software toolkit, GlobSim, to automate the downloading,
interpolating, and scaling of several climate reanalysis datasets to generate meteorological time series
for user-defined locations. This development improved the applications of reanalysis data, including
for modeling permafrost dynamics. However, there are usually some systematic differences among
reanalysis datasets, which causes uncertainties in modeled permafrost conditions [21,22]. Therefore,
it is necessary to develop methods to reduce these biases.

This paper describes the development of a long-term, 1-km resolution daily near-surface
meteorological dataset (Met1km) for modeling and mapping permafrost in Canada. In Section 2,
we define the specifications of the meteorological datasets required for modeling and mapping
permafrost. Section 3 describes the source datasets and methods used to develop Met1km. Section 4
describes general spatial and temporal patterns of Met1km data and assesses its accuracy through
comparisons with observational datasets. In Section 5, we discuss the features of Met1km comparing
to other meteorological datasets and potential improvements in the future.

2. The Requirement of Meteorological Datasets for Permafrost Modeling and Mapping

Although different meteorological datasets have been developed and used to model hydrological
processes and terrestrial ecosystem dynamics (Table A1), process-based permafrost models have some
special requirements. For example, they require long-term, continuous meteorological data because
the response of permafrost to climate is slow and model initialization requires the climate conditions
before the beginning of the current climate warming. In addition, process-based permafrost models
(e.g., [23–25]) and most land-surface models need multiple climate variables to determine the upper
boundary conditions based on the surface energy balance. The following is a detailed specification
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and rationale for meteorological datasets required to model and map permafrost in Canada using
process-based permafrost models, such as the Northern Ecosystem Soil Temperature model (NEST) [23].

Climate variables: Air temperature (daily minimum and maximum), precipitation, vapor pressure,
wind speed, solar radiation, and downward longwave radiation. These variables are needed to
explicitly compute surface energy balance, which is essential for determining the upper boundary
conditions in process-based land surface models. We did not include snow depth or snow water
equivalent in the dataset because such data are usually coarse in spatial and temporal resolutions.
In addition, the insulating effect of snow also depends on its density, which is usually not available.
Currently, most permafrost models simulate snow depth, density, and the insulation effects based on
the above listed climate variables (e.g., [15,23–26]).

Spatial coverage: The entire Canadian landmass. About 70% of Canada’s landmass is within
defined permafrost zones [27,28]. Although permafrost is discontinuous over large regions, we do
not know exactly where it occurs. A national dataset is therefore useful for improving modeling and
mapping permafrost across the country. The dataset can also be used for other national-scale analysis
and land-surface modeling.

Spatial resolution: 30 arc seconds latitude/longitude (about 1 km). Although climate conditions
are usually similar within tens of kilometers in flat areas, they can vary significantly in less than 1 km
due to the impacts of topography and large water bodies. Several studies have developed gridded
meteorological datasets using 30 arc second resolution [19,29–31] and mapped permafrost at such
a spatial resolution [1,11,12]. Nicolsky et al. [32] used a finer spatial resolution (770 m) of meteorological
dataset to model and map permafrost in Alaska North Slope at 30 m resolution.

Temporal coverage: From 1901 to the end of the 21st century. Since observations are too sparse
and incomplete to define the initial conditions for spatial modeling, process-based permafrost models
are commonly initialized based on the assumption that the ground thermal condition is in equilibrium
with the climate [13,14]. This assumption is valid when climate condition has no significant warming
or cooling trend for a long period of time. The recent increases in ground temperature in Canada
began largely from the end of the Little Ice Age, around the middle of the 19th century [33]. Therefore,
it is reasonable to initialize permafrost models based on the climate around that time. Running the
model from an earlier year allows better consideration of the transient changes in ground thermal
conditions, which is often not in equilibrium with the climate [14]. Almost all gridded meteorological
datasets begin around 1901 or later (Table A1) because there were few climate stations before the 20th
century. For the purpose of model initialization, we can estimate the climate from 1850 to 1900 by
extrapolating monthly climate values using data from 1901 to present [13]. Climate projections during
the 21st century are also required because understanding potential changes in permafrost conditions
is important for land use planning, infrastructure development, and environmental assessments.
Most global climate models (GCMs) have projected climate scenarios to the end of the 21st century.

Temporal resolution: Daily and continuous records for the entire period. Process-based permafrost
models require a short time-step (about a half-hour) to calculate surface energy balance and to keep
the thermal conduction equation stable under explicit finite difference solutions. However, permafrost
is not very sensitive to such short-term variations (e.g., [34]). The volume of meteorological data
increases significantly at sub-daily time-steps and most observation-based datasets use daily or monthly
time-steps (Table A1). Therefore, we used daily meteorological data as the input to the model and
downscaled the daily data to half-hourly within the model for permafrost simulation [15,35].

3. Data and Methods

3.1. Datasets for Generating Met1km and Accuracy Assessment

Met1km was generated using the following six gridded meteorological datasets. The first five
datasets are time-series gridded data, and the sixth dataset is monthly climatology averaged during
1970–2000 for spatial downscaling.
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The Climatic Research Unit (CRU) and Japanese reanalysis (JRA) blended dataset, CRU JRA [36],
covers the global land surface at 0.5◦ latitude/longitude resolution from 1901 to 2017 with a 6-h time-step.
The climate variables include air temperatures (minimum, maximum, and mean), precipitation, specific
humidity, solar radiation, downward longwave radiation, surface atmosphere pressure, and wind
speeds (zonal and meridional directions). The dataset was developed by aligning the Climatic Research
Unit Time Series dataset (CRU TS) [37] with the Japanese 55-year reanalysis dataset (JRA-55) [38].
The JRA-55 dataset begins in 1958. The data from 1901 to 1957 were constructed based on an analog
approach using the CRU TS monthly dataset and the JRA-55 dataset between 1958 and 1967 [37].
We aggregated the 6-hourly data into daily values.

The Princeton dataset (version 3) [39] covers the global land surface at 0.25◦ latitude/longitude
resolution from 1948 to 2016 with 3-hourly, daily, and monthly time-steps. The climate variables
include air temperature, precipitation, specific humidity, solar radiation, downward longwave radiation,
surface atmosphere pressure, and wind speed. The dataset was constructed by combining a suite
of global observation-based datasets with the National Centers for Environmental Prediction and
National Center for Atmospheric Research (NCEP–NCAR) reanalysis [39].

The Natural Resources Canada meteorological dataset (NRCANmet) [40] provides daily air
temperatures (minimum and maximum) and precipitation from 1950 to 2013 in North America at
a resolution of 5 arc minutes latitude/longitude (about 10 km). The dataset was interpolated based on
climate station observations using Australian National University Spline method (ANUSPLIN).

The Pacific Climate Impacts Consortium (PCIC) meteorological dataset for northwest of North
America (PNWNAmet) [41] covers northwestern North America (169◦ W to 101◦ W, 40◦ N to 72◦ N)
at a resolution of 3.75 arc m latitude/longitude (about 6 km) from 1945 to 2013. The dataset includes
daily air temperatures (minimum and maximum), precipitation, and wind speed. It is interpolated
from long-term homogenized station observations and a high-resolution monthly climatology dataset
averaged in 1970–2000 [41].

