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Abstract: The effects of sea spray on open-ocean rainfall measurements-the drop size distribution
(DSD) and rainfall intensities-were studied using a state-of-the-art optical disdrometer. The number
of rain droplets less than 1 mm in diameter is affected by several factors, including the type of rainfall
and seasonality. Over the ocean, small rain and large sea spray droplets co-exist in the same diameter
size class (0.072 to 1000 mm); hence, sea spray creates uncertainty when seeking to characterize the
drop size distribution (DSD) of rain droplets over the ocean. We measured droplet sizes at a marine
tower using a state-of-the-art optical disdrometer, a tipping-bucket rain gauge, a wind anemometer,
and a time-lapse camera, over a period that included typhoon Krosa of 2019. The number of rain
droplets of diameter less than 1 mm increased monotonically as the horizontal wind speed became
stronger. Thus, the shape parameter µ of the Ulbrich distribution decreased. This decreasing trend
can be recognized as an increase in sea spray. During no-rainfall hours (indicated by rain gauges on
the ocean tower and nearby land), sea spray DSDs were obtained at various horizontal wind speeds.
Furthermore, the proportions of sea spray to rainfall at different rainfall intensities and horizontal
wind speeds were determined; at a horizontal wind speed of 16 to 20 m s−1, the average sea spray
proportions were 82.7%, 19.1%, and 5.3% during total rainfall periods of 2.1 mm h−1, 8.9 mm h−1,
and 32.1 mm h−1, respectively. Representation of sea spray DSDs, as well as rainfall DSDs, is a key
element of calculating real rainfall intensities over the open ocean.
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1. Introduction

Rainfall measurement over the open ocean plays a leading role in validating satellite precipitation
and global climate models e.g., [1–4]. During storms, rainfall intensities measured by tipping-bucket
rain gauges over the open ocean (e.g., on ships) are addressed by both rain droplets and sea spray
e.g., [5]. Remarkably, sea spray exists even on land; during severe typhoons (e.g., Trami of 2018,
associated with a maximum instantaneous wind speed of 42 m s−1 at Choshi in the Kanto region of
Japan), tiny droplets of sea spray were blown to Tsukuba city even located 50 km from the Pacific coast,
resulting in salt damage [6]. Notably, sea spray exerts influence on momentum, latent, and sensible
heat fluxes within the context of air-sea interactions [7–9], and rain droplets play an indispensable role
in flux exchanges [10,11].

Small rain and large sea spray droplets co-exist in the diameter class of less than 1 mm, and this has
made distinguishing them difficult in practice. To estimate the proportion of sea spray to total rainfall,
salinity measurements of water collected in a rain gauge were performed [5]; yet, this observation
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underlined the limitation of rain containing dissolved dry salt (reviewed in [1]). Thereby, the gauge
was placed at least 16 m above the water level, so that the proportion of sea spray was minimized
(reviewed in [1]).

In order to distinguish between sea spray and rain droplets, the characteristics of rainfall
intensity and the numbers of rain droplets of various diameters-the drop size distribution (DSD)
need to be analyzed. DSD is used in conjunction with multi-doppler polarization systems to estimate
rainfall intensity from radar reflectivity data, using the Z–R relationship for weak rainfall and the
Kdp–R relationship for heavy rainfall [12]. It highlights the correlations between rain intensity
and Z, (radar reflectivity), as well as between rain intensity and Kdp (specific differential phase
shift of radar). The first and most well-known DSD model, the Marshall–Palmer distribution [13],
was derived from observations of rain droplets of diameter 0.1 to 5 mm spreading on dyed filter
papers. Later, other equations were developed to characterize DSD denoted by log-normal, Weibull,
exponential, and gamma and general gamma distributions. The latter usefully describes the drizzle
mode and distributional tail of large droplets [14–16]. Among them, the Ulbrich distribution [17] is
known as a special case of the general gamma distribution, and has been widely used to analyze
rainfall, as it allows for DSD flexibility when the diameters are less than 1 mm. At certain rainfall
intensities, the numbers of droplets less than 1 mm in diameter vary significantly compared to that of
larger droplets. Such variations reflect the type of rainfall and the seasonality e.g., [18–21]. The DSD of
Ulbrich [17] features a shape parameter µ, and for open-ocean rainfall measurement µ indicates the
probability that the DSD variation of small-diameter droplets is affected by sea spray.

