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Abstract: This work studied the spread of COVID-19, the meteorological conditions and the air
quality in a megacity from two viewpoints: (1) the correlation between meteorological and air quality
(PM10 and NO2) variables with infections and deaths due COVID-19, and (2) the improvement in air
quality. Both analyses were performed for the pandemic lockdown due to COVID-19 in the City of
Buenos Aires (CABA), the capital and the largest city in Argentina. Daily data from temperature,
rainfall, average relative humidity, wind speed, PM10, NO2, new cases and deaths due COVID-19
were analyzed. Our findings showed a significant correlation of meteorological and air quality
variables with COVID-19 cases. The highest temperature correlation occurred before the confirmation
day of new cases. PM10 presented the highest correlation within 13 to 15 days lag, while NO2 within
3 to 6 days lag. Also, reductions in PM10 and NO2 were observed. This study shows that exposure to
air pollution was significantly correlated with an increased risk of becoming infected and dying due
to COVID-19. Thus, these results show that the NO2 and PM10 levels in CABA can serve as one of the
indicators to assess vulnerability to COVID-19. In addition, decision-makers can use this information
to adopt strategies to restrict human mobility during the COVID-19 pandemic and future outbreaks
of similar diseases in CABA.
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1. Introduction

The Coronavirus disease 2019 (COVID-19) is identified as an infectious disease caused by severe
acute respiratory syndrome novel coronavirus 2 (SARS-CoV-2) [1]. November 2019 was the date of the
world’s first case of coronavirus (COVID-19). Patient zero could be a person living in Hubei-Wuhan
(China). On December 2019, China alerted the World Health Organization (WHO) of several cases of
unusual pneumonia in Wuhan, therefore officially identifying the cause of the COVID-19 outbreak
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in Wuhan, China [2]. COVID-19 produces mild symptoms in most people (fever, cough, sore throat,
difficulty breathing, among others), but can also lead to severe respiratory illness and death [3]. On 11
March 2020, the WHO made the assessment that COVID-19 can be characterized as a pandemic [1].

Wang et al. [4] analyzed the characteristics of patients infected with COVID-19 and compared
it to other pandemic diseases. Their results showed the danger of the novel coronavirus, and they
emphasized the need to do everything possible to understand and control the disease. This situation
positioned COVID-19 as one of the most tempting challenges and the greatest tragedy of the century
after World War II [5]. In addition to the terrible effects on global health, after the first peak of infections,
attention has focused on analyzing the impact of the COVID-19 pandemic on the economy, social
aspects and on improved air quality [6,7]. In fact, studies at national level showed improvements
in air quality due to reductions in aerosol optical depth (AOD) level in India [5], PM2.5 in China [8],
CO, NO, NO2, PM10 and O3 in Brazil [3,9], and at the international level due to the reduction in the
level of tropospheric NO2 observed by satellite data [10] during the COVID-19 pandemic lockdown.
Recent researches have reported air quality improvements associated with social distancing measures
and consequent reduced vehicular traffic [3,9,11–14]. Other studies also showed that meteorological
and pollution indicators are significantly related to the spread of COVID-19 in Jakarta, Indonesia [15],
New York City [16], and California state [17], the United States, Oslo, Norway [18], Brazil [19] and the
Latin America and the Caribbean region [20].

By 30 April 2020, COVID-19 had spread in almost all countries, and this pandemic had infected
5.934 million people worldwide, while the death toll worldwide exceeds 367 thousand [1]. In Argentina,
the first case was confirmed on 3 March 2020 by the Ministry of Health. As the cases spread, as in
most countries, Argentina adopted restrictions on different social activities, imposing social distancing;
nevertheless, COVID-19 infections spread quickly in Argentina, especially in CABA [21]. Then,
on 20 March 2020, the Argentine government established the public health emergency and national
quarantine (also called as lockdown). They closed industries and institutions of all kinds: schools and
universities, shopping malls, restaurants and bars, squares and parks. Only activities such as basic
health services, energy generation and food production, among others, were allowed [22]. By the end
of May 2020, there were 14,702 confirmed cases and 510 deaths [21]. The City of Buenos Aires (CABA)
reported 56% of the total cases and 44.7% of the deaths from COVID-19 in Argentina [21].