Two future climate scenarios generated by a newly developed Canadian regional climate model,
CanRCM4, include daily climate projections from 2011 to 2100 in North America at a spatial resolution
of 0.22◦ latitude/longitude [42]. The two projections are under representative concentration pathways
(RCP) 4.5 and 8.5 for medium-low and high emission scenarios, respectively. The model outputs also
include daily meteorological conditions from 1950 to 2010.

The new 1-km spatial resolution climate surface for global land areas, WorldClim2, provides
monthly climatology averaged during 1970–2000 covering the global land surface at a spatial resolution
of 30 arc seconds latitude/longitude (about 1 km) [29]. The climate variables include monthly average air
temperatures (daily minimum, maximum and average), precipitation, vapor pressure, solar radiation,
and wind speed. The dataset was interpolated from climate station observations with covariates
of elevation, distance to the coast, and three satellite image derived covariates from the Moderate
Resolution Imaging Spectroradiometer (MODIS): Maximum and minimum land surface temperatures,
and cloud cover [29].

We used the following three datasets to assess the accuracy of Met1km. The first two datasets are
station observations and the third is a gridded dataset developed based on station observations.

The second-generation homogenized daily air temperature and precipitation data in Canada [43]
includes 338 and 463 stations across Canada for air temperature and precipitation, respectively.
Air temperature data include daily minimum, maximum, and mean. Most stations were established in
the middle of the 20th century, but some dated to the middle of the 19th century. The data records for
most stations terminate in 2014.

Canadian Weather Energy and Engineering Data Sets (CWEEDS) were developed by Environment
Canada and the National Research Council of Canada [44]. They include hourly air temperature,
dew point, wind direction and speed, cloud cover, direct and diffuse irradiance at 145 stations across
Canada for up to 48 years, starting as early as 1953, and ending in 2005. From this hourly dataset we
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calculated daily minimum and maximum air temperatures, daily mean vapor pressure, wind speed,
and daily total solar radiation.

Canadian gridded temperature and precipitation anomalies (CANGRD) is a 50-km resolution
gridded dataset from 1900 to 2017 in southern Canada (south of 60◦N) and from 1948 to 2017 in northern
Canada. It was interpolated from adjusted and homogenized climate station data across Canada.
It includes monthly, seasonal, and annual anomalies from the baseline averages over 1961–1990.

3.2. Development of Met1km for the Historical Period

We selected a combination of datasets for the 1901 to 2017 period considering their temporal
coverages and spatial resolutions, which usually influence the accuracy. There are several datasets
that cover the period before the 1940s with daily or shorter time-steps (Table A1). We used the newly
released dataset CRU JRA [36] for the period from 1901 to 1947 and the year 2017. We selected CRU
JRA because its monthly averages before the 1940s aligns with the widely used CRU dataset. From 1948
to 2016, we used the Princeton dataset [39]. We selected the Princeton dataset as it is readily available,
combines re-analysis and various observational data, and has a better spatial resolution and data length
than most other similar datasets. We used NRCANmet [40] for air temperature and precipitation
from 1950 to 2013 (replacing the daily air temperature and precipitation from the Princeton dataset).
We also used PNWNAmet [41] for air temperature, precipitation, and wind speed from 1945 to 2013
for western Canada where they are available (replacing air temperatures and precipitation from
NRCANmet, and wind speed from the Princeton and the CRU JRA datasets). We used NRCANmet
and PNWNAmet because they mimicked the station observations much more closely than the CRU
JRA and the Princeton datasets (discussed in Section 4.6).

3.3. Development of Met1km for Future Climate Change Scenarios

Future climate change scenarios were derived from the output of a newly developed Canadian
regional climate model, CanRCM4, for North America [42]. GCMs are the primary tools used to project
future climate changes. Although the state-of-the-art GCMs can reasonably simulate the climate at large
scales [45], climate change impact assessments often need to downscale the GCM outputs to regional
and local scales. A commonly used method is dynamical downscaling based on regional climate
models driven by GCM outputs for a relatively small domain but with fine resolutions (e.g., [46]).
This method has the advantages of keeping the fine-resolution output consistent with the output of
GCMs at large scales and better accounting of regional and local forcings (e.g., topography, land use,
and land cover) than GCMs. In this study, we used the output of CanRCM4 for North America
under RCP 4.5 and 8.5 [42] as they have been frequently used in climate change impact assessments
(e.g., [47–49]).

Climate model outputs often have some systematic biases when compared with observations.
Such biases are related to imperfect model conceptualization, parameterization, and spatial averaging
within grid cells. Therefore, bias correction has become a common practice to match modeled gridded
data to station observations [50,51]. In this study, we conducted a bias correction using a quantile
mapping approach that has been applied in previous studies [47–49]. The approach includes three
steps for each grid: a) Determining the “true” cumulative probability distribution function (CDF) and
the CDF from the CanRCM4 output under the current climate, b) correcting the CanRCM4 output to
the “true” probability distribution under the current climate, and c) correcting the CanRCM4 output
for the future period. The bias-corrected current climate data were used to calculate the CanRCM4
baseline, which was used to downscale the future scenarios to 1-km resolution.

The CanRCM4 output for the current climate was corrected using the following equation

xc−corrected = F−1
true[Fc(xc)], (1)
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where xc-corrected is the bias-corrected data under the current climate. Ftrue
−1 is the inverse function

of the “true” CDF for the current climate, and Fc(xc) is the CDF of the model output for the current
climate. The probability distributions Ftrue(xc) and Fc(xc) can be estimated theoretically or empirically.
We estimated the distributions empirically to avoid complications of calibrating an appropriate
probability distribution, since even daily minimum and maximum air temperatures do not necessarily
follow a normal distribution [52]. Fc(xc) was determined using the CanRCM4 output for the current
climate. We estimated the “true” CDF for the current climate using the Princeton dataset because
its spatial resolution (0.25◦ latitude/longitude) is similar to that of the CanRCM4 output (0.22◦

latitude/longitude). Empirical distributions for each variable were estimated month by month to
account for seasonal variations.

The CanRCM4 output for the future period was corrected using the following equation

x f−corrected = x f + F−1
true

[
F f

(
x f

)]
− F−1

c

[
F f

(
x f

)]
, (2)

where xf-corrected is bias-corrected data for the future period. Ff (xf) is the CDF determined using the
CanRCM4 output for the future (xf). It is important to incorporate potential changes in the probability
distribution of a climate variable when the bias correction is applied to a future period [53]. We adopted
the equidistant CDF matching method [53], which assumes that the difference between the quantiles
estimated from the model output and observed values during the current climate would also be
applicable to the future period.

3.4. Spatial Downscaling

The gridded meteorological datasets used in this study are at different spatial resolutions.
We downscaled them to a resolution of 30 arc seconds latitude/longitude (about 1-km) based on
the WorldClim2 dataset [29] using the re-baselining method [54]. We selected WorldClim2 dataset
because it has a fine spatial resolution and includes all the climate variables required except downward
longwave radiation. The Princeton and CRU JRA climate datasets and the future climate scenarios all
include downward longwave radiation. We therefore estimated monthly mean downward longwave
radiation using the other variables in the WorldClim2 dataset (Appendix B).