The Ulbrich distribution is expressed as:

N(D) = N0Dµ exp(−ΛD) (1)

where N(D) is the number of droplets in diameter D (cm), N0 is 8 × 104 m−3 cm−1−µ, and µ
(non-dimensional) and Λ (cm−1) are shape parameters. Λ varies by the rainfall intensity R (mm h−1),
and is therefore assigned to Λ = 41 × R−0.21. These two parameters N0 and Λ are selected from [13].
When µ = 0, the equation is equivalent to the Marshall–Palmer distribution. Previous studies recorded
variations in the diameter range as well as seasonal changes in the DSD shape parametersµ and Λ, where
µ varied from−0.85 to 76.9 (although it was generally positive) and Λ ranged from 3.3 to 591.5 cm−1 [18].
As µ varied from −1 through 0 to 1,we proposed two cases to investigate the proportion of small
droplets (0.072 to 1.000 mm; this range corresponds to the detection limit of disdrometer) with respect
to the total rainfall intensity. Firstly, as the total rainfall intensity reached 10 mm h−1, the proportions
of small droplets became 72%, 17%, and 2%, determined by Equation (1). Likewise, as the total rainfall
intensity reached 50 mm h−1 the proportions of small droplets became 40%, 6%, and 0.8%. The results
revealed that light rainfall intensity was dominated by small droplets. Sea spray observation over the
open ocean was first described in [22]. Several studies have highlighted the significance of sea spray
generation at air-sea interface by investigating rainfall effect on its generation [23,24]; yet, these results
show the contradictory results. Sea spray is thought to be generated predominantly by rainfall [23],
while the others note that heavy rainfall can act to suppress significant wave height [24], suggesting
the suppression of sea spray generation by rainfall. Moreover, wet and dry deposition and scavenging
efficiency can be influenced by rain and sea spray [25]. Following this line of research, not only the
effect of rainfall but whitecap formation time, decay time [26], as well as sea state [27], may have an
impact on the generation of sea spray. Sea water temperature could be a key element according to the
laboratory experiments showing that high temperatures led to the low production of sea spray [28].
In addition, a new observation system proposed in [29] provides an overview of the relationship
between surface-generation noise and sea spray aerosols. These findings may open the way to better
understand the potential role of sea spray in air–sea interaction, but details of these studies are beyond
the scope of our study.

Sea spray generally has three types of droplets: film droplets (0.00001 mm~0.1 mm), jet droplets
(0.001~0.1 mm), and spume droplets (0.01~1 mm) [30]. Here, we focus on spume droplets, although
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this size class of 0.072 to 1.000 mm is exceptional in [23]. Compared to the other types of droplets,
spume droplets facilitate a greater transfer of heat and moisture across the air-sea interface in a rapid
manner. A wind speed over about 7–11 m s−1 is typically required to generate the droplets [31],
which are ripped off wave crests by wind, principally via the bag-breakup fragmentation first described
in [32]. The DSDs of sea spray have been extensively studied [31,33,34] while one review considered
the DSDs of spume droplets (Figure 6 of cited article [31]) at a wind speed of 15 m s−1. From the Figure,
the number of spume droplets spans two orders of magnitude. The review paper [31] introduces three
types of DSDs of spume droplets [35–37]. One of them was proposed by observational data, and the
others were by results obtained from the theoretical analysis and wind-tunnel experiment, although all
publications mentioned that there was still a lack of data describing DSDs of spume droplets.

The diameter of rain droplets ranges from approximately 0.1 to 5 mm, and that of large sea
spray droplets from 0.01 to 1 mm. Thus, in the diameter range below 1 mm, both droplets co-exist.
Here, we performed a series of observations using a state-of-the-art disdrometer at a marine tower off

the coast of Wakayama Prefecture in Japan (see Figure 1). The observational period ran from August to
October in 2019, including a day during which a typhoon passed nearby. The proportions of sea spray
to total rainfall measured by a tipping-bucket rain gauge were used to derive sea spray DSDs as a
function of horizontal wind speeds. In Section 2, our observations, the use of disdrometer, and the data
correction methodology, are described. The results of our observations are available and discussed in
Section 3, and our findings are analyzed in Section 4.
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Figure 1. Map of the study area. (a) The observation site is indicated by black star. Colored circles 
indicate the central pressure and track of typhoon Krosa over time (JST). (b) The observational tower; 
the arrow indicates the height of the observation deck (15 m) and positions of the instruments, 
including (c) tipping bucket and (d) snow particle counter (SPC). 