The spread of the COVID-19 pandemic in CABA has caused many deaths and economic losses due
to the lockdown measures too [23]. As previously mentioned, different studies have shown that the
impact of COVID-19 could be modulated by social, economic and, local meteorological and pollution
variables. In addition, restrictions to reduce COVID-19 spread are generating unprecedented ways
to improve air quality [3,9,12]. Therefore, the main objectives of our research were (a) to analyze the
correlation between COVID-19 infections with meteorological and air quality variables considering the
virus incubation period up to 14 days prior [14,24,25], and (b) to discuss the impacts on air quality
due to PM10 and NO2 through the COVID-19 pandemic lockdown at CABA from March to May 2020.
This study explains how some meteorological and air quality variables control the spread of COVID-19
in CABA. It also provides results for designing strategies to deal with future outbreaks of COVID-19
and prevent future pandemics of similar viral diseases [26]. Additionally, it allows us to know better
how to improve air quality as a result of restrictions on anthropogenic activities in CABA, under
circumstances hitherto never observed. Section 2 describes the study, data set, and procedures used.
In Section 3, we display “the two facets observed” during the pandemic lockdown: (a) estimation of
the correlation of infections and deaths due COVID-19 with meteorological and air quality variables
in CABA, and (b) impact analysis of the air quality change in CABA due the COVID-19 pandemic.
Moreover, we discuss the results by comparing the most recent literature available. Finally, conclusions
are found in Section 4.
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2. Data and Methodology

2.1. Study Area

CABA is the capital and the largest city of Argentina. As shown in Figure 1, the city is located on
the western shore of the estuary La Plata River, on the South American continent’s southeastern coast
(34◦36′ S, 58◦22′ W). The area of CABA is 203 km2 and its population in 2020 based on projections of
results of the 2010 Population Census is 3,075,646 inhabitants, with a population growth rate of 9.58%
per year [27].
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2.2. Data Collection

The data set used in this investigation was from 5 March to 31 May 2020 (Figure 2). It was obtained
from the Ministry of Health for new cases (daily), total cases (accumulated), and mortality (daily)
due to COVID-19 [21]. Daily meteorological data were obtained from Argentina’s National Weather
Service [28]. The data consist of minimum temperature (◦C), maximum temperature (◦C), average
temperature (◦C), humidity (%), and accumulated Rainfall (mm).
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The Spearman rank correlation tests were used to examine the correlation between variables,
typically used for a non-normal distribution dataset, as shown in other studies [15,16,18,20].
Non-normal distribution was verified previously by the Shapiro-Wilk normality test application
as shown in Table A1. The correlations were done for new cases, total cases and mortality due to
COVID-19, with meteorological and air quality variables, using lag up to 15 days over CABA.

Two commonly reported pollutants (PM10 and NO2) were obtained from the air quality network
of this city. This data was obtained from hourly records from its three representative stations
(see Figure 1) [29]. Then, we estimated the daily mean values of the recorded data, considering those
data with a temporal representation greater than 75% of the time during the study period. Also, PM10

and NO2 pollutants data measured by the air quality network of this city were compared with data
measured by the S5p/TROPOMI-ESA [30,31], both at the same time in 2019 and 2020.