The re-baselining method was developed by Way and Bonnaventure [54] to fill missing observations
using gridded regional climate anomalies. The method is based on the commonly observed
phenomenon that climate anomalies at the regional scale typically co-vary, whereas long-term
averages at different sites can be different due to local topography and other site conditions. Therefore,
they estimated air temperature at a site by combining the long-term averages at the site (observations
are available but there are many gaps) and the anomalies from gridded climate reanalysis datasets [54].
They tested the method for monthly air temperatures at 53 climate stations in northeastern Canada.
We used this method to downscale all the daily climate variables to 1-km resolution using WorldClim2
as the baseline. This method can easily integrate datasets of various spatial resolutions without
affecting their temporal variations and trends. We assessed this downscaling method across Canada
for air temperature and precipitation based on climate station observations (Section 4.2).

The re-baselining method is simple to compute. For daily minimum and maximum air
temperatures, we used the differences to re-baseline the coarse gridded daily meteorological datasets
to 1-km resolution

T′(y, m, d) = T(y, m, d) + D(m), (3)

D(m) = Twc(m) − Ta(m), (4)

where T′(y,m,d) is the downscaled daily air temperature (minimum or maximum) for year y, month m,
and day d for a 1-km resolution grid. T(y,m,d) is the daily air temperature (minimum or maximum)
in a coarse gridded dataset (i.e., the CRU JRA, Princeton, NRCANmet, or PNWNAmet datasets) on
that day. Twc(m) is the monthly average air temperature (minimum or maximum) for month m from
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the WorldClim2 dataset, which is the average from 1970 to 2000. Ta(m) is the monthly average air
temperature (minimum or maximum) from 1970 to 2000 for the month m calculated using the coarse
gridded dataset. D(m) is the difference between Twc(m) and Ta(m). Daily mean air temperature is
calculated as the average of daily minimum and maximum air temperatures.

For the other climate variables (daily precipitation, vapor pressure, wind speed, solar radiation,
and downward longwave radiation), we used ratios to re-baseline the coarse gridded daily datasets to
1-km resolution

V′(y, m, d) = V(y, m, d)·r(m), (5)

r(m) = Vwc(m)/Va(m), (6)

where V is a daily value of a climate variable (daily precipitation, vapor pressure, wind speed, solar
radiation, and downward longwave radiation) from a coarse gridded dataset. Vwc(m) is the monthly
average for month m from the WorldClim2 dataset, and Va(m) is the monthly average from 1970 to
2000 for the month m calculated using the coarse gridded dataset. r(m) is the ratio between Vwc(m) and
Va(m). We used ratios instead of difference for these variables to avoid generating negative values,
and to avoid the effects of dry days for precipitation.

The downscaled daily solar radiation has a smaller range in their day-to-day fluctuations
comparing to the CWEEDS [44]. We adjusted this difference using the following method

S′ =

 S + a
(
S− Savg9

)
i f S + a

(
S− Savg9

)
≥ bSavg9

bSavg9 i f S + a
(
S− Savg9

)
< bSavg9

, (7)

where S′ is the adjusted daily solar radiation, and S is the downscaled daily solar radiation from the
Equation (5). Savg9 is nine-day moving average of the solar radiation calculated by Equation (5) around
the day for the adjustment. Their units are in KJ/m2/day. a and b are parameters, determined as 1.0
and 0.4 by comparing the adjusted and the CWEEDS daily solar radiation for different stations across
Canada. Essentially, Equation (7) doubles the fluctuation range, but the adjusted value should not be
less than 40% of the nine-day average.

3.5. Statsitical Measures for Accuracy Assessment

We used Pearson’s correlation coefficient (R) and mean absolute error (MAE) to assess the accuracy
of Met1km by comparing its values with observations.

R =
∑n

i=1
(xi − xm)

(
x′i − x′m

)
/

√∑n

i=1
(xi − xm)

2
∑n

i=1

(
x′i − x′m

)2
, (8)

MAE =
∑n

i=1

∣∣∣xi − x′i
∣∣∣/n, (9)

where R is Pearson’s correlation coefficient, and MAE is mean absolute error. xi and x′i are Met1km and
observed values for a day i, respectively. xm and x′m are the averages of Met1km and observed values,
respectively. n is the total number of days in which both Met1km and observed daily data are available.

To further analyze sources of the errors, we partitioned the time series of a climate variable into
three components: The long-term average, the long-term average seasonal pattern, and the deviation
from the long-term average seasonal pattern.

xi = xa +
(
xa,doy − xa

)
+

(
xi − xa,doy

)
= xa + dx1,doy + dx2,i, (10)
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where xa is the long-term average of a climate variable, and xa,doy is the long-term average for a day
of year doy (which does not change from year to year). dx1,doy is the difference between xa,doy and xa,
and dx2,i is the difference between xi and xa,doy

dx1,doy = xa,doy − xa , (11)

dx2,i = xi − xa,doy. (12)

Thus, the MAE can be expressed as the following

MAE =
∑n

i=1

∣∣∣∣∣(xa − x′a) +
(
dx1,doy − dx′1,doy

)
+

(
dx2,i − dx′2,i

)∣∣∣∣∣/n

≤

∣∣∣xa − x′a
∣∣∣+∑365

doy=1

∣∣∣∣dx1,doy − dx′1,doy

∣∣∣∣/365 +
∑n

i=1

∣∣∣∣dx2,i − dx′2,i

∣∣∣∣/n.
(13)

For precipitation, we used a ratio to calculate dx2,i to avoid the effects of days without precipitation

dx2,i = (ri − 1)xa,doy, (14)

where ri is the ratio of precipitation on day i to the long-term average of that day of year (xa,doy).
Thus, the third term in Equation (13) for precipitation can be expressed as the following∑n

i=1

∣∣∣∣dx2,i − dx′2,i

∣∣∣∣/n =
∑n

i=1

∣∣∣∣(ri − 1)xa,doy −
(
r′i − 1

)
x′a,doy

∣∣∣∣/n ≈
∑n

i=1

∣∣∣ri − r′i
∣∣∣x′a/n, (15)

where r′i is the ratio of precipitation on day i to the long-term average on that doy for the observed daily
precipitation. Equation (13) indicates that the overall MAE can be divided into three components: The
error in long-term average (the first term), the error in long-term average seasonal pattern (the second
term), and the error in deviations from the average seasonal pattern (the third term), which reflects
the error in day-to-day fluctuations. This partitioning is important for permafrost modeling because
permafrost is sensitive to the error in long-term averages, somewhat sensitive to the error in seasonal
patterns, but not sensitive to short-term fluctuations (e.g., [34]).

4. Result and Analysis

In this section, we first described the Met1km dataset and showed some examples of the data
(Section 4.1). Then, we tested the re-baselining method using climate station observations for air
temperature and precipitation (Section 4.2). After that, we assessed the accuracy of Met1km in four
sections. Section 4.3 describes detailed comparisons of Met1km with observations of one climate station
for all the climate variables except downward longwave radiation. Section 4.4 provides comparisons of
Met1km with all the climate stations across Canada for air temperature and precipitation. Section 4.5
describes comparisons of Met1km with CANGRD, a 50-km resolution gridded monthly anomaly time
series for air temperature and precipitation. Finally, we compared the accuracy of Met1km with the
accuracies of the source datasets and the effects of spatial downscaling (Section 4.6).