2. Methods 

2.1. Site and Data Collection 

A series of observations were conducted using a disdrometer called SPC (Niigata Electric; [38]), 
anemometer, time-lapse camera, and tipping-bucket rain gauge installed on an observational tower 
maintained by the Disaster Prevention Research Institute of Kyoto University (33°42′32″ N, 135°19′58″ 
E) at a vertical height of 15 m above sea level (Figure 1a). This height is higher than the one set in [23], 
so we do not consider the increase of sea spray generation by rainfall. The tower lies 1.8 km off the 
coast (see the two-headed arrow of Figure 1a). All wind speed and rainfall measurements were 
validated based on the data obtained from an automated meteorological data acquisition system 
(AMeDAS) weather station, which was located 4 km south of the tower and maintained by the Japan 
Meteorological Agency [39]. This station was equipped with a tipping-bucket rain gauge with 
resolution, 0.5 mm h−1. We conducted continuous observations during two rainfall events, from 14 to 

Figure 1. Map of the study area. (a) The observation site is indicated by black star. Colored circles
indicate the central pressure and track of typhoon Krosa over time (JST). (b) The observational tower;
the arrow indicates the height of the observation deck (15 m) and positions of the instruments, including
(c) tipping bucket and (d) snow particle counter (SPC).

2. Methods

2.1. Site and Data Collection

A series of observations were conducted using a disdrometer called SPC (Niigata Electric; [38]),
anemometer, time-lapse camera, and tipping-bucket rain gauge installed on an observational tower
maintained by the Disaster Prevention Research Institute of Kyoto University (33◦42′32” N, 135◦19′58” E)
at a vertical height of 15 m above sea level (Figure 1a). This height is higher than the one set in [23],
so we do not consider the increase of sea spray generation by rainfall. The tower lies 1.8 km off the coast
(see the two-headed arrow of Figure 1a). All wind speed and rainfall measurements were validated
based on the data obtained from an automated meteorological data acquisition system (AMeDAS)
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weather station, which was located 4 km south of the tower and maintained by the Japan Meteorological
Agency [39]. This station was equipped with a tipping-bucket rain gauge with resolution, 0.5 mm h−1.
We conducted continuous observations during two rainfall events, from 14 to 16 August and 17 to
19 October in 2019. These periods included the extreme event of Typhoon Krosa, and the typhoon
track and central pressure are shown in Figure 1a.

2.2. Disdrometer

A disdrometer was firstly used to detect snow particles [40]. The disdrometer used in this study
was thus modified by Niigata Electric [38] to detect water droplets with both vertical and horizontal
trajectories based on the reviewed paper [41]. With reference to the conventional approach, a small
tungsten lamp with a hood emits light in one arm, and then another arm with two phototransistors
is fixed on the same optical axis, where snow particles pass through the area between the emitter
and the receiver; in the meantime, the phototransistors output signals reflecting particle sizes on the
assumption that the particle is in a spherical form [38]. This allows the disdrometer to detect not only
snow [42,43], but also sand [44] and water droplets on the upper deck of an icebreaker [45,46]. However,
this underestimates snow particle numbers by 20% compared to a fabric trap [47]. Thus, the disdrometer
we used featured a self-steering wind vane with a super-luminescent diode sensor to enable stable
output signals. Each signal is classified into 1 of 64 diameter classes between 0.072 and 1 mm every
second, to deduce the size of particle passing through the sampling area (3 × 25 × 1 mm).

To calibrate the disdrometer, thin wires with different diameters were passed vertically through
the sampling area in accordance with the previous study [48]. The calibration pointed out the error of
measurement related to diameter sizes ∓15 µm but to the number of droplets, which was not reported
in previous studies [42–46]. In addition, the raw data contained systematic errors, due to ambient
temperature and detector lens pollution by dust; yet water particles, including rain and sea spray,
were successfully detected. The maximum and minimum threshold droplet numbers to 1000 s−1 and
10 h−1 were set, and thereafter the DSD was calculated as follows:

N(Di) =
n(Di)

A× ∆t× v(Di) × ∆Di
(2)

where n(Di) represents the number of raindrops in diameter class i, Di the mean of the diameter class i,
A the sampling area of the particle counter surface (=0.000025 m2), ∆t the sampling time (=3600 s),
v(Di) the terminal fall velocity of rain with diameter, and ∆Di the diameter interval between the two
successive classes, i and i + 1. Following this calculation, the rainfall intensity contributed by small
droplets (hereafter, RSPC) was determined.