2.3. Satellite Data Processing and Analysis

The European Space Agency (ESA) Sentinel-5 Precursor (S5p) is a low Earth orbit polar satellite
which provides information and services on air quality, climate, and the ozone layer. The payload of
the mission is the TROPOspheric Monitoring Instrument (TROPOMI) that measures key atmospheric
constituents including ozone, NO2, SO2, CO, CH4, CH2O and aerosol properties [30]. The level 2
product of NO2 tropospheric column gives the total atmospheric NO2 column between the surface and
the tropopause with a spatial resolution of 3.5 km × 7 km. The quality of the product observations
depends mainly on cloud cover, surface albedo, and presence of snow, among other factors. A quality
assurance variable (qa_value) ranges from 0 to 1. The recommended qa_value = 0.75 removes
cloud-cover scenes, partially snow/ice-covered scenes, errors, and problematic retrievals [32]. The data
provided by the satellite is given with an orthogonal scanline to the flight direction of circa 2600 km.
Each observational data has a temporal dimension referenced to the orbit start time and spatial
dimension in scanline and flight direction, which are georeferenced with latitude and longitude
coordinates. Then, in order to represent the satellite data for the periods and study area in CABA,
the TROPOMI NO2 level 2 product data (molecules/cm2) were remapped in a cylindrical projection
with a resolution of 0.05◦ × 0.05◦. Each observation remapped on the same output pixel is averaged,
obtaining a single georeferenced output for the whole dataset. The air quality network of CABA does
not measure PM2.5. Therefore, PM2.5 levels have been retrieved from satellite images obtained on
8 March, 20 March and 19 April (2018, 2019 and 2020), using Copernicus’ Earth online viewer [33],
as shown in Figure A1.

3. Results and Discussions

CABA is the head political, financial, tourist, and cultural metropolis of Argentina. It is also the
most densely populated Argentine city, with 14,450.8 pop/km2 [34]. Figure 2 shows the daily and
accumulated evolution of transmission cases and deaths by COVID-19 in this city, which deserves
special attention due to its relevance, as well as its high population density. Previous studies indicated
the importance of the analysis of meteorological conditions in the spread of COVID-19 in highly
densely populated areas [15,35]. On 5 March, the first national case of COVID-19 was confirmed in
CABA [21]. In a few days, as cases rapidly multiplied, the Argentine national government established a
lockdown on 20 March to minimize and control the spread of this pandemic disease [22]. Nevertheless,
infections and deaths continued to grow rapidly (Figure 2). Because of the lockdown, observations
indicated that NO2 concentration levels over the city decreased [30,31] (Figure 3), as well as PM2.5

levels, as is shown in . This circumstance is analyzed in the following subsections.
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Figure 3. The level of tropospheric NO2 (moles/m2) measured by the S5p/TROPOMI-ESA [30,31] both
in the same day (23 March) and different years in CABA.

3.1. Correlation SARS-CoV-2 Infections with Meteorological and Air Quality Variables

Figure 4A shows a decrease in maximum, minimum, and average temperature since the months
analyzed correspond to the austral fall season. The rainfall had variations between 10 and 40 mm/day,
while relative humidity presented an average of 74.5% (Figure 4C). The average daily wind speed
(Figure 4B) presented peaks above 8 m/s in March, decreasing in April to 7 m/s and 4.4 m/s in May, 2020.
This situation is due to the weakening of the winds in fall and winter [36–38]. Figure 5 presents the
statistical correlation coefficient for meteorological variables with new cases, total cases and mortality.
New cases (Figure 5A) had a higher negative correlation at 8 days lag (r = −0.74, p < 0.01), 7 days
lag (r = −0.74, p < 0.01) and 15 days lag (r = −0.68, p < 0.01) for average temperature, minimum
temperature and maximum temperature, respectively. Humidity and rainfall with, new cases showed a
higher positive correlation at 10 days lag (r = 0.19, p < 0.05) and 0 day (r = −0.35, p < 0.01), respectively.
Wind speed had a higher negative correlation at 2 days lag (r = −0.33, p < 0.01). Total cases (Figure 5B)
showed a higher negative correlation at 4 days lag (r = −0.82 and r = −0.72, p < 0.01) for average and
minimum temperature, respectively, while this occurred with 15 days lag (r = −0.70, p < 0.01) for
maximum temperature.
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Figure 5. Variation of the Spearman coefficient for new cases (A), total cases (B), and mortality (C) with
the meteorological variables in CABA. The lag day indicates up to 15 days prior to the confirmation
date of cases and deaths. The values and their significance levels are also shown in Appendix A,
Tables A2–A4.