4.1. Met1km Format and General Temporal and Spatial Patterns of the Data

Met1km includes re-organized input source datasets and two scripts to generate spatial data and
time series based on the input datasets. The input source datasets, including the Princeton dataset,
CRU JRA, NRCANmet, PNWNAmet, WorldClim2, and two future scenarios, were re-organized and
saved in binary format for easy and efficient processing. One script generates 1-km resolution spatial
data for any climate variable for any time period. Another script generates daily time series from
1901 to 2100 for all the climate variables for any user-defined location (1-km grid) in the domain of
Canadian landmass. They were developed using Microsoft Visual C++ and can process the data very
efficiently. With a desktop computer, generating a time-series dataset for one 1-km grid takes about
one second, and generating a spatial dataset for a climate variable takes 4–5 min. The data volume of
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the re-organized input datasets and the scripts is about 134 gigabytes, while the total data volume of
all the 1-km grids in Canada is 82 terabytes if each value is saved in 4 bytes. Thus, Met1km is relatively
small comparing to the total volume of the generated data, flexible to use, and can be updated easily
by replacing the source datasets and modifying the scripts.

Figure 1 shows an example of air temperature and precipitation time series generated by Met1km
for a grid at Yellowknife (62.4540◦ N, 114.3718◦ W), depicting both long-term increases and inter-annual
fluctuations. From the 1900s (1901–1910) to the 2000s (2001–2010), air temperature increased 2.0 ◦C and
precipitation increased 11.4%. From the 2000s to the 2090s (2091–2100), air temperature is predicted
to increase by 4.0 and 7.8 ◦C under the RCP 4.5 and 8.5 scenarios, respectively. Precipitation is
predicted to increase by 9.8% and 36.2%, respectively, under these two scenarios. Daily minimum
and maximum air temperatures show similar patterns as that of daily mean air temperature, but the
increase in daily minimum air temperature is about 1 ◦C more than that of the daily maximum air
temperature. Vapor pressure and downward longwave radiation also show similar increasing trends
as air temperature. Long-term changes are small for wind speed and solar radiation.Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 28 
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Figure 1. (a) Air temperature and (b) precipitation generated by Met1km for a grid at Yellowknife,
Northwest Territories (62.4540◦ N, 114.3718◦ W). Black curves are for the historical period (1901–2017),
blue and red curves are for future scenarios under RCP 4.5 and 8.5, respectively. The dash curves are
annual values, and the bold curves are 10-year moving averages.
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Figure 2a shows the spatial distribution of mean air temperature in the 2000s. Mean air temperature
ranges from −25 to 11 ◦C from the high Arctic to southern Canada. Mean annual air temperature
can differ by several degrees in short distances due to variations in topography, especially in British
Columbia and high arctic regions. This indicates that it is necessary to develop meteorological datasets
at high spatial resolutions. From the 1900s to the 2000s, air temperature increased 1 to 2 ◦C in southern
Canada and 2 to 3 ◦C in most of northern Canada (Figure 2b). Under the RCP 4.5 climate change
scenario, air temperature is predicted to increase by 3 to 4 ◦C in southern Canada and by 4 to 7 ◦C in
most of northern Canada (Figure 2c). Under the RCP 8.5 scenario, the air temperature is predicted to
increase by 5 to 8 ◦C in most of southern Canada and by 7 to 11 ◦C in northern Canada, especially in
the northwestern Arctic (Figure 2d). These spatial patterns and the magnitudes of future changes are
similar to that of the multi-model ensembles from the fifth phase of the Coupled Model Intercomparison
Project (CMIP5) for Canadian domain [55].
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Figure 2. Spatial distributions of mean air temperature and changes with time generated by Met1km.
(a) Mean air temperature in the 2000s (averaged from 2001 to 2010), (b) changes from the 1900s (averaged
from 1901 to 1910) to the 2000s, and changes from the 2000s to the 2090s (averaged from 2091 to 2100)
under scenarios of (c) RCP 4.5 and (d) RCP 8.5.

4.2. Testing the Re-Baselining Spatial Downscaling Method

We tested the re-baselining method using the second generation homogenized daily air temperature
and precipitation data in Canada [43]. The dataset includes 338 and 463 stations across Canada for air
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temperature and precipitation, respectively. To test whether a climate variable co-varies at two sites,
we calculated R between each pair of climate stations with distance less than 1000 km. To avoid the
effects of seasonality, we calculated R using the deviations (using difference for air temperature and
ratio for precipitation) from the long-term seasonal patterns, which were linearly interpolated from the
long-term monthly averages. We used data from 1945 so that the number of years of the data used
for the calculation was similar across the country. The calculated R for air temperature is generally
higher than that of precipitation (Figure 3a,b). R decreases with distance between the stations for both
air temperature and precipitation, with a near-linear decrease with distance for air temperature but
a more rapid initial decrease for precipitation.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 28 
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Figure 3. Correlation coefficients (R) between two climate stations for (a) daily mean air temperature
and (b) daily precipitation and mean absolute differences between two climate stations for (c) daily
mean air temperature and (d) daily precipitation. They were calculated using the deviations (differences
for air temperature and ratios for precipitation) from the long-term seasonal patterns, which were
linearly interpolated from the long-term monthly averages.

To test whether the magnitudes of co-variation are similar at two sites, we calculated the mean
absolute difference between each pair of stations using the daily deviations from the long-term average
seasonal patterns (using differences for air temperature and ratios for precipitation). The mean absolute
difference is the third term in Equation (13), and it is also the MAE of the re-baselining method when
using the deviations of one station to estimate another station. The mean absolute differences increase
with distance for both air temperature and precipitation, with a near-linear increase with distance for air
temperature but a more rapid initial increase for precipitation. These patterns somewhat mirror that of
the R (Figure 3c,d). These results indicate that a climate variable (daily air temperature or precipitation)
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co-varies, and the magnitudes of variations are similar at two stations when their distance is not too
far. The co-variation is more consistent for air temperature than for precipitation.

For each pair of stations, we also calculated the R and mean absolute differences using running
averages over some days (Figure 4). Each curve in Figure 4 represents the median values of all the
pair of stations within a certain range of distances. The median R increases quickly with the duration
of the running average from 1 day to about 5–10 days. The increase of R becomes very small when
the duration of the running average is longer than 10 days (Figure 4b). Similarly, the median mean
absolute difference decreases quickly with the duration of the running average from 1 day to about
5–10 days, then the decrease becomes smaller, especially when two stations are relatively close. This is
important because the original re-baselining method was developed and tested based on monthly air
temperature [54]. Our tests show that the errors for daily air temperature and precipitation are about 2.5
and 2.9–3.5 times, respectively, of the errors when the re-baselining is calculated using monthly means.
The errors decreased rapidly when averaged for some days. The errors for 5- to 10-day averages are
not significantly higher than the error calculated using monthly averages. For stations with distances
less than 50 km, the median error for 10-day average air temperature is 0.6 ◦C. For precipitation, the
median errors for 10-day averages are 31% and 37% of the long-term averages for distances <25 km
and 25–50 km, respectively. Figures 3 and 4 also show that the spatial downscaling errors are smaller
when stations are more densely distributed (or the gridded dataset has a higher spatial resolution).
Therefore, we generally chose source datasets with high spatial resolutions.
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Figure 4. Changes of correlation coefficients (R) (a,b) and mean absolute differences (c,d) between
climate stations with duration of running average for air temperature (a,c) and precipitation (b,d).
They were calculated using the deviations (differences for air temperature and ratios for precipitation)
from the long-term daily averages, which were interpolated from the long-term monthly averages.
Each curve represents the median values calculated from all the stations within a certain distance range.
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4.3. Comparing Met1km with Climate Station Observations

We compared Met1km with observations at some climate stations across Canada. Although most of
the station observations probably were used to develop the gridded source datasets, such comparisons
are useful to detect any technical errors and to assess the accuracy of the re-baselining downscaling
method. Station data of daily minimum and maximum air temperatures, vapor pressure, wind speed,
and solar radiation were derived from hourly data of CWEEDS [44]. Daily station precipitation data
were from Environment and Climate Change Canada.