2.3. Data Correction for Tipping Bucket

Errors associated with the rainfall measurements included wetting loss, evaporation, splashing
of water into and out of the rain gauge, and wind-induced undercatch. Undercatch occurs due to
deformation of the local wind field by the rain gauge, resulting in changes in raindrop trajectory;
the effect of this phenomenon (examined by comparing reference gauges-installed in pits to minimize
wind deformation—with above-ground gauges) is typically 2–10% [49]. The rain gauge data was
adjusted using the commonly used empirical model [50] followed by the later modification [51],
as shown below.

Rctb = k×Rtb

k = exp[a− b× ln(Rtb) − c× u× ln(Rtb) + d× u]
(3)

where a = −0.042303, b = 0.00101, c = 0.018177, and d = 0.043931 are empirical parameters [51] and
Rtb, Rctb, and u are the rainfall intensity yielded by the rain gauge, the corrected rainfall intensity,
and the horizontal wind speed, respectively. This method is conventionally used to reduce the
wind-induced effect.
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2.4. Estimation Methods

We first calculated the rainfall intensity of small droplets (diameter, 0.072–1.000 mm) using the
empirical function of Equation (1) and compared it to the RSPC. In this analysis, the parameters of
Equation (1) were set to N0 = 8 × 104 (m−3 cm−1−µ) and Λ = 41 × R−0.21. To calculate the parameter Λ
(=41 × R−0.21), Rtb and Rctb were substituted into R. The results followed the (Rr(D < 1) and Rc(D < 1))
values of Figure 2 in which the shape parameter µ was set to −1 and 1. Here, (Rr(D < 1) and Rc(D < 1))
reflect the calculation results of rainfall intensity contributed by small droplets using different rainfall
data sets (Rtb and Rctb), respectively.

Atmosphere 2020, 11, x FOR PEER REVIEW 5 of 13 

 

2.4. Estimation Methods 

We first calculated the rainfall intensity of small droplets (diameter, 0.072–1.000 mm) using the 
empirical function of Equation (1) and compared it to the RSPC. In this analysis, the parameters of 
Equation (1) were set to N0 = 8 × 104 (m−3 cm−1−μ) and Λ = 41 × R−0.21. To calculate the parameter Λ (=41 
× R−0.21), Rtb and Rctb were substituted into R. The results followed the (Rr(D < 1) and Rc(D < 1)) values 
of Figure 2 in which the shape parameter μ was set to −1 and 1. Here, (Rr(D < 1) and Rc(D < 1)) reflect 
the calculation results of rainfall intensity contributed by small droplets using different rainfall data 
sets (Rtb and Rctb), respectively. 

 
Figure 2. Time series of rainfall intensity and cumulative rainfall from August 14 to 16 in 2019 (JST). 
Rainfall intensity (right axis) of Rtb and Rctb shown in red circles and black crosses, respectively. 
Rainfall intensity detected at the automated meteorological data acquisition system (AMeDAS) 
station (RAMe) is indicated in black triangles, and the intensity calculated from the SPC data (RSPC) is 
in black circles. The areas where the estimated results ((Rr(D < 1) and Rc(D < 1)) are described in 
Section 2.4, are highlighted in blue and green; they depend on the shape parameter (μ) values ranging 
from −1 to 1. The green circles and triangles represent Rr(D < 1) and Rc(D < 1) with μ = 0. Left vertical 
axis shows the cumulative rainfall for each component (Rtb, Rctb, RSPC, Rr(D < 1) and Rc(D < 1)) from 
00:00 14 August (JST). Cumulative rainfall of Rtb and Rctb are shown in blue solid line and blue crosses, 
respectively, and that of RSPC is in black line. Cumulative rainfall of Rr(D < 1) and Rc(D < 1) with μ = 
0 are expressed in red solid and dashed lines, respectively. Red area indicates the difference between 
the shape parameter μ = −1 and 1 where AMeDAS data points are plotted as red triangles. 

Our second analysis evaluated the properties of parameters, Λ and μ in Equation (1). μ was 
estimated using the least-squares method as shown in Figure 3. N0 was set to 8 × 104 (m−3 cm−1−μ). 
Afterwards, a time series of the shape parameter from Equation (1) was obtained. The root mean 
squared error between this equation and the observation data was 7.4 × 106. The root mean 
logarithmic error and the coefficient of determination were 77.4 and 0.63, respectively. 

Furthermore, DSDs of rain and sea spray were calculated based on the collected disdrometer 
data. While Equation (2) was utilized to calculate DSD of rain, the following equation was used for 
the sea spray calculation. 𝐹(𝐷 ) = 𝑛(𝐷 )𝐴 × Δ𝑡 × Δ𝐷  (4) 

The unit of this F(Di) is m−2 s−1 cm−1. 