Humidity showed a higher positive correlation with total cases at 15 days lag (r = 0.18, p < 0.05),
and rainfall showed significant correlations at day 0 (r = −0.32, p < 0.01). Also, wind speed had a higher
negative correlation at 2 days lag (r = −0.27, p < 0.01) in total cases. Mortality (Figure 5C) presented
higher negative correlation at 7 days lag (r = −0.65, p < 0.01) for average temperature, at 2 days lag
(r = −0.68, p < 0.01) for minimum temperature and 1 day lag for maximum temperature (r = −0.59,
p < 0.01). Humidity and mortality cases did not show a significant correlation, but rainfall showed
a high negative correlation at 2 days lag (r = −0.33, p < 0.01). Also, wind speed displayed a high
negative correlation at 2 days lag (r = −0.32, p < 0.01). Few studies have investigated the relationship of
SARS-CoV-2 virus infections with meteorological variables using days lag to consider their incubation
time. A recent study investigated the effects of temperature and humidity on new daily cases and new
COVID-19 deaths in 166 countries, using day lag up to 3 days, and showed negative correlations with
temperature and humidity [39]. These results are consistent with what has been found in this study for
temperatures but not for humidity, where positive correlations were found. Another study conducted
in Hong Kong showed humidity and rainfall had a positive correlation with virus diseases [40].

Air quality as PM10 and NO2 variables (shown in Figure 6) demonstrated a significant correlation
with new cases, total cases, and mortality. Correlation with PM10 was noted the highest correlation
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in new cases (1 day lag, r = 0.20, p < 0.1), total cases (15 days lag, r = −0.25, p < 0.05), and mortality
(15 days lag, r = −0.25, p < 0.05). However, PM10 correlation with total cases also showed a positive
relationship (0 day, r = 0.18, p < 0.1). NO2 did not show significant correlation with new and total cases
(p < 0.1), but it showed a negative correlation with mortality (4 days lag, r = −0.29, p < 0.01). Recent
studies conducted in New York City showed that average air quality is significant for new cases, total
cases, and mortality by COVID-19 [16]. Additionally, Table 1 displays a comparison of our data with
previous studies that demonstrate a relationship between COVID-19 infection and deaths with air
pollutants. These results agree with the findings presented here. Overall, these findings are consistent
with other research showing that wind speed, humidity, temperature and air quality have a significant
correlation with the transmission of infectious diseases and their associated deaths [16,41,42]. In that
direction, results showed significant correlations (p < 0.01) using 7 to 15 days lag for meteorological
conditions, 12 to 15 days lag for PM10 and 1 to 5 days lag for NO2.
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Table 1. Literature review of studies displaying the relationship between COVID-19 infections and mortality with atmospheric pollutants.

Study Area Pollutant Types Key Observations Authors

New York city, USA Air Quality Relationship of up to −68% with the
propagation of COVID-19 Bashir et al. [16]

California state, USA PM2.5, PM10, SO2, NO2, Pb, VOC and CO COVID-19 has significant correlation
with PM2.5, PM10, SO2, NO2, and CO Bashir et al. [17]

3000 cities in the United States PM2.5

An 8% increase of COVID-19 mortality
rate was explained by an increase of 1

µg/m3 of PM2.5

Wu et al. [43]

28 provinces of Northern Italy NO2
COVID-19 spread was associated with

high NO2 levels Filippini et al. [44]

25 cities of India PM2.5, PM10, NO2, SO2, CO, and O3
COVID-19 deaths have significant
correlation with poor air quality Saha et al. [45]

Countrywide, England O3, NO and NO2

COVID-19 deaths were significantly
associated with ozone, nitrogen oxide

and nitrogen dioxide
Travaglio et al. [46]

Kuala Lumpur, Malaysia PM2.5, PM10, SO2, NO2, CO and O3
COVID-19 cases have been influenced by

air pollutant Suhaimi et al. [47]

66 administrative regions of Italy, Spain,
France and Germany NO2

COVID-19 deaths can be caused by
prolonged exposure to NO2

Oren [48]

Japan PM
Short-term exposure to PM might
influence infections caused by the

COVID-19
Azuma et al. [49]

9 Asian cities PM10 and PM2.5
Increase in the COVID-19 death rate due

to air pollution by PM10 and PM2.5
Gupta et al. [50]