Figure 5 shows some examples of comparison between Met1km and observed climate variables at
the Yellowknife airport climate station for the year 1953. Met1km daily values are very close to the
observations. Figure 6a shows the R between Met1km and observed daily values from 1948 to 2016
for precipitation and from 1953 to 2005 for other variables. The R is very high for daily minimum,
maximum, and mean air temperatures, vapor pressure, and solar radiation. The R is lower for
precipitation and wind speed. Since strong seasonal variation could contribute to the high correlations,
we also calculated the R after excluding the long-term average seasonal patterns. The long-term average
seasonal patterns were calculated by linearly interpolating the long-term monthly averages. The R is
still very high for daily minimum, maximum, and mean air temperatures (grey bars in Figure 6a). The R
becomes lower for vapor pressure and solar radiation, indicating that Met1km captured their seasonal
patterns but the day-to-day fluctuation was not well captured as for air temperatures. The R calculated
from the original data and from the deviations are very similar for precipitation and wind speed.
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Figure 5. Comparisons between Met1km dataset and observations at the Yellowknife airport climate
station in 1953 for difference climate variable. (a) Daily minimum air temperature; (b) daily maximum
air temperature; (c) precipitation; (d) vapor pressure; (e) solar radiation; and (f) wind speed.
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Figure 6. (a) Correlation coefficients (R) between Met1km and measurements at the Yellowknife
airport climate station, and (b) the total error and the three error components of Met1km calculated by
comparing to the observations at the climate station. The daily observations for precipitation are from
1948 to 2016, and other observations are from 1953 to 2005.

Figure 6b shows the overall error and the three error components for each climate variable for the
grid covering the Yellowknife airport climate station. The total error for daily mean air temperature is
smaller than that of the daily minimum and maximum air temperatures. The error in daily deviations
from the long-term average seasonal patterns are the major sources of the error for all the variables,
especially for precipitation, vapor pressure, wind speed, and solar radiation. The errors in long-term
averages are very small for daily mean air temperature, precipitation, and vapor pressure. For other
variables, the errors in long-term averages are similar to that of the long-term average seasonal patterns.
Although the errors in long-term averages are relatively large for daily minimum and maximum air
temperatures, the error in long-term average is small for daily mean air temperature.

Figure 7 shows the changes in errors with the duration of running average for the Yellowknife
airport climate station. The MAE decreased quickly with the duration of running average.
When averaged over 10 days, the MAE is about 50 to 60% of the daily errors except daily maximum
air temperature, which is about 70% of the daily error. The reduction of MAE is small when the
duration of running average is longer than 10 days (Figure 7a). For the deviations from the long-term
average seasonal patterns, the reduction of MAE with duration of the running average is even more
significant (Figure 7b). In addition, the probability distributions of Met1km are very similar to that of
the observations for all the climate variables (Figure 8).
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Figure 7. Changes of mean absolute error (MAE) with the duration of running average (a) for the
original data and (b) for the error in deviations from the long-term average seasonal patterns. The daily
observations for precipitation are from 1948 to 2016, and other observations are from 1953 to 2005.

Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 28 

 

 

Figure 7. Changes of mean absolute error (MAE) with the duration of running average (a) for the 

original data and (b) for the error in deviations from the long-term average seasonal patterns. The 

daily observations for precipitation are from 1948 to 2016, and other observations are from 1953 to 

2005. 

 

Figure 8. Comparisons of the probability distributions of Met1km data with that of the observations 

at the Yellowknife airport climate station. The x-axis is expressed as (a–f) deviations from or (g) ratio 

to the long-term average seasonal pattern, which is interpolated from long-term monthly averages. 

The inset in panel (g) shows the same data but in different scales. The daily data are from 1948 to 2016 

for precipitation and from 1953 to 2005 for other climate variables. 

4.4. Comparing with the Homogenized Daily Air Temperature and Precipitation Station Data 

We compared Met1km with the second-generation homogenized climate dataset [43] for each 

station. Because the CRU JRA dataset from 1901 to 1957 was developed by randomly selecting a year 

between 1958 and 1967 in JRA-55 dataset that is in alignment with the CRU monthly data, the daily 

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

(a) from the orginal data

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

(b) from the deviations from the

average seasonal patterns

Duration of running average (days)

M
A

E 
(%

 o
f 

d
ai

ly
 M

A
E)

20

70

0 10 20 30

Daily minimum air temperature Daily maximum air temperature

Daily mean air temperature Precipitation

Vapor pressure Solar radiation

Wind speed

Duration of running average (days)

M
A

E 
(%

 o
f 

d
ai

ly
 M

A
E)

0

2

4

6

8

10

-6 -4 -2 0 2 4 6

0

2

4

6

8

10

-20 -10 0 10 20

0

2

4

6

8

10

-20 -10 0 10 20
0

2

4

6

8

10

-20 -10 0 10 20

D
is

tr
ib

u
ti

o
n

 p
ro

b
ab

il
it

y 
(%

)
D

is
tr

ib
u

ti
o

n
 p

ro
b

ab
il

it
y 

(%
)

Daily precipitation (ratio)Daily wind speed (deviation, m/s) Daily solar radiation (deviation, MJ/m2/day)

(a) daily minimum air (b) daily maximum air (c) daily mean air temperature (d) vapor pressure

Vapor pressure (deviation, mb)Daily mean air temperature
(deviation,  C)

Daily maximum air temperature
(deviation,  C)

Daily minimum air temperature
(deviation,  C)

0

2

4

6

8

10

0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

0

5

10

15

20

25

30

35

-12 -8 -4 0 4 8 12

0

20

40

60

80

0 1 2 3

(e) wind speed (f) solar radiation
(g) precipitation

Met1km

Observed at 
Yellowknife 

climate station

Figure 8. Comparisons of the probability distributions of Met1km data with that of the observations at
the Yellowknife airport climate station. The x-axis is expressed as (a–f) deviations from or (g) ratio
to the long-term average seasonal pattern, which is interpolated from long-term monthly averages.
The inset in panel (g) shows the same data but in different scales. The daily data are from 1948 to 2016
for precipitation and from 1953 to 2005 for other climate variables.

4.4. Comparing with the Homogenized Daily Air Temperature and Precipitation Station Data

We compared Met1km with the second-generation homogenized climate dataset [43] for each
station. Because the CRU JRA dataset from 1901 to 1957 was developed by randomly selecting a year
between 1958 and 1967 in JRA-55 dataset that is in alignment with the CRU monthly data, the daily
errors decreased sharply by about a half from 1 January 1958. Therefore, we did the comparisons
separately for the periods from 1901 to 1944 (from 1901 to 1947 in eastern Canada (east of 101◦ W)) and
from 1945 to 2014 (from 1947 to 2014 in eastern Canada).