Figure 2. Time series of rainfall intensity and cumulative rainfall from August 14 to 16 in 2019 (JST).
Rainfall intensity (right axis) of Rtb and Rctb shown in red circles and black crosses, respectively.
Rainfall intensity detected at the automated meteorological data acquisition system (AMeDAS) station
(RAMe) is indicated in black triangles, and the intensity calculated from the SPC data (RSPC) is in black
circles. The areas where the estimated results ((Rr(D < 1) and Rc(D < 1)) are described in Section 2.4,
are highlighted in blue and green; they depend on the shape parameter (µ) values ranging from −1
to 1. The green circles and triangles represent Rr(D < 1) and Rc(D < 1) with µ = 0. Left vertical axis
shows the cumulative rainfall for each component (Rtb, Rctb, RSPC, Rr(D < 1) and Rc(D < 1)) from
00:00 14 August (JST). Cumulative rainfall of Rtb and Rctb are shown in blue solid line and blue crosses,
respectively, and that of RSPC is in black line. Cumulative rainfall of Rr(D < 1) and Rc(D < 1) with µ = 0
are expressed in red solid and dashed lines, respectively. Red area indicates the difference between the
shape parameter µ = −1 and 1 where AMeDAS data points are plotted as red triangles.

Our second analysis evaluated the properties of parameters, Λ and µ in Equation (1). µ was
estimated using the least-squares method as shown in Figure 3. N0 was set to 8 × 104 (m−3 cm−1−µ).
Afterwards, a time series of the shape parameter from Equation (1) was obtained. The root mean
squared error between this equation and the observation data was 7.4 × 106. The root mean logarithmic
error and the coefficient of determination were 77.4 and 0.63, respectively.

Furthermore, DSDs of rain and sea spray were calculated based on the collected disdrometer data.
While Equation (2) was utilized to calculate DSD of rain, the following equation was used for the sea
spray calculation.

F(Di) =
n(Di)

A× ∆t× ∆Di
(4)

the unit of this F(Di) is m−2 s−1 cm−1.
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Figure 3. Time series of hourly wind speed and rainfall intensity (Rtb, Rctb, and RAMe), as well as the
total number and volume of droplets and drop size distribution (DSD) shape parameter µ. (a) Wind
speeds at the tower and AMeDAS station are expressed in blue and red bars, respectively. Rtb and
Rctb are shown in green dots and black crosses, respectively, and RAMe is in red dots. (b) Red circles
indicate the total number of droplets detected by the SPC. Green squares indicate total volume of
particles. (c) DSD shape parameter µ is shown. Arrows in (a–d) indicate the time points photographed
in Figure 4.
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3. Results and Discussion

Experiments were accomplished using the disdrometer, which was designed to detect water
droplets over the open ocean. The experimental design is visibly illustrated in Figure 1 (see Methods
for more details). Time series data of rainfall intensity and cumulative rainfall were plotted based
on the observations from 14 to 16 August in 2019 (JST) (Figure 2). The results showed that Rctb was
1.32-fold greater than Rtb using the correction method, which tended to increase the Rctb under strong
windy and light rain. Rtb and Rctb were 0.82- and 1.13-fold greater than the rainfall intensity detected
at the AMeDAS station (RAMe). The RSPC followed the rises and falls in Rtb and Rctb. The results
of Rr(D < 1) and Rc(D < 1) mentioned in Section 2.4 are indicated by the blue and green areas.
Compared to Rr(D < 1) and Rc(D < 1), RSPC fell within the range of µ = −1 to 1. The green circles
and triangles are Rr(D < 1) and Rc(D < 1) with the shape parameter µ = 0, which is equivalent to the
Marshall–Palmer distribution. The left axis shows the cumulative rainfall for each component (Rtb,
Rctb, RSPC, Rr(D < 1) and Rc(D < 1)) from 00:00 on 14 August (JST). During light rainfall at 13:00 (JST)
on August 15, accumulative RSPC recorded the cumulative Rtb and Rctb. However, during heavy rain
after 14:00 (JST) on August 15, the cumulative Rtb and Rctb recorded drastic increases, leading to a
large difference between the cumulative Rtb/ctb and cumulative RSPC.