City of Buenos Aires, Argentina PM10 and NO2

Total cases of COVID-19 were
significantly correlated with PM10 days

prior to reported infection
This study
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3.2. Impacts on the Air Quality

Figure 7 shows the variations for PM10 and NO2 average concentrations measured by the air
quality stations in CABA. During the analyzed period of 2019, average concentration of PM10 was
26.80 µg/m3 with a maximum of 43.29 µg/m3 and a minimum of 12.04 µg/m3. While on the same period
of 2020, PM10 average concentration was 16.79 µg/m3 with a maximum of 38.81 µg/m3 and a minimum
of 7.33 µg/m3. NO2 showed an average of 37.46 µg/m3, maximum of 77.01 µg/m3, and a minimum of
21.87 µg/m3 in 2019, and these average concentrations in 2020 decreased to 30.03 µg/m3, a maximum
60.64 µg/m3 and a minimum of 7.48 µg/m3. Also, as shown in Figure 7, the greatest reduction in the
concentration of PM10 and NO2 in 2020 occurred from the start of the lockdown (March 20) to April 20.
Then, concentrations showed behavior similar to 2019, possibly related to the easing of the lockdown,
made to minimize the negative impact on the economy [22]. Arkouli et al. [36] showed that CABA in
the cold season presents the lowest values of the ventilation coefficient. Therefore, it indicated higher
probabilities of poor air quality, and that was confirmed by the higher concentrations of PM10 and
PM2.5 measured by them. Other studies showed that 45.5% of NOx emissions in this city were from
mobile sources, such as cars, taxis, buses and trucks [38].
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lockdown (20 March 2020).

During the COVID-19 pandemic lockdown, several studies around the world have studied its
impact on air quality. Ghahremanloo et al. [51] reported NO2 reductions of up to 83% in East Asia,
while in Southeast Asia, region reductions were observed in PM10 (26–31%), PM2.5 (23–32%), NO2

(63–64%), SO2 (9–20%), and CO (25–31%), in urban areas from Malaysia [52]. In India, AOD reductions
of up to 50% were perceived in New Delhi [5]. Otmani et al. [53] found reductions of 75%, 49% and
96% for PM10, SO2 and NO2 in Salé City (Morocco). Also, emissions of NO2 have been reduced up to
40% in Iraq compared to the pre-lockdown [54]. The United Kingdom showed average reductions
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of NO, NO2 and NOx between 32% and 50% at roadsides on lockdown [55]. Changes in the United
States’ air pollution showed declining NO2 of 25.5% compared to historical years [56]. Additionally,
Muhammad et al. [10] using satellite data showed NO2 reductions of 20–30% in Italy, France, and Spain.
Thus, in line with our findings, this pollutant reduction is related to the lockdown aimed to stop
the spread of the SARS-CoV-2 virus. Especially, after 20 March (start of lockdown), a decrease was
observed in the average daily concentrations measured by the air quality network of CABA, as shown
with a red line in Figure 7. Tropospheric NO2 measured by the S5p/TROPOMI-ESA (Figure 8) over
CABA allowed us to compare the variability and distribution of NO2 after and during the pandemic
time, compared with the same period of 2019. The images show a notable reduction in the level of
tropospheric NO2 from 20 March to 19 April 2020 compared to the same period in 2019.Atmosphere 2020, 11, x FOR PEER REVIEW 13 of 23 

 

 
Figure 8. Mean levels of tropospheric NO2 (moles/m2) measured by the S5p/TROPOMI-ESA in 2019 and
2020, both in the weeks corresponding to before, during, and in relaxation of the lockdown in CABA.
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3.3. The Two Facets Observed on COVID-19 Pandemic Lockdown

Pandemic lockdown is a critical time due to infected people with SARS-CoV-2, increasing
cases of death, and economic damage [7]. However, it has generated a window to analyze the
correlation between rapidly spreading viral diseases like COVID-19 with weather and air quality
indicators. Our findings show correlations between meteorological and air quality variables several
days before positive identification or death (shown in Figures 5 and 6). Thus, this study allows us to
expand knowledge about the meteorological and air quality variables analyzed that could be used for
decision-makers to consider designing measures to reduce the risk of COVID-19 and death, and also to
better understand how the analyzed variables can vary in the different climate change scenarios and
therefore in the spread of viral diseases [57,58].