Figure 9a–c shows the median MAE of all the stations for the two periods, respectively. For daily
values, the median MAE from 1901 to 1944 is 3 to 5 times of that from 1945 to 2014. The MAE decreases
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when the climate variables are averaged for a number of days, and the decrease for precipitation is
faster than for air temperatures (daily minimum, maximum, and mean), especially for the period from
1901 to 1944. When averaged for 30 days, the MAE from 1901 to 1944 is about twice of that from 1945 to
2014 (1.6, 2.0, 2.7, and 1.8 times for minimum, maximum, and mean air temperatures, and precipitation,
respectively). The MAE for daily mean air temperature is smaller than that of daily minimum and
maximum air temperatures, especially from 1945 to 2014. Met1km and the climate station data are
highly correlated for most of the stations with a linear slope close to 1 from 1945 to 2014. This is even
the case when the seasonal patterns are eliminated. However, from 1901 to 1944, the correlations
between the daily values of Met1km and the climate station observations are very low after eliminating
the average seasonal patterns. The correlation increases when the daily values are averaged over more
days, and the correlation reaches a similar level of the correlation during 1945–2014 when the daily
values are averaged over 30 days.
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Figure 9. The errors of Met1km comparing with the homogenized daily air temperature and precipitation
station data for the period from 1945 to 2014 (1948 to 2014 in eastern Canada) and from 1901 to 1944
(1901 to 1947 for eastern Canada). Panels (a–c) are for the MAE, and panels (b,d) are for the three error
components (error in long-term averages (absolute of mean error), MAE in average seasonal patterns,
and MAE for the deviations from long-term average seasonal patterns). The large bars and the error
bars are for the median and the standard deviations of the errors of all the available climate stations.

Figure 9b–d shows the median values of the three error components of all the stations for the
two periods. From 1945 to 2014, the errors in long-term averages are small for temperatures (daily
minimum, maximum and mean) and precipitation, as are the errors in average seasonal patterns
for daily mean air temperature and precipitation (Figure 9b). The major error for daily mean air
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temperature and precipitation is in day-to-day fluctuations. For daily minimum and maximum
air temperatures, the errors in average seasonal patterns and in day-to-day fluctuations are similar.
The errors in day-to-day fluctuations decrease quickly when averaged for 5 to 10 days, and further
reduced when averaged in 30 days (Figure 9b). From 1901 to 1944, the errors in long-term averages
are very small, as are daily mean air temperature and precipitation. The errors in long-term seasonal
patterns for daily minimum and maximum air temperatures are slightly larger. The major sources of
the errors are from day-to-day fluctuations. The errors in day-to-day fluctuations decrease quickly and
continuously when averaged up to 30 days (Figure 9d).

4.5. Comparing with a Gridded Monthly Anomaly Time-Series Dataset

Figure 10 shows the correlation coefficients between CANGRD and monthly anomaly calculated
from Met1km. The R is very high for air temperatures (daily minimum, maximum, and mean). The R
for the monthly anomalies of daily mean air temperature is slightly higher than that of daily minimum
and maximum air temperatures in all the months, seasons, and annual averages. The R for precipitation
is much lower than that of air temperatures and the R has a large standard deviation. Figure 11a shows
the spatial distribution of R for the anomaly of annual mean air temperature. The sudden increase
in R crossing latitude 60◦ N is due to differences in data length (the data are from 1948 in the north
and from 1901 in the south). The R is lower in British Columbia and the eastern high Arctic, probably
because of the complex topography in these regions. There is no obvious difference in R between
the domain of PNWNAmet and the other areas for air temperature. The R for precipitation is lower
than that of air temperatures and has a wider range of variation (Figure 10). R tends to be higher
in western Canada (Figure 11b), indicating that the PNWNAmet has a higher accuracy than that of
the NRCANmet dataset for precipitation. The correlation is very poor in one area in central Quebec.
A close check of the data shows that the discrepancy occurs after 1992, which has an unusually large
variation. The downscaled precipitation from the CRU JRA, Princeton and NRCANmet datasets all
has a similar pattern for this area, probably because they used the same dataset, which is different from
that deriving the CANGRD dataset. The slopes of the linear regressions are close to 1, indicating the
fluctuation ranges of CANGRD and Met1km are similar. This comparison indicates that the temporal
variation patterns of Met1km are similar to that of the CANGRD dataset.Atmosphere 2020, 11, x FOR PEER REVIEW 18 of 28 
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Figure 10. Correlation coefficients between the monthly anomalies of Met1km and the CANGRD
dataset. The daily data from Met1km were converted to monthly anomalies corresponding to the grids
of the CANGRD dataset. The large bars and the error bars are the averages and standard deviations of
the 4890 grids of the CANGRD dataset.
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Figure 11. Correlation coefficients between the CANGRD and the anomalies of Met1km datasets for (a)
annual mean air temperature and (b) annual total precipitation. The daily data from Met1km were
converted to anomalies corresponding to the CANGRD dataset. The data were from 1901 in southern
Canada (south of 60◦ N) and from 1948 in northern Canada.

4.6. Comparing the Accuracy of Met1km and the Source Datasets

Figure 12 shows the errors of Met1km and the source datasets and the effects of downscaling
by comparing with the second generation homogenized daily air temperature and precipitation
dataset [43]. The errors of the source datasets were calculated by directly comparing the grid values
with the station data. The downscaling effects on the errors were calculated by comparing the station
data with the source data downscaled to 1-km resolution using the re-baselining method. For the CRU
JRA and the Princeton datasets, spatial downscaling reduced the mean error (absolute value of the
error in long-term average) by about a half for daily mean, minimum, and maximum air temperatures,
and by about 30% for precipitation. Downscaling also significantly reduced the standard deviation of
the mean errors for these two datasets. For daily mean, minimum, and maximum air temperatures,
the mean errors of the CRU JRA dataset in 1948–2014 are slightly smaller than that in 1901–1947,
and the mean errors are even smaller for the Princeton dataset. The mean errors of precipitation are
similar for the CRU JRA dataset in 1901–1947 and 1948–2014, and for the Princeton dataset. For the
NRCANmet and PNWNAmet datasets, the effects of downscaling on the mean errors were small and
mixed. However, downscaling reduced the standard deviation of the mean errors for air temperatures,
especially for the daily means.

Downscaling slightly reduced the MAE for daily air temperature and precipitation for the CRU
JRA and Princeton datasets. The daily MAE from 1901 to 1947 is larger than the later period because
the data for this period was estimated using an analogy method based on the JRA-55 from 1958 to 1967
and the CRU monthly data [36]. The MAE from 1901 to 1947 decreased quickly when the data were
averaged for some days, and the MAE became close to that of CRU JRA in 1948–2014 when averaged for
30 days, especially for daily maximum air temperature. The MAE also reduced for other datasets when
the data were averaged for some days. The MAE of the Princeton dataset is slightly smaller than that
of CRU JRA in 1948–2014 for daily mean air temperature, but their MAE is similar for daily minimum
and maximum air temperatures and precipitation. The MAE of the NRCANmet and PNWNAmet
datasets is smaller than that of the CRU JRA and Princeton datasets because the NRCANmet and
PNWNAmet datasets were directly interpolated from the climate station data and have fine spatial
resolutions. For the NRCANmet and PNWNAmet datasets, downscaling slightly increased the MAE
for daily minimum and maximum air temperatures. However, downscaling slightly reduced MAE of
daily mean air temperature for the PNWNAmet and reduced the standard deviation of MAE of daily
mean air temperature for both the NRCANmet and PNWNAmet datasets. That means downscaling
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reduced the errors in daily mean air temperature and made it spatially more consistent. The effects of
downscaling on precipitation were small for both the NRCANmet and PNWNAmet datasets.
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Figure 12. Comparisons of the errors of the source datasets, the spatially downscaled source datasets
and Met1km (the three bars in each group respectively) (a–p). The errors were calculated by comparing
with the homogenized daily climate station data [43]. The four rows are for different climate variables,
and the four columns are for the errors in long-term averages and the mean absolute errors for daily
values, 10-day averages and 30-day averages. The large bars and the error bars are the averages and
the standard deviations of the errors of all the climate stations. The errors of Met1km (the red hatched
bars) are different in each panel due to differences in periods of the datasets and spatial domains of the
NRCANmet and PNWNAmet datasets.