Figure 3a shows the time series of the hourly horizontal wind speed Rtb, Rctb, and RAMe, which are
total rainfall measured by the tipping bucket at the tower and the AMeDAS station. Wind speed
and rainfall intensity increased as the typhoon approached; however, wind speed at the AMeDAS
station decreased earlier than did the wind speed at the tower, as the AMeDAS station was located
further south. The rainfall intensity reached its peak when the wind speed decreased. In the meantime,
the volume and total number of hourly droplets in the range of 0.072 to 1.000 mm in diameter were
measured by the disdrometer at the tower, and both showed an increasing trend (Figure 3b). The shape
parameter µ varied from −2.53 to 0.33 during this period, and decreased monotonically as the wind
speed increased (Figure 3c). Although the rainfall decreased after 16:00 on August 15, µ continued to
decrease during this period. Regarding the Ulbrich distribution, the numbers of small droplets less
than 1 mm in diameter increased, while that of large droplets decreased.

Figure 4 shows the time-lapse photographs of the sea surface conditions at the time points indicated
by the arrows in Figure 3a–d. In Figure 4a, Rtb and Rctb were 1 and 2 mm h−1, with 1978 droplets per
hour and a volume of 122.1 mm3 h−1, suggesting that the sea was calm. In Figure 4b, whitecaps were
visible at a wind speed of 18.2 m s−1 and the rainfall intensities (Rtb and Rctb) were 8.5 mm h−1 and
13.4 mm h−1. In Figure 4c, the sea surface was covered with sea spray and streamlines were visible,
assuming that droplets recorded by the disdrometer must have included sea spray. After the rainfall
ended, some whitecaps remained (Figure 4d). From the time-lapse photographs, the disdrometer was
not covered with waves, and the maximum significant height was 4.23 during the observation periods.
The data sets were thus not influenced by waves directly.

Figures 2–4 exhibited that rain and sea spray droplets less than 1 mm were detected by the
disdrometer. To derive the proportions of small droplets against total rainfall, the relationships between
Rctb and RSPC were drawn in Figure 5, in conjunction with the three lines based on the DSD of Equation
(1). According to the data obtained from August to October, small droplets dominated the total rainfall
during light rain. Nonetheless, the proportion was small during heavy rainfall. At wind speeds less
than 5 m s−1, the relationship followed the Marshall–Palmer distribution (red line), although RSPC

increased when Rctb remained constant and the wind speed increased. Thus, the proportion of small
droplets to total rainfall increased, reflecting the increasing amounts of sea spray as the horizontal
wind speed increased. We hypothesize that the proportion of small droplets to total rainfall varies
depending on the properties of sea spray. In the context of rain DSDs, this characteristic is important
to estimate the real rainfall intensity, as the µ varies upon the amount of sea spray generated (Figure 5).
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Hourly wind speed is indicated in bar colors. Lines indicate the relationship between rainfall intensity
of drops with diameters less than 1 mm and total rainfall intensity based on Ulbrich distributions
for different values of µ, where light blue = −1, red = 0, and orange = 1. Black line indicates a
one-on-one line.

To investigate the proportion, DSDs of sea spray need to be discussed. Figure 6 shows the
DSDs of rain and sea spray derived by the disdrometer during two periods—August and October,
2019—without rainfall monitored by the rain gauge. Even when the rain gauge revealed no rainfall,
it was possible that rainfall may have been less than 0.5 mm h−1, due to the resolution of the rain gauge.
Usually, the DSD of rain is given in units of m−3 cm−1

, and that of sea spray in units of m−2 s−1 cm−1.
The DSDs of rainfall below the resolution of the rain gauge and sea spray were averaged at the various
wind speeds (from 1 to 20 m s−1) at 1-m s−1 intervals, in which the standard deviations derived
(Figure 6a). The three DSD lines were derived from Equation (1) at rainfall of 0.5 mm h−1 and µ values
of −1, 0, and 1. All DSDs were within the range of the lines; however, to date it is difficult to define
the causality of why the number of droplets increased with horizontal wind speed. In contrast, if the
droplets were considered to be sea spray, the DSDs would be similar to the DSDs of sea spray reported
previously for sea spray [33,35–37] (Figure 6b). Our findings were higher than the findings obtained at
low wind speeds (up to 15 m s−1), and presumably the DSDs from Figure 6a,b were DSDs of either rain
or sea spray. Notably, the direct measurement of sea spray DSDs offers valuable data sets (Figure 6),
as the direct approach has been rare in this field of study.