Additionally, Table 2 shows reductions in mean NO2 concentrations, according to the data from
the air quality network of CABA and the S5p/TROPOMI-ESA satellite [30,31]. A decreasing trend in
the data measured was observed from the S5p/TROPOMI-ESA satellite too. There was only an increase
during the S1 and S2 situations (see S1/S2 definition in Table 2) as shown in , but it was considered as a
regional effect also observed in other recent studies carried out in South America [3,9].

Table 2. Variation of NO2 mean concentrations measured (%) from 2019 to 2020 from the quality
network and S5p/TROPOMI-ESA for CABA.

Situation Dates
Variation of NO2 Mean Concentrations (%)

from 2019 to 2020

Air Quality Network S5p/TROPOMI-ESA

S1: weeks prior to the
identification of the first
case of COVID−19 and
the start of the lockdown.

20 February to 4 March −20.42 −13.83

S2: the government
encourages the
population to stay home
and prohibits public
events that gather
many people.

5 March to 19 March −18.22 37.70

S3: the government
establishes the full
lockdown at the national
level and closes the air,
land and marine borders.

20 March to 4 April −152.62 −58.83

S4: The government
begins to release some
activities to minimize the
economic impact of the
full lockdown.

5 April to 19 April −82.05 −40.83

Situations S2, S3, and S4 provide insight into some measures that could be taken to control
polluting emissions in the city. Studies conducted by Vrekoussisy et al. [59] in Athens, Greece, showed
that the NO2 columns over Athens have been significantly reduced in the range of 30–40% during the
economic crisis of 2008. They also found strong correlations between pollutant concentrations and
economic indicators, showing that the economic recession resulted in proportionally lower levels of
pollutants in large parts of Greece. In addition, Tong et al. [60] studied the implications for surface
ozone levels to changes in NOx emissions in the United States during the 2008 global recession and
they observed large national reductions in NOx emissions of up to 21%. Recent studies investigated
419 episodes of financial crises in more than 150 countries during the period 1970–2014, analyzing the
impact of financial crises on air pollutant emissions. The results showed that, in the short term, as a
consequence of the financial crises, emissions decrease for CO2, SO2 and NOx by 2.6, 1.8, and 1.7%,
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respectively, but, in the medium-term, financial crises have an insignificant effect on emissions, or in
some cases lead to a 1–2% increase, cancelling out the initial benefit [61]. These studies showed that
the decreases in pollutants are related to a financial crisis; similarly, in our study, it could be generated
by the economic crisis of the COVID-19 pandemic. However, the reactivation after this pandemic and
financial crisis should serve to establish more environmentally friendly measures, trying to transform
the temporary reductions into permanent lower levels.

Our study shows that exposure to air pollution is significantly correlated with an increased risk of
infection and death due to COVID-19 (as shown in Table 1). In addition, human mobility restriction
measures provide the greatest benefit for COVID-19 mitigation [62,63], because prevention is actually
more cost-effective than cure [64–66] or death [67]. Therefore, the results of this study show that air
pollution in CABA can serve as one of the indicators to assess vulnerability to COVID-19. Moreover,
strategies to restrict human mobility during the COVID-19 pandemic and future outbreaks of similar
diseases seem to be adequate.

This study has delivered strong evidence regarding the association of COVID-19 expansion with
various meteorological and pollutants indicators, and improvement in air quality in CABA. However,
it has some limitations. Firstly, COVID-19 is an infectious disease that is related to additional variables
that must be considered in a comprehensive study. Also, future research should include air pollutants
such as PM2.5, SO2, black carbon and SARS-CoV-2 in PM2.5 particles. Moreover, socio-economic aspects
such as measures of social distancing, full and partial shutdown, personal hygiene, among others,
should be explored.