Figure 12 shows that the PNWNAmet dataset had slightly larger errors than that of the NRCANmet
dataset. However, their spatial domains were different. For the spatial domain of PNWNAmet,
where most of the area is mountainous, the errors of NRCANmet and PNWNAmet were similar but
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the standard deviation of the errors of PNWNAmet was smaller than that of the NRCANmet, probably
because the spatial resolution of PNWNAmet is finer than that of NRCANmet.

5. Discussion

This study developed a long-term (from 1901 to 2100), high-resolution (1 km) daily near-surface
meteorological dataset in Canada. Met1km has several advantageous features compared to existing
meteorological datasets (Table A1).

It has a high spatial resolution and covers a long-time period at a daily time step for the entire
Canadian landmass. It can therefore be used to model long-term dynamics of permafrost and ground
thermal conditions at high spatial resolutions. The dataset can also be used for other national-scale
modeling and climate impact analysis.

Met1km includes eight climate variables and they are generally consistent in related atmospheric
physical processes as they are generated directly from observations or from climate model reanalysis.
Therefore, the dataset can be used to drive process-based models and to integrate the effects of these
variables through energy and water dynamics.

The dataset is relatively small and flexible to use. Instead of saving the 1-km resolution data for
each grid, we developed two scripts to generate spatial and time series data as needed. This treatment
significantly reduces the volume of the dataset.

Met1km integrates deemed suitable datasets presently available in term of temporal coverages,
spatial resolutions, and data availability. Met1km can be updated easily when better source datasets
become available.

The method to generate Met1km for Canada can be used to develop similar datasets for other
regions or even to cover the global landmass as the WorldClim2, CRU JRA and Princeton datasets
have global coverage.

Comparing to the 1-km daily time series dataset Daymet [19], Met1km integrates more datasets,
especially those developed for Canadian domain, and covers a longer time period. The WorldClim2
dataset [29] that we used for re-baselining includes some remote sensing products, which would be
very useful to improve the accuracy in high arctic, where climate stations are sparsely distributed [56].
Therefore, Met1km is more suitable for modeling permafrost in Canada. The software toolkit,
GlobSim [21], is very useful to improve the applications of climate reanalysis data. However, reanalysis
datasets usually have some biases [21,22]. Re-baselining method is very useful to reduce the long-term
mean errors (Figure 12). Met1km can be updated to integrate some of the reanalysis datasets, such as
the version 5 of the European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA5), if they
are deemed better than the ones we used now.

Our tests show that the re-baselining method is useful for spatial downscaling of meteorological
data, especially for downscaling coarse gridded datasets. Way and Bonnaventure [54] tested the
method for monthly air temperature in northeastern Canada. Our assessment suggests that the
method is useful for precipitation as well when distance between two stations is less than 50 km or
the resolution of gridded datasets is finer than 0.5◦ latitude/longitude. The accuracy in 5- to 10-day
averages are similar to that of the monthly averages. As precipitation is usually more spatially variable
than other climate variables, the re-baselining method may be useful for other climate variables as
well. Karger et al. [57] used a similar approach to downscale the 0.5◦ latitude/longitude CRU monthly
air temperature and precipitation to about 1-km resolution. A similar approach was used in three
areas in Canada, where the monthly baseline data were from spatially interpolated gridded data
(long-term monthly averages) while the daily anomalies were from climate station observations [15–17].
Verdin et al. [56] also used a similar method to develop a 5-km resolution daily air temperature
dataset by combining 5-km resolution monthly maximum air temperature and the ERA5 dataset.
Verdin et al. [56] demonstrate that remotely sensed temperature estimates may more closely represent
true conditions than those that rely on interpolation, especially in regions with sparse in situ data.
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Our assessments show that the accuracy of Met1km is similar to or better than other gridded
datasets (Section 4.6). Our analysis indicates that the major source of errors is due to day-to-day
fluctuations. When averaged over 5–10 days, the error is reduced significantly. Since permafrost is not
very sensitive to short-term fluctuations in meteorological conditions [43], the effects of short-term errors
on modeled permafrost conditions will be limited. For the period from 1901 to 1944, the monthly MAE
is about twice of that of 1945–2017. The MAE for daily values is 3–5 times of that of 1945–2017 because
the daily data are estimated using an analogy approach [36]. Therefore, the data at the sub-monthly
scale is not very reliable for this period. In addition, we used NRCANmet and PNWNAmet datasets
to replace air temperature and precipitation because they better mimicked station observations than
the CRU JRA and the Princeton datasets (Section 4.6). However, such replacement could cause some
inconsistency with other climate variables.

We assessed the accuracy of Met1km mainly by comparing with station observations.
Such assessments have some limitations. First, most of the climate station observations may have
been used to generate the source datasets. Thus, the observations used for validating Met1km are
not completely independent. Second, climate stations are sparsely distributed in northern Canada.
The accuracy of the source datasets and thus the generated Met1km dataset can be low in this region
due to lack of observations. The error is usually larger for precipitation than for air temperatures,
especially over a short time (1 to 10 days). Although we compared with the gridded dataset CANGRD,
its spatial resolution (50 km) is coarse. We will continue to update Met1km as new and better source
datasets are available, especially the periods before the 1940s and for future projections. Several studies
extended the dataset to the beginning of the 20th century (Table A1), and the Twentieth Century
Reanalysis project even dated back to middle of the 19th century [58]. These datasets may be useful to
improve the accuracy of the data before 1944 and even to extend Met1km back to the end of the Little
Ice Age.

6. Conclusions

This study developed a long-term, 1-km resolution daily meteorological dataset in Canada.
The dataset includes eight climate variables; therefore, it can be used to drive process-based models for
high resolution permafrost modeling and mapping. It can also be used for other land-surface modeling
and climate impact studies in Canada.

Met1km dataset is generated based on four coarser gridded meteorological datasets for the
historical period: CRU JRA, PNWNAmet, NRCANmet, and the Princeton dataset. The future climate
scenarios are from the output of a new Canadian regional climate model under medium-low and high
emission scenarios (RCP 4.5 and 8.5). These datasets were downscaled to 1-km resolution using the
re-baselining method based on the WorldClim2 dataset as spatial templates. The future scenarios were
bias-corrected before re-baselining to 1-km resolution. The accuracy of Met1km is similar to or better
than those of the coarse gridded source datasets. The errors in long-term averages and average seasonal
patterns are small. The error mainly occurs in day-to-day fluctuations, which decreases quickly when
averaged over 5 to 10 days. The error in daily values is large for the period 1901–1944 because the source
dataset CRU JRA is developed using an analogy approach based on monthly values. The Met1km,
as a data generating system, is relatively small comparing to the total data volume of the 1-km daily
time series in Canada, flexible to use for generating spatial and time-series data for applications,
and easy to update when new or improved source datasets are available. The methodology of this
study can also be used to develop similar datasets for other regions, even the global landmass as most
of the source data are in global coverage.
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Appendix A

Table A1. A list of the gridded historical meteorological datasets covering Canada (Pure model
reanalysis data are not included except for the datasets that cover the periods before the 1940s).