Finally, by means of the DSDs from Figure 6b, the proportions of sea spray to total rainfall (Rctb)
were highlighted in Figure 7. The DSD were identified at each wind speed, and the ratio of sea spray
to Rctb was calculated on the assumption that Rctb contained both rain and sea spray. It suggests that
sea spray occurs under high wind speeds. When the hourly wind speed varied from 16 to 20 m s−1

(shown in purple dots in Figure 7), the average sea spray proportions were 82.7%, 19.1%, and 5.3%,
with respect to the following rainfalls of 2.1 mm h−1, 8.9 mm h−1, and 32.1 mm h−1, respectively.
These results are similar to those expressed by the Ulbrich distribution in Section 1. Thus, variations in
the numbers of small rain droplets (0.072 to 1.000 mm) are reflected by differences in the numbers of
large sea spray droplets. Even at a strong rainfall intensity of 32 mm h−1, the sea spray proportion
remained at 5.3% at hourly horizontal wind speeds of 16 to 20 m s−1. At horizontal wind speeds less
than 12 m s−1, the ratios were less than 10% regardless of the total rainfall. Moreover, the empirical
equation for the decay curve (y = ae−b) was derived at the threshold hourly wind speeds of 5 m s−1,
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10 m s−1, 15 m s−1, and 20 m s−1, respectively. The values of a and b in the decay curve (Table 1) are
essential to estimate the rainfall intensity over the open ocean.Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 13 

 

 
Figure 6. DSDs that may include droplets derived from both rainfall and sea spray. Each DSD is 
averaged for each hourly wind speed. The black bars show standard deviation (𝜎). Bar colors indicate 
hourly wind speed. (a) Ulbrich distribution for different values of μ, where light blue = −1, red = 0, 
and orange = 1. (b) DSDs of sea spray at hourly wind speeds ranging from 1 to 20 m s−1 in intervals of 
1 m s−1. The DSDs calculated in previous studies are also shown [33,35–37]. 

Finally, by means of the DSDs from Figure 6b, the proportions of sea spray to total rainfall (Rctb) 
were highlighted in Figure 7. The DSD were identified at each wind speed, and the ratio of sea spray 
to Rctb was calculated on the assumption that Rctb contained both rain and sea spray. It suggests that 
sea spray occurs under high wind speeds. When the hourly wind speed varied from 16 to 20 m s−1 
(shown in purple dots in Figure 7), the average sea spray proportions were 82.7%, 19.1%, and 5.3%, 
with respect to the following rainfalls of 2.1 mm h−1, 8.9 mm h−1, and 32.1 mm h−1, respectively. These 
results are similar to those expressed by the Ulbrich distribution in Section 1. Thus, variations in the 
numbers of small rain droplets (0.072 to 1.000 mm) are reflected by differences in the numbers of 
large sea spray droplets. Even at a strong rainfall intensity of 32 mm h−1, the sea spray proportion 
remained at 5.3% at hourly horizontal wind speeds of 16 to 20 m s−1. At horizontal wind speeds less 

than 12 m s−1, the ratios were less than 10% regardless of the total rainfall. Moreover, the empirical 
equation for the decay curve (𝑦 = 𝑎e ) was derived at the threshold hourly wind speeds of 5 m s−1, 
10 m s−1, 15 m s−1, and 20 m s−1, respectively. The values of a and b in the decay curve (Table 1) are 
essential to estimate the rainfall intensity over the open ocean. 

Figure 6. DSDs that may include droplets derived from both rainfall and sea spray. Each DSD is
averaged for each hourly wind speed. The black bars show standard deviation (σ). Bar colors indicate
hourly wind speed. (a) Ulbrich distribution for different values of µ, where light blue = −1, red = 0,
and orange = 1. (b) DSDs of sea spray at hourly wind speeds ranging from 1 to 20 m s−1 in intervals of
1 m s−1. The DSDs calculated in previous studies are also shown [33,35–37].

Atmosphere 2020, 11, x FOR PEER REVIEW 10 of 13 

 

 
Figure 7. Relationship between rainfall intensity of Rctb and ratio of sea spray against Rctb. Bar colors 
indicate hourly wind speed. Black bars indicate the maximum and minimum ranges. 

Table 1. The parameters of the empirical equations yielding the proportions of sea spray at various 
rainfall intensities for different hourly wind speeds. 