4. Conclusions

Meteorological and air quality variables were important factors in determining the incidence
rate of COVID-19 in CABA. We also observed that air quality in terms of NO2 and PM10 improved
during the most restrictive time of the COVID-19 pandemic lockdown in CABA. Our study shows that
exposure to air pollution was significantly correlated with an increased risk of becoming infected and
dying from COVID-19. Therefore, this study shows that air pollution in CABA can serve as one of
the indicators to assess vulnerability to COVID-19. In addition, it can serve decision-makers for the
adoption of strategies to restrict human mobility during the COVID-19 pandemic and future outbreaks
of similar diseases.
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Abbreviations

The following abbreviations are used in this manuscript:

COVID-19 Coronavirus disease 2019
SARS-CoV-2 Severe acute respiratory syndrome novel coronavirus 2
WHO World Health Organization
CABA City of Buenos Aires
PM Particulate matter
PM10 Particulate matter with a diameter of 10 microns or less
PM2.5 Particulate matter with a diameter of 2.5 microns or less
NO2 Nitrogen dioxide
NO Nitrogen monoxide
CO Carbon monoxide
AOD Aerosol optical depth
O3 Ozone
VOC Volatile organic compound
ESA European Space Agency
S5p Sentinel-5 Precursor
TROPOMI TROPOspheric Monitoring Instrument

Appendix A

Table A1. Shapiro-Wilk normality test application. All p-values are less than 0.001 and 0.01 significance
level respectively, thus the null hypothesis is rejected that the variables have a normal distribution.

Variable Name Length NAs Statistic p-Value

New cases 88 0 W = 0.6920485 <0.001
Total cases 88 0 W = 0.7331529 <0.001
Mortality 88 0 W = 0.8394012 <0.001
Humidity 88 0 W = 0.8498697 <0.01

Temperature average 88 0 W = 0.8627348 <0.001
Temperature minimum 88 0 W = 0.8279921 <0.001
Temperature maximum 88 0 W = 0.8627783 <0.01

Rainfall 88 1 W = 0.4064017 <0.001
Wind speed 88 0 W = 0.935951 <0.001

PM10 88 0 W = 0.920365 <0.001
NO2 88 0 W = 0.9203248 <0.001
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Table A2. Empirical results through Spearman rank correlation test for new cases in CABA, from lag of 15 days prior to the confirmation date (lag 0). Number colors
indicate stands for 1%, 5%, and 10% level of significance, respectively.

Lag Day Temperature
Average

Temperature
Minimum

Temperature
Maximum Humidity Rainfall Wind Speed PM10 NO2

−15 −0.711 −0.638 −0.685 0.182 0.068 −0.183 −0.154 0.003
−14 −0.679 −0.629 −0.618 0.135 0.010 −0.224 −0.124 0.020
−13 −0.667 −0.636 −0.547 0.134 0.002 −0.224 −0.087 0.029
−12 −0.680 −0.648 −0.552 0.157 −0.012 −0.250 −0.031 0.039
−11 −0.701 −0.672 −0.558 0.125 −0.020 −0.227 0.008 0.022
−10 −0.707 −0.685 −0.549 0.190 −0.007 −0.280 0.023 0.023
−9 −0.730 −0.725 −0.570 0.123 −0.030 −0.267 0.012 0.028
−8 −0.744 −0.738 −0.577 0.075 −0.123 −0.314 0.072 0.048
−7 −0.737 −0.743 −0.547 0.017 −0.144 −0.271 0.106 −0.020
−6 −0.714 −0.721 −0.534 −0.016 −0.223 −0.316 0.094 −0.006
−5 −0.692 −0.708 −0.512 −0.056 −0.234 −0.252 0.152 0.012
−4 −0.687 −0.697 −0.512 0.024 −0.238 −0.267 0.129 −0.043
−3 −0.687 −0.689 −0.510 0.007 −0.241 −0.279 0.115 −0.079
−2 −0.699 −0.704 −0.540 0.010 −0.282 −0.329 0.151 −0.059
−1 −0.712 −0.709 −0.544 0.000 −0.303 −0.291 0.204 −0.093
0 −0.710 −0.701 −0.545 −0.050 −0.352 −0.244 0.197 −0.166
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Table A3. Empirical results through Spearman rank correlation test for total cases in CABA, from lag of 15 days prior to the confirmation date (lag 0). Number colors
indicate stands for 1%, 5%, and 10% level of significance, respectively.