Dataset Name Spatial
Coverage Spatial Resolution Time Period Climate Variables * Methods and References

CANGRD Canada
landmass 50 km 1900–2017 (south)

1948–2017 (North)
Monthly anomalies
of Tn, Tx, Ta, and P.

Interpolated using the
adjusted and homogenized

climate station data.

NRCAN met
dataset

North America
landmass

5 arc minutes
(~10 km)

1901–2013 for
monthly,

1950-2013 for daily

Monthly and daily
Tn, Tx, Ta, and P.

Interpolated from climate
station data [40,59].

ClimateBC/
WNA/NA

North America
landmass

2.5 arc minutes
(~5 km) or any

point

1901–2014, and
future scenarios

Monthly Tn, Tx, Ta,
and P.

Interpolated from climate
station data. Software

packages were
developed [60].

PNWNA met North western
North America

3.75 arc minutes
(~6 km) 1945–2012 Daily Tn, Tx, Ta, P,

and Wind.

Interpolated based on the
adjusted and homogenized

station data [41].

WFDEI-GEM-CaPA Mackenzie
River Basin 0.125◦ 1979–2100 3-hourly T, P, Pa, SR,

LwR, SH, and Wind.
Blended three datasets

together [61].

CHIRTS-daily 60◦ S-70◦ N
global land 0.05◦ (~5 km) 1983–2016 Daily Tn and Tx.

Combined satellite infrared
product, station observation,

and ERA5 [56].

BEST Global land
and oceans

0.25◦ for the U.S.A.
and Europe,

1◦ global

1701–recent
(monthly)

1880–recent (daily)

Monthly and
experimental for

daily Tn, Tx, and P.

Interpolated based on
5000–7000 climate station

data [62].

CRU datasets Global
landmass 0.5◦ 1901–2014

Monthly
Ta, dT, P, WetD, Vap,

and Cloud.

Interpolated based on
climate station data [37].

CHELSA, CHELSA
cruts

Global
landmass 30 arc s (~1 km)

CHELSA: 1979 to
2013,

CHELSAcruts:
1901–2016

Monthly Tn, Tx
and P.

CHELSA: down-scaled from
the ERA interim reanalysis

data. CHELSAcruts:
downscaled from CRU

data [57].

WorldClim2 Global
landmass 30 arc s (~1 km) Averages in

1970–2000
Monthly Tn, Tx, Ta, P,
SR, Vap, and Wind.

Interpolated based on
climate station data and

satellite derived
covariates [29].

METEO 1KM Global
landmass 1 km 2011 Daily Ta.

Combining climate station
data, topographical and
satellite images [30,31].

Terra Climate Global
landmass 2.5 arc m (~4 km) 1958–2019 Monthly Tn, Tx, Ta, P,

SR, Vap, and Wind.
Combining CRU, WorlClim,

and JRA-55 [63].

Princeton dataset Global
landmass 0.5◦(V2) 0.25◦(V3) 1901–2012 (V2)

1948–2016 (V3)

3-hourly, daily,
monthly Tn, Tx, Ta, P,

SR, LwR, Vap, and
Wind.

Combining
observation-based datasets
with a climate reanalysis

dataset [39].

CRU JRA Global
landmass 0.5◦ 1901–2017 6-hourly T, P, SH, Pa,

Wind, SR and LwR.
Combining CRU data with

JRA-55 [36].

WATCH Forcing
Data (WFD)

Global
landmass 0.5◦ 1901–2001

3- or 6-hourly T, P,
SH, Pa, SR, LwR,

Wind.

ERA-40 for 1958–2001 and
re-ordering the ERA-40 for

1901–1957 [64].
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Table A1. Cont.

Dataset Name Spatial
Coverage Spatial Resolution Time Period Climate Variables * Methods and References

WFDEI Global
landmass 0.5◦ 1979–2016 3-hourly T, P, SH, Pa,

SR, LwR, Wind.
Similar to WED but using

ERA-Interim [65].

20th century
reanalysis (20CR) Global 2◦ 1871–2012

Multiple variables
(6-hourly) from

model reanalysis.

Model reanalysis mainly
constrained by surface

pressure [57,66].

ERA-20C Global About 125 km 1900–2010
Multiple variables

(6-hourly) from
model reanalysis.

Model reanalysis
constrained by surface
pressure and marine

wind [67].

Daymet
North America,

Puerto Rico,
and Hawaii

1 km 1980–2017 Daily Tn, Tx, P, SR,
Vap, and Snow.

Interpolated based on
climate station data [19].

GlobSim Global Any location Same as the
reanalysis datasets

Same as the
reanalysis datasets.

A software toolkit to
generate time series data for

any sites from several
reanalysis datasets [21].

* T is the mean air temperature for a define period (at sub-daily scales). Ta, Tn, and Tx are daily mean, minimum and
maximum air temperatures, respectively, dT is diurnal air temperature range, P is precipitation, Pa is atmospheric
pressure, Vap is vapor pressure, SH is specific humidity, WetD is wet-days, Cloud is cloud cover, SR is solar radiation,
LwR is downward longwave radiation, Snow is snow water equivalent.

Appendix B

Calculating Monthly Mean Downward Longwave Radiation

We estimated monthly mean downward longwave radiation corresponding to the time scale
and spatial resolution of the WorldClim2 dataset (monthly average from 1970 to 2000 at resolution
of 30 arc seconds latitude/longitude) [29]. Based on the assessment of different methods conducted
by Flerchinger et al. [68], especially the accuracy in cold regions, we estimated downward longwave
radiation using the method of Kimball et al. [69] with clear-sky downward longwave radiation
estimated by the method of Dilley and O’Brien [70].

L = Lclr + τ8·c· f8·σ·T4
c , (A1)

where
Lclr = 59.38 + 113.7(T0/273.16)6 + 96.96(w/25)0.5, (A2)

w = 4650e0/T0, (A3)

τ8 = 1− ε8z(1.4− 0.4ε8z), (A4)

ε8z = 0.24 + 2.98·10−6e2
0·exp(3000/T0), (A5)

f8 = −0.6732 + 0.6240·10−2
·Tc − 0.9140·10−5

·T2
c , (A6)

where L is all sky downward longwave radiation (in W/m2), Lclr is downward longwave radiation for
clear sky, c is the fraction of cloud cover, T0 is air temperature observed at about 2 m above the land
surface (in K), and Tc is the temperature on the base of the cloud (in K), which is assumed 9 K lower than
the T0. σ is the Stefan-Boltzmann constant (5.67 × 10−8 W/m2/K4), e0 is the vapor pressure observed
about 2 m above the surface (in kPa). The equations and parameters are from Flerchinger et al. [69].
We calculated monthly mean downward longwave radiation for each 1-km grid based on the monthly
mean air temperature and vapor pressure of the corresponding WorldClim2 grid. As high arctic
regions receive very low and even no solar radiation in winter months, we estimated the cloud cover
fraction based on CRU TS data [37].
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