Hourly Wind Speed [m s−1] a b 
0−5 4.05 −11.7 

5−10 0.22 −0.89 
10−15 0.050 0.16 
15−20 0.16 −0.099 

4. Summary 

Understanding the sources and properties of small rain and large sea spray droplets common in 
the diameter class of less than 1 mm enables far more precise measurement of open-ocean rainfall (in 
this study, droplets with diameter of 0.072 to 1.000 mm was observed). We performed rain and sea 
spray observations at the marine tower using the disdrometer, rain gauge, anemometer, and time-
lapse camera. The shape parameter μ of the Ulbrich distribution (as estimated by the disdrometer) 
decreased even after rainfall decreased, indicating an increase in the numbers of droplets less than 1 
mm in diameter. Time-lapse images of the sea surface throughout the rain event showed large 
amounts of sea spray presenting as streamlines over the sea surface; it leads us to think that the 
disdrometer detects both rain and sea spray. The findings from our direct measurement may have 
important implications in the study of air-sea fluxes as only limited observational data are available 
at the moment. 

Additionally, the relationship between the number of small droplets with diameters less than 1 
mm and total rainfall intensity was investigated. As the wind grew stronger, the proportion of small 
droplets to total rainfall increased. This is because more sea spray is generated as the wind speed 
increases. What is more, DSDs were detected by the disdrometer during periods of rainfall less than 
0.5 mm h−1. Based on the results of previous studies, these DSDs could possibly be both rain and sea 
spray, though the higher DSDs correspond to the increased wind speed. Our final analysis revealed 
the proportion of sea spray to total rainfall, suggesting the contribution of sea spray to the rainfall 
measurement. 

This study investigated the effects of sea spray on open-ocean rainfall measurements through 
the calculation of DSDs and rainfall intensities, based on the direct observational method. The study 
also explored the significance of spume droplet DSDs in estimating the air-sea fluxes of sensible and 
latent heat. In the context of rain DSDs, we proposed that the amount of sea spray generated could 
be another influential factor on possible variations of μ, in addition to the rainfall types and 
seasonality that were noted previously. Finally, the ratio of sea spray to the total rainfall was 
calculated to determine the contribution of sea spray, enabling us to improve the accuracy of rainfall 
estimates over the open ocean. 

 

Figure 7. Relationship between rainfall intensity of Rctb and ratio of sea spray against Rctb. Bar colors
indicate hourly wind speed. Black bars indicate the maximum and minimum ranges.



Atmosphere 2020, 11, 1210 10 of 12

Table 1. The parameters of the empirical equations yielding the proportions of sea spray at various
rainfall intensities for different hourly wind speeds.

Hourly Wind Speed [m s−1] a b

0−5 4.05 −11.7
5−10 0.22 −0.89

10−15 0.050 0.16
15−20 0.16 −0.099

4. Summary

Understanding the sources and properties of small rain and large sea spray droplets common
in the diameter class of less than 1 mm enables far more precise measurement of open-ocean rainfall
(in this study, droplets with diameter of 0.072 to 1.000 mm was observed). We performed rain and sea
spray observations at the marine tower using the disdrometer, rain gauge, anemometer, and time-lapse
camera. The shape parameter µ of the Ulbrich distribution (as estimated by the disdrometer) decreased
even after rainfall decreased, indicating an increase in the numbers of droplets less than 1 mm in
diameter. Time-lapse images of the sea surface throughout the rain event showed large amounts of sea
spray presenting as streamlines over the sea surface; it leads us to think that the disdrometer detects
both rain and sea spray. The findings from our direct measurement may have important implications
in the study of air-sea fluxes as only limited observational data are available at the moment.

Additionally, the relationship between the number of small droplets with diameters less than
1 mm and total rainfall intensity was investigated. As the wind grew stronger, the proportion of
small droplets to total rainfall increased. This is because more sea spray is generated as the wind
speed increases. What is more, DSDs were detected by the disdrometer during periods of rainfall less
than 0.5 mm h−1. Based on the results of previous studies, these DSDs could possibly be both rain
and sea spray, though the higher DSDs correspond to the increased wind speed. Our final analysis
revealed the proportion of sea spray to total rainfall, suggesting the contribution of sea spray to the
rainfall measurement.

This study investigated the effects of sea spray on open-ocean rainfall measurements through the
calculation of DSDs and rainfall intensities, based on the direct observational method. The study also
explored the significance of spume droplet DSDs in estimating the air-sea fluxes of sensible and latent
heat. In the context of rain DSDs, we proposed that the amount of sea spray generated could be another
influential factor on possible variations of µ, in addition to the rainfall types and seasonality that were
noted previously. Finally, the ratio of sea spray to the total rainfall was calculated to determine the
contribution of sea spray, enabling us to improve the accuracy of rainfall estimates over the open ocean.
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