Lag Day Temperature
Average

Temperature
Minimum

Temperature
Maximum Humidity Rainfall Wind Speed PM10 NO2

−15 −0.742 −0.674 −0.704 0.178 0.009 −0.220 −0.247 −0.137
−14 −0.731 −0.678 −0.657 0.129 −0.013 −0.249 −0.192 −0.122
−13 −0.740 −0.695 −0.628 0.115 −0.035 −0.240 −0.132 −0.120
−12 −0.757 −0.720 −0.630 0.099 −0.057 −0.266 −0.087 −0.115
−11 −0.787 −0.751 −0.635 0.094 −0.078 −0.289 −0.037 −0.099
−10 −0.795 −0.775 −0.631 0.111 −0.100 −0.295 0.017 −0.114
−9 −0.800 −0.781 −0.633 0.104 −0.122 −0.247 0.001 −0.134
−8 −0.807 −0.791 −0.634 0.059 −0.144 −0.267 0.027 −0.137
−7 −0.817 −0.803 −0.646 0.013 −0.165 −0.261 0.076 −0.153
−6 −0.819 −0.812 −0.649 −0.047 −0.187 −0.236 0.069 −0.146
−5 −0.819 −0.818 −0.649 −0.055 −0.209 −0.275 0.083 −0.101
−4 −0.821 −0.820 −0.648 −0.026 −0.231 −0.285 0.110 −0.104
−3 −0.817 −0.819 −0.646 −0.017 −0.253 −0.322 0.126 −0.099
−2 −0.814 −0.812 −0.644 −0.007 −0.274 −0.341 0.151 −0.089
−1 −0.813 −0.806 −0.641 0.007 −0.296 −0.344 0.155 −0.109
0 −0.813 −0.806 −0.641 −0.031 −0.318 −0.323 0.178 −0.160
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Table A4. Empirical results through Spearman rank correlation test for mortality in CABA, from lag of 15 days prior to the confirmation date (lag 0). Number colors
indicate stands for 1%, 5%, and 10% level of significance, respectively.

Lag day Temperature
Average

Temperature
Minimum

Temperature
Maximum Humidity Rainfall Wind Speed PM10 NO2

−15 −0.563 −0.495 −0.578 0.152 0.009 −0.147 −0.254 −0.195
−14 −0.529 −0.467 −0.486 0.173 0.010 −0.115 −0.248 −0.187
−13 −0.520 −0.469 −0.462 0.173 −0.026 −0.159 −0.191 −0.241
−12 −0.549 −0.515 −0.479 0.144 −0.066 −0.208 −0.109 −0.172
−11 −0.602 −0.575 −0.468 0.055 −0.130 −0.174 −0.025 −0.195
−10 −0.602 −0.585 −0.525 0.043 −0.131 −0.231 −0.002 −0.174
−9 −0.643 −0.644 −0.524 0.021 −0.006 −0.161 −0.007 −0.137
−8 −0.672 −0.635 −0.567 −0.005 −0.090 −0.162 −0.013 −0.210
−7 −0.634 −0.613 −0.491 0.016 −0.158 −0.194 0.044 −0.170
−6 −0.617 −0.616 −0.496 −0.023 −0.094 −0.213 0.032 −0.222
−5 −0.601 −0.608 −0.470 −0.022 −0.155 −0.202 −0.061 −0.228
−4 −0.638 −0.634 −0.470 −0.002 −0.124 −0.186 −0.100 −0.292
−3 −0.639 −0.636 −0.521 −0.172 −0.196 −0.251 −0.020 −0.238
−2 −0.665 −0.681 −0.500 −0.091 −0.299 −0.322 0.125 −0.109
−1 −0.650 −0.633 −0.591 −0.073 −0.255 −0.214 0.139 −0.144
0 −0.675 −0.654 −0.538 −0.093 −0.243 −0.306 0.102 −0.145
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S5p/TROPOMI-ESA. Red and blue tones indicate greater/lesser concentration in 2019 and 2020 
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